STEVEN TALCOTT SMITH

Level Up!
How to Become a Great Professional
Software Developer

Steven Talcott Smith

This book is for sale at http://leanpub.com/level_up

This version was published on 2014-11-15

)

Leanpub

This is a Leanpub book. Leanpub empowers authors and
publishers with the Lean Publishing process. Lean
Publishing is the act of publishing an in-progress ebook
using lightweight tools and many iterations to get reader
feedback, pivot until you have the right book and build
traction once you do.

©2013 - 2014 Steven Talcott Smith

http://leanpub.com/level_up
http://leanpub.com
http://leanpub.com/manifesto
http://leanpub.com/manifesto

Tweet This Book!

Please help Steven Talcott Smith by spreading the word
about this book on Twitter!

The suggested hashtag for this book is
#secretsoftheaelogicians.

Find out what other people are saying about the book by
clicking on this link to search for this hashtag on Twitter:

https://twitter.com/search?q=#secretsoftheaelogicians

http://twitter.com
https://twitter.com/search?q=%23secretsoftheaelogicians
https://twitter.com/search?q=%23secretsoftheaelogicians

This book is a waypoint on a journey I started long ago. I
do not yet know where it will lead. I have many people to
thank for inspiring me, for teaching me, for encouraging
me. The person I want to thank most of all is my wife,
Celda. Thank you for your Love and support. Thank you
for not being too hard on me when I am present in body
but my mind is elsewhere, thinking about software,
business or writing.

I want to thank our staff in the Philippines, in particular,
Nestor Pestelos for reading and reviewing drafts and for
taking an interest in this project.

Contents

Pair Pragmatically
What is Pair Programming?
Why WePair
WhentoPair
Driving vs. Navigating
Use Proper Sitting Posture
Structuring Breaks
Keep Each Other Accountable
What to Do if Your Workplace Does Not Pair . .

0 W =

11
15
16
17
18

Pair Pragmatically

Pair programming is still one of the most controversial
techniques to come out of the Agile movement. Non-
technical managers often doubt its effectiveness. Reclusive
programmers accustomed to a high degree of autonomy
and very little scrutiny or oversight, may resist opening up
and sharing their work and thought process so completely.

It is very different from the cliched developer working
alone with a door shut or in a cubicle or bullpin with
headphones on. Among those who practice it properly,
there is little doubt about the utility and value of the
technique.

What is Pair Programming?

Pair programming as we practice it at ALOGICA, consists
of two people sitting at one powerful computer with a
single large 27” or 30” monitor. Developers may opt to keep
a personal laptop to the side of the main computer for use
in looking up documentation or performing quick research.

Two keyboards and two mice are connected to the single
computer. Either person may control the computer though
only one person is typing or controlling the mouse at any

Pair Pragmatically 2

given time. The two developers will continuously discuss
the problem at hand and will take care to vocalize their
thoughts to share with the other person. Control passes
back and forth naturally in the course of the work or
possibly according to an agreed cadence. Both “hogging the
keyboard” and partner-disengagement is frowned upon.

=1 LI

Ramon and Cecille pair-programming. Ramon is navigating, Cecille
is driving.

The person who is actively typing or who has their hand
on the pointing device may be referred to as the “driver”
The person who is not typing may be referred to as the
“navigator” The phrase “let me drive for a second” or “you
drive” is commonly used to switch roles.

Pair Pragmatically 3

Why We Pair

The main benefits to pair programming include:

« fewer defects, better designs

+ knowledge is spread around the team

« mutual accountability

« better adherence to conventions and best practices

« faster convergence to solutions for complex prob-
lems

« less time spent “stuck”

« higher engagement and enthusiasm

« less time wasted on non-development tasks

The cost of pair programming according to some stud-
ies, seems to be about a 15% in the form of an up-front
decrease in the apparent velocity as compared with each
developer working solo. However, the higher quality leads
to reduced re-work, lower ongoing maintenance costs and
perhaps delayed obselence. This increases the value of the
software asset. Higher employee satisfaction leads to lower
turnover. When turnover occurs, knowledge is more dis-
tributed throughout the organization. Pairing also makes it
easier to bring new developers on and make them produc-
tive right away. This means any given person less essential
to a particular project. Managers should appreciate all of
these things.

Pair Pragmatically 4

I submit that significant commercial software development
is rarely undertaken without the expectation of 10x or more
return on investment. If a given project cannot accept a 15%
pay-it-forward tax to “do things right” and produce a more
maintainable, lower-defect system, with employees who
are happy to continue to work on it, then one might wonder
if the development should be undertaken at all. This holds
true whether the tax is paid through pairing or through
other techniques aimed at addressing the same problems.

