Chapter 7

Matrix Decomposition

This chapter is dedicated to explaining the concept of matrix decomposition or factoriza-
tion, its definition, and the process. You will learn how you can decompose a matrix to its
constituent elements.

7.1. Introduction

What is the benefit of decomposing a matrix? What does that mean? When we decompose
anything, we break it into its constituent elements. Assume we are going to disintegrate a
tool (a car or a watch!). Such action helps us to understand the core particles and their tasks.
Furthermore, it helps to have a better understanding of how that specific tool works and its
characteristics! Assume that the tool is a matrix which we would like to decompose. There
are different approaches to decompose a matrix. However, perhaps the most commonly
used ones are matrix eigendecomposition and Singular Value Decomposition (SVD).

7.2. Matrix Eigendecomposition

In this section, I am going to show you the definition of eigendecomposition and the sub-
sequent concepts necessary to understand it.

7.2.1 Eigenvector and Eigenvalue

Before we move on, we should know the definition of eigenvector and eigenvalue. The
definition of eigenvector and eigenvalue are somehow connected.

49

50 CHAPTER 7. MATRIX DECOMPOSITION

Definition

Assuming we have the square matrix of A € RV*V. The nonzero vector v € RV*! is
an eigenvector and scalar A is its associated eigenvalue if we have:

Av = Av

From the above definition, it is clear than if v is an eigenvector, any vector av,o € R
is also an eigenvector with the same eigenvalue A. Therefore, if we have one eigenvector,
then we have infinite ones!

//
/v/ av

Fig. 7.1. Since v is an eigenvector, any vector v is also an eigenvector

Due to that, it is customary to only work with eigenvectors that have unit norm. It is
simple to construct an eigenvector with the unit norm. Assume v is our eigenvector. Then,
the following vector is also an eigenvector with the unit norm:

1

W=0V=-—V
[1v]]

where ||v|| is the norm of vector v. We usually consider the euclidean norm.

7.2.2 The Process

Here, the process of how we decompose a matrix to its constituent elements is explained.
It is called the eigendecomposition of a matrix.

7.2. MATRIX EIGENDECOMPOSITION

Matrix Eigendecomposition

Assume we have the square matrix of A € R¥*N which has N linear independent
eigenvectors v',i € 1,...,N. Then, we can factorize matrix A as below:

A=VAV!

where V € RV*V is the square matrix whose j* column is the eigenvector v/ of
A, and A is the diagonal matrix whose diagonal elements are the corresponding
eigenvalues, Aj; = A;.

Above, we basically concatenate eigenvectors v’ to form the V matrix as below:

7.2.3 Discussion on Matrix Eigendecomposition

Note that we can only factorize diagonalizable matrices as above. But the question is what

is a diagonalizable matrix?

Diagnolizable Matrix

Assume we have the square matrix of A € RV*V_ 1t is called diagonalizable or
nondefective if there exists an invertible matrix H such that HAH™! is a diagonal
matrix.

let’s have a more precise definition of a matrix being singular or non-singular.

Assume we have the square matrix of A € RV*N_ 1t is called singular if and only if
any of the eigenvalues (1) are zero.

Under some circumstances, we can calculate the matrix inverse using the decomposi-

tion.

52 CHAPTER 7. MATRIX DECOMPOSITION

Matrix Inverse

Assume we have the square matrix A € RV*V it can be eigendecomposed and it is
nonsingular. Therefore, we can calculate its inverse as below:

Al=valv!
Since A is diagonal, it inverse A~ is also diagnoal and we can calculate it as:

1
ATl =—
i T

7.2.4 One Special Matrix Type and its Decomposition

We are interested to investigate a special kind of matrix: Real symmetric matrix. A real
symmetric matrix is basically a symmetric matrix in which all elements belong to the space
of real numbers R.

For the real symmetric matrix of A € RV*V | the eigenvalues are real numbers and
we can choose eigenvectors in a way that they are orthogonal to each other. Then,
we can factorize matrix A as below:

A =QAQ”

where Q is an orthogonal matrix whose columns are the eigenvectors of A, and A
is a diagonal matrix whose diagonal elements are the corresponding eigenvalues,
A — A

Ji =

7.2.5 Useful Properties

So far, the concepts and how we can decompose a matrix were explained. Let’s see how
we can leverage it. Assuming A € RV*V:

* The determinant of the matrix A equals the product of its eigenvalues.
* The trace of the matrix A equals the summation of its eigenvalues.

o If the eigenvalues of A are A;, and A is non-singular, then the eigenvalues of
A~ are simply /%

* The eigenvectors of A~! are the same as the eigenvectors of A.

