

Learn WPF MVVM - XAML, C#
and the MVVM pattern
Be ready for coding away next week
using WPF and MVVM

Arnaud Weil

This book is for sale at http://leanpub.com/learnwpf

This version was published on 2020-02-19

This is a Leanpub book. Leanpub empowers authors and
publishers with the Lean Publishing process. Lean
Publishing is the act of publishing an in-progress ebook
using lightweight tools and many iterations to get
reader feedback, pivot until you have the right book and
build traction once you do.

© 2016 - 2020 Arnaud Weil

http://leanpub.com/learnwpf
http://leanpub.com/
http://leanpub.com/manifesto
http://leanpub.com/manifesto

To my parents, for teaching me freedom and making
sure I can enjoy it.

To my wonderful family. Your love and support fueled
this book.

To my readers who suggested improvements to this
book, especially Doğan Kartaltepe.

Contents

1. Introduction . 1
1.1 What this book is not 1
1.2 Prerequisites 1
1.3 How to read this book 2
1.4 Tools you need 3
1.5 Source code 3

2. Why WPF ? . 4

3. Creating a WPF application 14
3.1 Developer - designer workflow 14
3.2 Editors . 15
3.3 Adding a control 16
3.4 Simple controls 17
3.5 Navigation 26
3.6 It’s your turn to code: do-it-yourself . . . 28
3.7 Exercise - Create the application and con-

tact page . 29
3.8 Exercise solution 30
3.9 Understanding XAML 32
3.10 Events . 34
3.11 Exercise - Create the menu page 34

CONTENTS

3.12 Exercise solution 34
3.13 Layout . 35
3.14 List controls 37
3.15 Exercise - Create the discussion page . . 38
3.16 Exercise solution 38

4. Managing data in a WPF application 39
4.1 Data binding 39
4.2 DataContext 40
4.3 Converters 41
4.4 Displaying collections using list controls . 41
4.5 Customizing list controls 41
4.6 Exercise - Display messages from a data

object . 42
4.7 Exercise solution 42
4.8 INotifyPropertyChanged 42
4.9 INotifyCollectionChanged 43

5. Making it shine: customize the look 44
5.1 Change a control’s look 44
5.2 Resources 45
5.3 Exercise - Set the background 46
5.4 Exercise solution 46
5.5 Styles . 46
5.6 Themes . 47
5.7 Transforms 47
5.8 Control states 47
5.9 Animations 48

6. MVVM pattern for WPF 49
6.1 Spaghetti code 49
6.2 MVC . 49

CONTENTS

6.3 MVVM . 50
6.4 Recommended steps (simple) 50
6.5 Example . 50
6.6 Example, more complex 51
6.7 Commands and methods 51
6.8 Recommended steps (complete) 52
6.9 Exercise - Display products and details

using MVVM 52
6.10 Exercise solution 53
6.11 MVVM frameworks in short 53

A word from the author 54

1. Introduction

1.1 What this book is not

I made my best to keep this book small, so that you can
learn WPF quickly without getting lost in petty details.
If you’re looking for a reference book where you’ll find
answers to all the questions you may have within the
next 4 years of your WPF practice, you’ll find other heavy
books for that.

My purpose is to swiftly provide you with the tools you
need to code your first WPF application using the MVVM
pattern and be able to look for more by yourself when
needed. While some authors seems to pride themselves
in having the thickest book, in this series I’m glad I
achieved the thinnest possible book for my purpose.
Though I tried my best to keep all of what seems nec-
essary, based on my 14 years experience of teaching.

I assume that you know what WPF is and when to use it.
In case you don’t, read the followingWhy WPF ? chapter.

1.2 Prerequisites

In order for this book to meet its goals, you must :

1

Introduction 2

• Have basic experience creating an application with
C# (any type of application is alright).

• Have working knowledge of Visual Studio.
• Have basic knowledge of XML syntax.
• Have basic knowledge of SQL Server.

You could as well use VB.NET to code a WPF ap-
plication. I chose to include only C# code in that
book because I want it small and my field experience
shows that almost every teams chooses C# over
VB.NET nowadays.

1.3 How to read this book

This book’s aim is to make you productive as quickly as
possible. For this we’ll use some theory, several demon-
strations, plus exercises. Exercises appear like the fol-
lowing:

Do it yourself: Time to grab your keyboard
and code away to meet the given objectives.