We believe that by pairing pragmatically as opposed to
dogmatically, we can realize most of the benefits of pairing
without necessarily paying the 15% tax.

How Pairing Saves Time

Non-technical managers may have trouble visualizing how
pair programming can be anything other than twice as
expensive as “solo” programming. The naive person ob-
serves two people sitting at one computer and imagines
that their production will be halved. An illustration and
analogy from sport will help explain the fallacy of this
thinking.

As we discussed earlier, there is a notional Minimum
Essential Effort (MEE) in the development of any feature
or the accomplishment of a software development task. Let
us represent this on a 2 dimensional surface as the straight
line from the starting point to the ending point.

Pair Pragmatically 5

Ideal path of Minimum Essential Effort

This is much like a leg of a sailboat race between two marks

Pair Pragmatically 6

placed in the water. The MEE is the “perfect course” which
would lead to the shortest distance traveled.

We measure our rate of progress in sailboat racing with the
term “Velocity Made Good” (VMG) - that is speed toward
the mark. One rarely can steer a course “straight for the
mark” - the wind may shift, other boats may get in the way,
current may push the boat one way or another, the fastest
point of sail may not be very close to the ideal course, etc.
There are many factors.

A sailboat racing crew may consist of at least several
people: one or more to handle the sails, one to steer, and
one to navigate. A few more may be handy for “rail meat”
but here the analogy breaks down. Suffice to say that a boat
with at least two or three crew focusing on their individual
roles — ceteris parabis (all other things being equal) - may
be more speedily sailed toward the mark than a single-
handed vessel where one individual performs all the roles.

Software development is a multi-dimensional activity and
forward motion does not always imply progress toward the
desired end. Direction is very important. The following di-
agram shows how a pair may stay on course and drastically
shorten the actual calendar and clock time expended on a
task.

Pair Pragmatically 7

Working solo without a pair Working as a pair with a good navigator

troubleshooting old
gem version when new ¢ne
would have fixed

troubleshooting old
gem version when new
would have fixed

Checked
acebook
misunderstood
the feature cgpybara broke

capybara broke

pisking a few nits on the
dev env before starting
Start Start

misunderstoo
the feature

Solo vs. Pair Programming

With this visualization and the benefits we hope to obtain

Pair Pragmatically 8

by pairing firmly in mind, let us proceed to discuss guide-
lines for pairing pragmatically.

When to Pair

Here are the occasions when we almost certainly want to
pair:

« When two heads are better than one

Complex problems with a lot of context may benefit
from pairing. If you you feel like you need to “talk
it out” you probably should pair. If you are confused
about a requirement or need to make a guess about
something and the customer or product manager is
not available, pair. If you are unsure about how to
properly test or structure something, pair. If you are
working with an unfamiliar system or subsystem,
pair. If you are struggling with your tooling and you
suspect other developers have resolved the problem
or that your problem affects everyone, pair.

« When you intentionally want to transmit knowledge
or technique

« When deploying to production

Depending on the complexity of the system, how
many users it has, and how much money can be lost
with an outage, less experienced people generally
should not deploy to production alone. Two heads

Pair Pragmatically 9

are more likely to spot a problem quickly before irre-
versible steps are taken. Discussing the plan explic-
itly with someone who bears shared responsibility
for failure may highlight problems or risks before
they occur.

» When reviewing code or pull requests or making a
large commit

Someone will have to look at the code later one way
or another. It is better to inspect it now.

« When on-boarding a new team member

There is no faster way to get someone new up to
speed.
« When you are having trouble staying focused

Your pair can help you focus on the chore. People
hesitate to interrupt a pair of people who are obvi-
ously engrossed in a task, whereas people frequently
feel justified in interrupting someone who is work-
ing alone. Discussing the overall plan with someone
can help clear the road ahead.

« When you are not sure what you should do

Your pair probably knows what to do or at least can
help you figure it out quickly. Two people can more
easily “saturate” the design space or come up with
varied approaches to a problem.

Pair Pragmatically 10

When Not to Pair

Pairing pragmatically means that while we prefer to pair,
we recognize there are some occasions where pairing may
not be beneficial. Here are some times we recommend

breaking off:

« When you need to cover ground as quickly as possi-

ble

Quality isn’t always an overriding concern. Occa-
sionally you just need some stuff working quickly
for a demo. Or occasionally a critical item comes up
but you do not want to disrupt progress at the main
front of development. Split up.

« When you can divide and conquer the problem space

For example, suppose you have a long list of user
interface glitches to clear up. You both know how to
do it. It’s straightforward and you could go twice as
fast independently. Divide and conquer.

+ When you need to perform UI Design

6-up techniques and others allow for collaborative
UI ideation but design sometimes benefits from the
thought and coherent vision of a single individual.