7.3. SINGULAR VALUE DECOMPOSITION (SVD) 53

7.2.6 Using Python

Now, let’s do some practical work. I want to use Python and NumPy to compute eigenval-
ues and eigenvectors.

Import NumPy library

2l import numpy as np

Define random 4x4 matrix using np.array
Ref: https://docs.scipy.org/doc/numpy-1.15.1/reference/generated/
numpy . random.randint .html

np.random.randint (10, size=(N, N))
print (’A:\n’,A)

Eigendecomposition
eigenvalues ,eigenvectors= np.linalg.eig(A)

3| # Show values

print (’Eigenvalues:’, eigenvalues)
print (’Eigenvectors:’, eigenvectors)

71# Create the diagonal matrix of \Lambda

Lambda = np.diag(eigenvalues)

Create V, the matrix of eigenvectors
V = eigenvectors

3| # Check and Confirm the decomposition

A_ = np.matmul (np.matmul (V,Lambda) ,np.linalg.inv(V))

print (’Computing A with decomposed elements:\n’, A_)

Run the above code to see the results. Pretty simple. Right? In the above code, line 24
aims to confirm if by using the decomposed elements A = VAV ™! we can reconstruct A.
What is your observation?

7.3. Singular Value Decomposition (SVD)

We previously discussed matrix eigendecomposition as an approach to decompose a ma-
trix using its eigenvalues and eigendecomposition. There was one issue though: For
matrix eigendecomposition, the matrix MUST be square. The Singular Value Decomposi-
tion (SVD) does NOT have this limitation, and it makes it even more useful and powerful
compared to eigendecomposition.

7.3.1 Preliminary Definitions

Let’s have a preliminary definition before we move on.

CHAPTER 7. MATRIX DECOMPOSITION

D
r

Conjugate Transpose of a Matrix

The conjugate transpose or Hermitian transpose of M € C™*" is obtained taking the
transpose and then taking the complex conjugate of each entry of matrix M. The
resulting matrix is denoted by M* or M,

The set C is the field of the complex numbers.

Now, let’s define a special kind of matrices.

Unitary Matrix

A complex square matrix M € C"*" is unitary if its conjugate transpose M* is also
its inverse. It can be shown as below:

MM*=M'M =1

where C is the field of the complex numbers.

NOTE: In the above definition, if M belongs to the field of real numbers R, the
matrix M will be orthogonal and M* = M7,

7.3.2 Matrix decomposition with SVD

Now, let’s define the main concept, Singular Value Decomposition (SVD).

Singular Value Decomposition
Assume we have the matrix of A € C¥*N Then, we can factorize matrix A as below:

A =ULV"

where U is an M X M and V is an N X N matrix and both are unitary. The matrix X
is a diagonal M x N matrix with non-negative real numbers on the diagonal.

NOTE: The matrix ¥ is a diagonal matrix of size M x N. So it does not have to be
square!

The diagonal elements of X are known as the singular values of the A. The columns
of U are known as the left-singular vectors and are the eigenvectors of AA*. The columns
of V are known as the right-singular vectors and are the eigenvectors of A*A.

The diagonal matrix X is uniquely determined by A. The nonzero singular values of
A are the square roots of the eigenvalues A*A. That’s why they are non-negative!

o

7.3. SINGULAR VALUE DECOMPOSITION (SVD)

7.3.3 A Practical Implementation

Let’s compute the singular value decomposition of a matrix using Python and NumPy.

Import Numpy library
import numpy as np

Define random 3x4 matrix using np.array
Ref: https://docs.scipy.org/doc/numpy-1.15.1/reference/generated/

numpy .random.randint.html

print (’A:\n

’,A)

np.random.randint (10, size=(M, N))

Singular Value Decomposition

With full_matrices=True,
np.linalg.svd (4,

U, 8, Vt =

Show the
print (’The
print (’The
print (’The

shape
shape
shape
shape

of
of
of
of

outputs

U:’, U.shape)

S:’, S.shape)
V-{T}:’>, Vt.shape)

Create the diagonal matrix of \Lambda
Sigma = np.diag(S)

if Sigma.shape [1]
zero_columns_count = Vt.shape[0] - Sigma.shape[1]

3l # Matrix A is fat!