Introduction 3

1.4 Tools you need

The only tool you’ll need to work through that book is
Visual Studio 2015. You can get any of those editions:

• Visual Studio 2015 Community (free)
• Visual Studio 2015 Professional

1.5 Source code

All of the source code for the demos and do-it-yourself
solutions is available at https://bitbucket.org/epobb/
learnwpfexercises

It can be downloaded as a ZIP file1, or if you installed GIT
you can simply type:

git clone https://bitbucket.org/epobb/learnwpfexercises\

.git

1https://bitbucket.org/epobb/learnwpfexercises/downloads

https://bitbucket.org/epobb/learnwpfexercises
https://bitbucket.org/epobb/learnwpfexercises
https://bitbucket.org/epobb/learnwpfexercises/downloads
https://bitbucket.org/epobb/learnwpfexercises/downloads

2. Why WPF ?
If you’re in a hurry, you can safely skip this chapter and
head straight to the Creating a WPF application chapter.
This Why WPF chapter is there for those that want to
know why WPF should be used.

WPF is a .NET development framework for desktop ap-
plications that solves several problems encountered with
previous development frameworks.

Applications were counter-intuitive

Do you remember Windows XP? In order to turn off the
computer, you had to press a button titled Start. Not
really intuitive, is it? While this is a mainstream example,
most software suffered from bad user experience: it was
simply too complicated for a user to find her way around.

Some programs were even so complicated to use that a
wizard was run when launched in order to guide users
through the process of using the application. Wait: “pro-
cess”? Using an application shouldn’t be a process. It
shouldn’t be complicated to use an application, in fact
the application should adapt to the user. While that
debate would be nice for UX experts, my point is: why
were applications so complicated to use?

4

Why WPF ? 5

The answer to that question is rooted within that simple
fact: developers were asked to design the user-expe-
rience using code. Why? Because in many technology
stacks, the user experience is coded by a developer, not
drawn by a UX expert. Now, how can we expect someone
to work correctly using inappropriate tools and lacking
the necessary knowledge? A developer has little knowl-
edge of user experience, and a programming language is
not an appropriate way to create a user interface.

It all comes down to this: user-experience shouldn’t be
created using code, and it should be designed by a UX
expert.

Applications were dull

Here is an application I used for accounting:

Why WPF ? 6

Alright, the program did the job it was supposed to do.
But oh my, what a dull interface. Plus it’s not appealing
at all. It doesn’t handle resizes correctly, doesn’t fill the
available screen estate, and it looks like the icons were
randomly picked. No need to tell you that I wasn’t eager
to use that program as often as I needed to.

But it would be too easy to blame the developer for
that application’s dullness. Coding a nice UI could easily
double development time when using frameworks like
Windows Forms, because you have to code in order to
handle:

Why WPF ? 7

• Resizing
• Homogeneity
• Styling
• Elements positioning

Another source for that dullness is the fact that few
developers have design skills. And vice-versa.

Nice GUIs could be dreamed of but not
implemented

When you watch a movie or your favorite series, look at
the user interface when people use computers. Did you
notice how well designed, fluid and attractive they are?
When some evil hacker tries to enter a system, he just
has to press a big shiny “Hack” button. And when the
hero shows the President some exceptional event live,
she just slides through the information, zooms in and out
in a fluid manner.

Same goes with TomCruise in Minority Report: in order to
browse through files, he just moves around the pictures
and movies using gestures:

Why WPF ? 8

What does it mean? That people who can create at-
tractive, intuitive, user-friendly IHMs exist. However they
work for movies, not for the computer industry. Why, you
ask? Well, they were fed up with us developers.

Just think about the latest time some designer (or any
creative people for that matter) came in and asked “hey,
it would be great if there was a floating unicorn and when
you pulled the hair it would float around and [add what-
ever you need here]”. What did you answer? Probably
something that goes along those lines: “it’s not possi-
ble”. But what you really meant was: “it’s not possible
to do so in a time that is reasonable, since it would take
more time to code than the business logic itself”. And you
were right, because your framework didn’t allow you to
do so.

So do you know what happened? Those creative people

Why WPF ? 9

got tired of seeing their ideas teared down and they
went to work somewhere else. At some place where they
wouldn’t hear “no” as the only answer to their ideas.
Movies, series, you name it.