« When you need brain or physical space

We all get sick of each other from time to time and
pair programming can involve a great deal of time
sharing someone’s personal space. Get some time
apart.

Pair Pragmatically 11
Driving vs. Navigating

Role of the Driver

The driver typically has hands on the keyboard and will
be thinking of how to solve the immediate problem. When
practicing Test-Driven Development (TDD), the driver will
write a test or implement code with the objective of making
a test pass. If you are driving and you do not know what to
do next, your pair has probably let you down. In this case,
suggest writing a test and maybe switching roles.

Most everyone who can program to some degree knows
how to play the driver role in a pair. Everyone can ben-
efit from practice. The most difficult aspect of driving is
speaking about what you are doing while you are doing it.
The second most difficult thing to learn is how to give up
control and switch.

Navigator

Most developers need to practice navigation in a pair con-
text to become skilled. Experienced developers who have
never paired will have learned to navigate by themselves
but may not be accustomed to speaking about it, to guiding
someone else or to performing the role so consciously.

Navigation usually consists of asking (aloud!) and often
answering such questions as:

o “Where are we?”

Pair Pragmatically 12

+ “What is the next step here?

The Navigator constantly assesses progress toward the fea-
ture or objective and helps correct course when necessary.

The Navigator may also:

+ help the driver get unstuck

« research needed information (eg. api usage, candi-
date gems, resolve confusion about requirements)

« question the approach

« handle interruptions (run interference)

« point out unseen problems or errors

Switching Roles

Two skilled developers who are evenly matched in terms of
ability will often fight for control. You know a pair is really
working well when keyboard control shifts back and forth
by the minute. If you observe a pair over 5 minutes and do
not see the control change hands, something is probably
wrong.

If you are the one on the keyboard and find that you have
been typing or using the keyboard for 5 minutes straight,
or if you notice your pair has disengaged, back away from
the keyboard for a moment. Say, “hey, you do this!” Or, “can
you take over?”

If you are the one who is supposed to be navigating but
you are losing the plot and having trouble seeing the big

Pair Pragmatically 13

picture, ask to drive and let the other person navigate for a

bit.

TDD Ping-pong

A more structured approach which works well with Test-
Driven Development is to take turns writing a test and
switching roles to let the other person write the code to
implement the test. They would then write the next test
and pass control back to you to implement the code. Rinse
and repeat.

Respect Your Pair

Pairing requires etiquette. You need to be nice. Most of this
is “common sense” but some requires practice — especially
if you have never worked in a very collaborative environ-
ment.

+ Check your ego at the door

This is the first rule. Don’t put anyone down or insult
them. You are not a genius and even if you are, you
probably don’t want to act like one. Put your ego
away. If you do a great job pairing, you both did a
great job. If you did poorly, blame is shared.

« Ask your pair to explain his or her thinking

If your driver has gone quiet, ask them to explain
what they are doing. If you don’t know why the

Pair Pragmatically 14

driver is doing something or why the navigator
is recommending a certain approach, ask them to
explain their thinking.

+ Give good criticism

Be constructive. If you see a problem with the code,
say something. Don’t just sit their like a lump on a
log.

» Take criticism well

Do not be defensive. All code is collectively owned.
It is not “mine” or “yours” — it’s ours.
+ Do not be silent

Silence is deadly. When observing a room of pair-
programmers, one should hear constant chatter.

Old habits die hard and most of us learned to pro-
gram in absolute blissful solitude. Most of us culti-
vated techniques for tuning others out. That doesn’t
work here.

+ Do not hog the keyboard

Even if you are not aggressive, your pair may be too
timid or intimidated to ask for control. If you’ve been
typing away furiously like you’re the only one there,
stop. Take your hands off and ask the other person
to pick up and carry on.

Change Position!

Pairing involves sitting at a slight angle to the center of the
main screen. At ALOGICA we have special custom made

Pair Pragmatically 15

tables which encourage each member of the pair to direct
their chair properly toward the common focus of attention.

If you sit in the same pair position (on either of the left
or right side) day after day, the slight asymmetry in your
posture and seating position will accumulate. Even if you
carefully avoid asymmetrical postures, you will cancel out
any accumulated asymmetry by switching positions often.

I believe that moving positions may offer other benefits
besides those related to posture and purely physical con-
cern. Changing positions or workstations or even rooms,
can help make things feel “fresh” and can help break poor
habits or modalities of interaction that set up between team
members.

Use Proper Sitting Posture

If you notice that your neck is slightly turned, adjust your
chair so that your body faces the screen and your head is
positioned straight ahead most of the time.