Sigma is not diagonal!

!= Vt.shape [0]:

U and Vt matrices will be squared.
full_matrices=True)

additive = np.zeros((Sigma.shape[0],zero_columns_count), dtype=np
.float32)
Sigma = np.concatenate ((Sigma,additive),
Matrix A is fat! Sigma is not diagonal!
if Sigma.shape[0] != U.shape[1l]:
zero_rows_count = U.shape[1l] - Sigma.shape [0]
additive = np.zeros((zero_rows_count,Sigma.shapel[1]), dtype=np.
float32)
Sigma = np.concatenate ((Sigma,additive), axis=0)

s|# Check and Confirm the decomposition
A_ = np.matmul (np.matmul (U,Sigma) ,Vt)

print (’Computing A with decomposed elements:\n’, A_)

In the above code, the matrices’ shapes is just get printed. Try to change the code
above to see the outputs. Starting from line 20, the code reconstruct matrix A using the
decomposed vector by SVD to confirm the computation!

56 CHAPTER 7. MATRIX DECOMPOSITION

7.3.4 Applications of SVD
Moore-Penrose Pseudoinverse

Before, digging into how SVD can help us with pseudoinverse calculations, let’s talked
about what is a Pseudoinverse?

Moore—Penrose Pseudoinverse

Assuming we have the matrix of A € CM*N Then, we have a pseudoinverse of A,
defined as At € CM*N that satisfies all of the following criteria:

« AATA=A

« ATAAT = AT
. (AAT)* = AA*
« (ATA)* =ATA

How we can calculate the Pseudoinverse of a matrix using SVD? If we have the SVD
of a matrix A as ULV*, then A™ can be calculated as below:
AT =VItU*

where XV is the pseudoinverse of X and we create it by replacing each non-zero diagonal
entry o in X by % and transposing the resulting matrix.

Matrix Rank Determination

Previously, the linear dependence and the matrix ranks were discussed. Now, as we have
SVD, a more general approach compared to eigendecomposition, we can conclude the
following directions.

Matrix Rank: Assume we have the SVD of a matrix A as UXV*. The rank of
A equals the number of non-zero singular values which is the number of non-zero
diagonal elements in X.

7.4. Conclusion

In this chapter, the matrix decomposition (factorization) concept and two of its most used
techniques were introduced. You learn what is matrix decomposition and how to do it. You
also practiced to implement it in Python and NumPy. If you would like to know more about
matrix decomposition, you can refer to [11, 12].

	Introduction
	Is Mathematics Painful?
	The Motivation
	How to Use This Book?

	Basic Linear Algebra Definitions
	Introduction
	Scalar and Vector
	Matrix
	Tensor
	Conclusion

	An Introduction to NumPy
	Introduction
	Data Types
	Basic Data Types
	Type Conversion

	Defining a NumPy Array
	Create an array from a list
	Special functions
	Universal functions
	Random array

	Basic Arithmetic Operations
	Array Manipulation
	Indexing
	Shaping

	Summary

	Matrix Operations
	introduction
	Matrix Transpose
	Identity Matrix
	Adding Operation
	Scalar Multiplication
	Matrix Multiplication
	Matrix/Vector Multiplication
	Matrix Inverse
	Matrix Trace
	Matrix Determinant
	Special Matrices
	Conclusion

	Vector and Matrix Norms
	Introduction
	Vector Norm
	The Norm Function Properties
	Proving the Properties (Advanced)

	Most Used Norms
	L1 norm
	L2 norm
	Max norm

	Matrix Norm
	Conclusion

	Linear Independence
	Introduction
	The Concept
	Example
	The Relationship With Matrix Rank
	Linear Equations
	Conclusion

	Matrix Decomposition
	Introduction
	Matrix Eigendecomposition
	Eigenvector and Eigenvalue
	The Process
	Discussion on Matrix Eigendecomposition
	One Special Matrix Type and its Decomposition
	Useful Properties
	Using Python

	Singular Value Decomposition (SVD)
	Preliminary Definitions
	Matrix decomposition with SVD
	A Practical Implementation
	Applications of SVD

	Conclusion
	References
	Appendix A: The Notations
	Appendix B: Python Environment
	Index