Appearance and logic separation

When Windows Forms, MFC C++, Java Swing or other
client application frameworks were designed, the devel-
opers did what seemed natural to them: use the coding
language in order to describe the user interface. For
instance, a UI in Windows Forms is described using C#
or VB.NET:

Windows Forms example of a UI description

public class Form1 : Form

{

public Form1()

{

Button b = new Button();

b.Text = "Buy stocks";

b.Left = 20;

b.Top = 40;

b.Click += new EventHandler(b_Click);

}

void b_Click(object sender, EventArgs e)

{

// ...

}

}

Why WPF ? 10

In the example above the button creation, position and
appearance are set using C#. Which brings two prob-
lems:

1. A designer cannot edit this code. Even if she had the
knowledge to do so, would you allow a designer to
edit C# code?

2. A quick look at that code doesn’t give a clue about
the button appearance. Which makes any design
work harder.

In fact, we all know that presentation code and logical
code should not bemixed. But Windows Formsmade the
mistake. And many other frameworks did.

The WPF solution

In the HTML world, problems aren’t so tough: design-
ers work on the appearance while coders work on the
business logic. Why is it so? Simply because things
are separated: designers work in HTML and CSS files
that describe the appearance, while developers work in
JavaScript files. Plus HTML and CSS are quite adequate
for describing an appearance.

Microsoft took the same approach with WPF. But HTML
would have been too limited for desktop applications
so they simply created XAML. XAML (XML application
markup language) is XML, and you can think of it as HTML
on steroids.

Why WPF ? 11

Since mixing presentation code and logical code was an
error, WPF separates them. For each screen we have two
files:

• a XAML file, describing the appearance, including
any animation;

• a C# file, describing the functional logic of the
screen. That file is called code-behind.

Practically, when you create a screen named MyScreen,
it will be made of two files: MyScreen.xaml (appearance)
and MyScreen.xaml.cs (code-behind).

Using separate files makes everything better: designers
and developers can work on the same project, each on
their own files.

Apart from this separation, WPF also introduced the
following features:

• Controls composition: most controls can host other
controls. For instance you can have buttons inside a
ListBox control , or any shape and even video inside
a Button control.

• Adaptation to any screen resolution: when working
with pixels as in Windows Forms, programs get
smaller as the resolution rises. WPF uses device-
independent pixels, that state the real size indepen-
dently of the screen resolution.

Why WPF ? 12

What does it all mean?

WPF simply allows for gorgeous user interfaces, which
can be created before, during, or after the business logic
is written. This allows for instance for a prototype to be
turned into an application just by adding the business
logic in C#.

XAML being very flexible, most of the design work that
would have taken weeks using previous frameworks is
done in hours. For instance, adding close buttons to tabs
in Windows Forms takes 5 days, but doing so in WPF is
a matter of minutes even though the TabControl didn’t
include them.

XAML

Though it can easily be used by a designer, XAML is an
extremely powerful tool. Being XML-based, it can cope
with several XAML-specific or XML tools:

Why WPF ? 13

One feature that makes XAML so powerful is that it is a
very easy way to instantiate .NET classes. More about
that in the Understanding XAML chapter.

3. Creating a WPF
application

3.1 Developer - designer workflow

When working on a WPF application there are two roles:

The designer is in charge of creating the wireframe and
then high quality version of the user interface. The devel-
oper is in charge of coding the business logic, connecting
with data and, well, um… debugging.

I’m talking about roles here. On a small team, the de-
velopers themselves could take the the designer role. On

14

Creating a WPF application 15

a large team however, it’s a good idea to have separate
people in charge of those roles. Simply because a de-
veloper is not a designer. Though this book is going to
teach you how to use the designer tools, you’ll realize
that using a hammer doesn’t make you a craftsman.
Designing nice user interfaces has its own learning curve.

In fact, I’ve been very impressed by the designer work on
the large WPF projects I took part in. In a few days they
were able to provide XAML files that made the application
really appealing to the users. Without impacting business
code.

3.2 Editors

Since there are two roles, there are two tools. Though you
could use any of those tools in order to do all the work,
each of them makes specific parts of the job faster and
more convenient.

Visual Studio targets developers. Use it when adding
controls, manually editing XAML, and writing the busi-
ness logic.

Blend for Visual Studio targets designers. It is used
when changing the appearance of controls and creating
animations.

Blend for Visual Studio is now installed together with
Visual Studio. It was previously sold as a separate

Creating a WPF application 16

program, Expression Blend. When working with WPF
with versions of Visual Studio that are older than
Visual Studio 2013, you’ll need to separately install
Expression Blend if you need to use it.