Over-use of the adjunct or personal laptop can cause asym-
metrical posture. When you turn to use a laptop adjacent to
your workstation, turn completely to face the laptop using
the rotational capability of the chair. If you simply twist
your body or your neck, you will end up with neck and
back pain. If you twist this way in one direction for a week,
you will be miserable. Don’t do it.

If you find you need to use your laptop extensively, it may
be time to “split” from your pair for a while. Go find a

Pair Pragmatically 16

comfortable place to use your laptop where you have more
space or where you won’t be tempted to sit at an angle or
in a twisted position.

Pair Flow

Earlier in the chapter on Maximizing Productivity, we
discussed the concept of Flow as it relates to the activity
of programming. When you work as a pair, you no longer
have freedom to get in the “zone” quite the same way as
you would if you were working alone. However, some have
described a state called “Pair Flow” — wherein the pair is
deeply absorbed in the task. This can be very powerful. You
know you are in pair flow when the work feels sticky, and
you do not want to get up and you see that your partner
feels the same.

Structuring Breaks

When pairing, you want to be diligent about taking breaks.
Absorption in the task waxes and wanes for either partner
and when you feel like taking a break, the other party
may be deep in the problem and not want to break. Out of
concern for the pair, you may stick with it and by the time
you are absorbed, the your pair may be ready for a break.
He or she may then be reluctant to leave and you can find
yourself “stuck” to the workstation much too long.

If this happens, try practicing Pomodoro together. We

Pair Pragmatically 17

describe the Pomodoro technique in Maximizing Produc-
tivity.

When you take a break while pairing, it is especially
important that you get up and get out of the room. Get

a little space and time away from your pair. Let them take
care of personal business or visit the restroom.

Estimate your work in terms of Pomodoros. Use the chance
to co-estimate with your partner. The better you can get
at estimating granlar tasks in terms of well-defined blocks
of time such as Pomodoros that fit within your break
schedule, the more accurate your overall estimates will be.
Hours often seem to be too large to use for estimation while
minutes are of course too small.

Bookend your end your breaks with with the questions
advised in the chapter on Maximizing Productivity. When
working with a pair, you really have no excuse. Before you
break, ask, “What did we just do?” or “Where are we now?”
Then state to your pair what you will start with when you
come back. If you are really deep in a problem, leave a note
on the screen or on paper as to where you left off.

Keep Each Other Accountable

Mutual accountability is one the great reasons we pair pro-
gram. With someone programming shoulder to shoulder
with us, we have to stay on our toes.

Be explicit about your intentions. Speak out loud. Do not
just start typing away. Tell your pair what you are planning

Pair Pragmatically 18

to do and why. This alone will have a positive regulating
effect on your efficiency.

Keep your momentum up. When you feel like you are
slowing down or losing steam, ask your pair to take over.
Usually the feeling will pass. You know you did a great job
when you are both slightly exhausted and amazed at what
you accomplished at the end of the day.

Mind your pair. If your pair is goofing-off too much, wast-
ing time, arriving late, or doing something that detracts
from your mutual enthusiasm for the work, or from the
productivity of the team, call them out. Do not suffer in
silence or try to pick up their slack and make up for their
deficiency.

Go to your manager or ask another person outside your
team for advice if you have trouble with a difficult pair
partner. Chances are you will have some good suggestions.
Ultimately if you just cannot stand your pair, your manager
may be able to reassign one of you.

What to Do if Your Workplace Does
Not Pair

Pairing is a cultural thing. Some cultures do not support it.
Some will be actively hostile to the idea. If you work in an
office where developers all wear headphones or close their
doors you many not have much luck with pairing at first.
Management may not be the only obsticle here.

Pair Pragmatically 19

I suggest starting by making sure your own workspace
can support pairing and even looks inviting to a potential
pair-partner. Make sure you have a large enough desk to
accommodate an extra chair. See if you can pull an extra
chair in or keep it to the side so you can pair opportunisti-
cally with a minimum of fuss. Keep an extra keyboard and
mouse handy. If you are running multiple smaller monitors
or even a single small one, request a single 27” or larger
monitor and swap any little ones out. Pairing works best
with a single screen. Keep your desk clean of personal
clutter so that someone does not feel that they are invading
your personal space too much.

If you do have an office with a door that closes, you’re in
luck. You may be able to arrange your desk to better support
pairing by placing it against a wall rather than facing the
door.

If you want to ease into it, volunteer use of your worksta-
tion for code review — either to review your own code or
that of a colleague.

More suggestions can be found in the chapter “Debug Your
Workplace”

	Table of Contents
	Pair Pragmatically
	What is Pair Programming?
	Why We Pair
	When to Pair
	Driving vs. Navigating
	Use Proper Sitting Posture
	Structuring Breaks
	Keep Each Other Accountable
	What to Do if Your Workplace Does Not Pair