3.3 Adding a control

There are twoways to add a control to a screen[^screen]:

1. drag and drop the control from the toolbox;
2. simply add an XML element in the XAML file.

In case you manually add the XML element, its position
and size depends on the container. We’ll talk about
containers in the Layout chapter, but for now just be
aware that the control will take all the screen size when
added to a Grid, or remain at the top-left corner when
added to a Canvas.

For instance, the following XAML code will display a
Button control that spans the whole screen:

<Grid xmlns="...">

<Button Content="Hello world" />

</Grid>

Creating a WPF application 17

3.4 Simple controls

WPF provides relatively few controls. This is due to the
fact that their appearance can be easily and completely
revamped using pure XAML as we’ll see in the Change a
control’s look chapter. Let’s review the basic ones.

Basic controls

There is almost no need to explain much about those
controls. On the left, you can see their declaration in
XAML; on the right, their default[^basicdefault] appear-
ance.

Those controls are symmetrical. While TextBlock and
TextBox allow for a string to be displayed or input as their
Text property, ProgressBar and Slider allow for a double
to be displayed or input as their Value property.

Note that in order to display text, the TextBlock con-
trol should be preferred to the Label control. The Label

Creating a WPF application 18

control is a much more flexible content control, which
means it can display much more than text. Since it can
display anything, the Label control lacks properties like
TextWrapping that enable long text to be wrapped, and
can be found on the TextBlock control.

Multimedia controls

The Image control displays, well, any picture, and the
MediaElement displays movies. Both share a common
resizing behavior:

• they resize their content to fit the size assigned to
the control;

• they provide a Stretch property that enables you to
specify how the content is resized.

The most interesting values of the Stretch property are:

• Uniform (default): Image is resized proportionally,
leaving transparentmargins on the sides as needed.

• Fill: Image is resized proportionally, filling up the
whole space assigned to the Image control.

The following code will display a picture resized to be
50 tall (width is automatically computed since it is not
provided) and a movie with the same characteristics.

Creating a WPF application 19

<Image Source="fleurs.jpg" Height="50" />

<MediaElement Source="ic09.wmv" Height="50" />

As stated earlier, sizes in WPF are not provided
in pixels, since specifying pixels doesn’t scale well
when the screen resolution increases. Sizes are pro-
vided in device-independent pixels. If a screen is
correctly calibrated, one device-independent pixel is
about half a millimeter. This means that 50 repre-
sents around 2.5 centimeters on screen. This size
would remain the same whatever the screen reso-
lution you chose. Great news: that enables your ap-
plication to perform well on nowadays’ high screen
resolutions.

Drawing controls

The Ellipse, Rectangle and Path controls are basic shape
drawing controls. They all share common properties:

• Fill: a Brush used to paint the inside of the control;
• Strike: a Brush used to paint the outline of the
control;

• Stretch: how the control should resize its shape
when resized, just like we saw for multimedia con-
trols.

Creating a WPF application 20

The Path control is very flexible: it enables you to provide
a list of points and have them connected using segments
or Bezier curves. Manually providing the points is too
tedious so you have two options: draw the shape using
Blend for Visual Studio or export the shape from a draw-
ing or converter tool that generates XAML.

They are not container control so they can’t have a child,
but who cares? Should you need to add text to them, you
can place a TextBlock over them, grouping both in a Grid
control so they have the same size.

Apart from placing them anywhere on a screen, you can
use them inside templates in order to give outstanding
new appearances to existing controls. More about that a
little later.

Content controls

Content controls have a content that can be anything.
For this, they expose a Content property. The following
are content controls:

• Button
• Border
• ScrollViewer
• ViewBox

Here are some buttons. Again, their default appearance
displayed on the right:

Creating a WPF application 21

Note that the Content property is assigned using a Con-
tent attribute. That works well with simple content. When
you need to assign more complex content, you can pro-
vide a child element to your content control instead of
using the Content attribute. Here are two examples:

As I wrote, the content can be anything. Did you note
how the example above adds a checkbox to a button?
This simply wasn’t possible with frameworks like Win-
dows Forms because the Button control didn’t have an
EnableCheckBox property. Using WPF, you can simply
combine controls in order to get the functionality you
need. Plus you can also change their appearance, as we’ll
see later.

That gives you a great deal of flexibility. For instance, you

Creating a WPF application 22

may add scrolling around any control by just wrapping it
inside a ScrollViewer control. Or a border to any control
by wrapping it inside a Border control: don’t look for a
Border property on e.g. a TextBlock control: simply wrap
it inside a Border control.

Here are examples of using the Border control and adding
scrollbars to a movie using the ScrollViewer control.

Now is time to introduce one of my preferred WPF con-
trols to you: ViewBox. I love the ViewBox control because
it shows the flexibility of WPF. It is able to resize any
content just as if it were a picture, and the content
remains usable. That means you can quickly have any
kind of screen resized to the available width and height.
It will come in very handy in control templates and many
parts of your application.

Here is how the ViewBox control works:

Creating a WPF application 23

Now guess what? The ViewBox control has a Strech
property that states how its content should be resized.

Creating a WPF application 24

And it behaves exactly like the Strech property of Image
and MediaElement controls.

Let me show you simple uses of the ViewBox control
together with their resulting display.

In the above example, there is no ViewBox control. As
we’ll see later, a Grid control will stretch its content to fill
in all of this space. So the Button control takes up all of
the Grid control size.

In that second example above, I just inserted a ViewBox
control between the Grid control and the Button Con-
trol. The Button control is thus drawn using the size it
needs (since there are no other constraints here, the size
necessary to display its text), and then stretched up by
the ViewBox control in order to fill all of the Grid control
size. Note how the Button borders look thicker: all of the
control was proportionally stretched.

Now, let me add just one attribute to the ViewBox control
we used:

Creating a WPF application 25

Notice the result? The Button control is distorted.

Best part is that since ViewBox is a content control it can
be used in order to resize a full screen. Suppose you have
the following screen:

<Grid xmlns="...">

<Button Content="Hello world" ... />

<ListBox ... />

<DataGrid ... />

</Grid>

You can have that whole screen resize to any dimension
just adding a ViewBox control:

<ViewBox xmlns="...">

<Grid>

<Button Content="Hello world" ... />

<ListBox ... />

<DataGrid ... />

</Grid>

</ViewBox>

This method is quick to implement but has its drawbacks:
it resizes all of the content. If you want some more
complex resizing like providing more space to the ListBox
control, you should use layout controls.

Creating a WPF application 26

3.5 Navigation

Users are now used to navigating inside an application.
Going back to the previous screen, and back again in
the history, is likely to be part of your application’s
requirements. WPF comes in with a navigation framework
that may come handy, though you are free to use another
one.

When using WPF navigation system, screens are Pages,
and they are displayed within a single Frame control.
Think of the Frame control as a Web browser and of the
Pages as Web pages.

Pages are XAML files, and you can consider them just
like Windows except they have no borders or window-
related properties. They are a subclass of user controls,
so you could also think of them as user controls. Anyway,
in order to create a page you just add a Page element
using Visual Studio, and get roughly the following XAML:

Creating a WPF application 27

<Page x:Class="..." Title="...">

<Grid>

...

</Grid>

<Page>

You will create as many pages as your application needs
screens, and then you’ll add a Frame control that will
serve as the page browser. A natural place to put the
Frame control is the MainWindow.xaml window that has
been created by default. Next, you tell the Frame control
which page to display using the Source property.

You get something like that (probably inside MainWin-
dow.xaml):

<Frame Source="/Welcome.xaml">

<Frame>

Don’t forget the “/” in front of the page
name.

This code would display the Welcome page. Now, you
need a way for the user to move from one page to
another. You can do so using XAML or C#.

Creating a WPF application 28

Navigate to another page using code-behind

NavigationService.Navigate(

new Uri("/Payment.xaml", UriKind.Relative)

);

Link to another page using XAML

<Label>

<Hyperlink NavigateUri="/Payment.xaml">

Pay now

</Hyperlink>

</Label>

3.6 It’s your turn to code:
do-it-yourself

Now is your turn to grab the keyboard and code away. Oh,
just let me explain you how that works, in case you’re not
familiar with my Learn collection books.

About exercises in this book

All of the exercises are linked together: you’re going to
build a small e-commerce application. You’ll allow users
to browse through your products, add them to their
basket, and you’ll also create a full back-end where the
site administrators will be able to list, create, modify, and
delete products.

Creating a WPF application 29

In case you get stuck

You should be able to solve the exercise all by yourself. If
you get stuck or don’t have a computer at hand (or you
don’t have the prerequisites for that book, which is fine
with me!), no problem. I’ll provide the solution for all of
the exercises in this book, right after each of them.

3.7 Exercise - Create the
application and contact page

Create a new WPF application named
BikeShop.

Add a new page named Contact.xaml to the
application.

Add two TextBox controls and two TextBlock
controls to the Contact page so that a user
can input a message.

Make sure that the Contact page is displayed
by default on the MainWindow.xaml screen

Your application should look like the follow-
ing:

Creating a WPF application 30

I know, it’s basic, but you need to learn somemore things
before you can do more.

Beginner badge unlocked: let’s proceed to the next level.

3.8 Exercise solution

• Start Visual Studio.
• Click on the File / New / Project… menu entry.
• In the New Project dialog box, select theWPF Appli-
cation template making sure that you select Tem-
plates / Visual C# / Windows on the left-hand side.
In the Name zone at the bottom, type “BikeShop”.
Click the OK button.

• Open the Solution Explorer clicking on the View /
Solution Explorer menu entry.

Creating a WPF application 31

• In the Solution Explorer, right-click the project (not
the solution), and select Add / Page from the con-
text menu.

• In the Add New Item dialog box, look for the Name
zone at the bottom, and type “Contact”. Click the
Add button.

• Open the Toolbox clicking on the View / Toolbox
menu entry.

• Drag and drop two TextBlock controls and two TextBox
controls from the toolbox to the design surface.
Position them and resize them so that the screen
looks as expected.

• Make sure that the Properties window is displayed
clicking on the View / Properties Window menu
entry.

• Click the first TextBlock control and change its Text
property to Sender.

• Click the second TextBlock control and change its
Text property to Message.

• Click the first TextBox control and change its Text
property to be an empty string.

• Click the second TextBox control and change its
Text property to be an empty string.

• In the Solution Explorer, double-click the MainWin-
dow.xaml file.

• Inside the Grid element, add a Frame element. The
MainWindow.xaml code should look like this:

Creating a WPF application 32

<Window ...>

<Grid>

<Frame Source="/Contact.xaml" />

</Grid>

</Window>

• Run the application (click on the Debug / Start
Debugging menu entry).

• Close the application.

3.9 Understanding XAML

This is just a sample of the full book.

If you like it, get your full version here: https:
//leanpub.com/learnwpf

XAML namespaces

This is just a sample of the full book.

If you like it, get your full version here: https:
//leanpub.com/learnwpf

https://leanpub.com/learnwpf
https://leanpub.com/learnwpf
https://leanpub.com/learnwpf
https://leanpub.com/learnwpf

Creating a WPF application 33

Object creation

This is just a sample of the full book.

If you like it, get your full version here: https:
//leanpub.com/learnwpf

Properties definition

This is just a sample of the full book.

If you like it, get your full version here: https:
//leanpub.com/learnwpf

Naming

This is just a sample of the full book.

If you like it, get your full version here: https:
//leanpub.com/learnwpf

https://leanpub.com/learnwpf
https://leanpub.com/learnwpf
https://leanpub.com/learnwpf
https://leanpub.com/learnwpf
https://leanpub.com/learnwpf
https://leanpub.com/learnwpf

Creating a WPF application 34

3.10 Events

This is just a sample of the full book.

If you like it, get your full version here: https:
//leanpub.com/learnwpf

3.11 Exercise - Create the menu
page

This is just a sample of the full book.

If you like it, get your full version here: https:
//leanpub.com/learnwpf

3.12 Exercise solution

This is just a sample of the full book.

If you like it, get your full version here: https:
//leanpub.com/learnwpf

https://leanpub.com/learnwpf
https://leanpub.com/learnwpf
https://leanpub.com/learnwpf
https://leanpub.com/learnwpf
https://leanpub.com/learnwpf
https://leanpub.com/learnwpf

Creating a WPF application 35

3.13 Layout

Why our screens don’t resize

This is just a sample of the full book.

If you like it, get your full version here: https:
//leanpub.com/learnwpf

Size allocation

This is just a sample of the full book.

If you like it, get your full version here: https:
//leanpub.com/learnwpf

Panel controls

This is just a sample of the full book.

If you like it, get your full version here: https:
//leanpub.com/learnwpf

https://leanpub.com/learnwpf
https://leanpub.com/learnwpf
https://leanpub.com/learnwpf
https://leanpub.com/learnwpf
https://leanpub.com/learnwpf
https://leanpub.com/learnwpf

Creating a WPF application 36

Canvas

This is just a sample of the full book.

If you like it, get your full version here: https:
//leanpub.com/learnwpf

StackPanel

This is just a sample of the full book.

If you like it, get your full version here: https:
//leanpub.com/learnwpf

DockPanel

This is just a sample of the full book.

If you like it, get your full version here: https:
//leanpub.com/learnwpf

WrapPanel

This is just a sample of the full book.

If you like it, get your full version here: https:
//leanpub.com/learnwpf

https://leanpub.com/learnwpf
https://leanpub.com/learnwpf
https://leanpub.com/learnwpf
https://leanpub.com/learnwpf
https://leanpub.com/learnwpf
https://leanpub.com/learnwpf
https://leanpub.com/learnwpf
https://leanpub.com/learnwpf

Creating a WPF application 37

UniformGrid

This is just a sample of the full book.

If you like it, get your full version here: https:
//leanpub.com/learnwpf

Grid

This is just a sample of the full book.

If you like it, get your full version here: https:
//leanpub.com/learnwpf

Summary of panel controls

This is just a sample of the full book.

If you like it, get your full version here: https:
//leanpub.com/learnwpf

3.14 List controls

This is just a sample of the full book.

If you like it, get your full version here: https:
//leanpub.com/learnwpf

https://leanpub.com/learnwpf
https://leanpub.com/learnwpf
https://leanpub.com/learnwpf
https://leanpub.com/learnwpf
https://leanpub.com/learnwpf
https://leanpub.com/learnwpf
https://leanpub.com/learnwpf
https://leanpub.com/learnwpf

Creating a WPF application 38

Selection controls

This is just a sample of the full book.

If you like it, get your full version here: https:
//leanpub.com/learnwpf

3.15 Exercise - Create the
discussion page

This is just a sample of the full book.

If you like it, get your full version here: https:
//leanpub.com/learnwpf

3.16 Exercise solution

This is just a sample of the full book.

If you like it, get your full version here: https:
//leanpub.com/learnwpf

https://leanpub.com/learnwpf
https://leanpub.com/learnwpf
https://leanpub.com/learnwpf
https://leanpub.com/learnwpf
https://leanpub.com/learnwpf
https://leanpub.com/learnwpf

4. Managing data in a
WPF application

4.1 Data binding

This is just a sample of the full book.

If you like it, get your full version here: https:
//leanpub.com/learnwpf

Binding examples

This is just a sample of the full book.

If you like it, get your full version here: https:
//leanpub.com/learnwpf

Binding Mode

This is just a sample of the full book.

If you like it, get your full version here: https:
//leanpub.com/learnwpf

39

https://leanpub.com/learnwpf
https://leanpub.com/learnwpf
https://leanpub.com/learnwpf
https://leanpub.com/learnwpf
https://leanpub.com/learnwpf
https://leanpub.com/learnwpf

Managing data in a WPF application 40

Extra properties

This is just a sample of the full book.

If you like it, get your full version here: https:
//leanpub.com/learnwpf

Binding errors

This is just a sample of the full book.

If you like it, get your full version here: https:
//leanpub.com/learnwpf

4.2 DataContext

This is just a sample of the full book.

If you like it, get your full version here: https:
//leanpub.com/learnwpf

https://leanpub.com/learnwpf
https://leanpub.com/learnwpf
https://leanpub.com/learnwpf
https://leanpub.com/learnwpf
https://leanpub.com/learnwpf
https://leanpub.com/learnwpf

Managing data in a WPF application 41

4.3 Converters

This is just a sample of the full book.

If you like it, get your full version here: https:
//leanpub.com/learnwpf

4.4 Displaying collections using list
controls

This is just a sample of the full book.

If you like it, get your full version here: https:
//leanpub.com/learnwpf

4.5 Customizing list controls

This is just a sample of the full book.

If you like it, get your full version here: https:
//leanpub.com/learnwpf

https://leanpub.com/learnwpf
https://leanpub.com/learnwpf
https://leanpub.com/learnwpf
https://leanpub.com/learnwpf
https://leanpub.com/learnwpf
https://leanpub.com/learnwpf

Managing data in a WPF application 42

4.6 Exercise - Display messages
from a data object

This is just a sample of the full book.

If you like it, get your full version here: https:
//leanpub.com/learnwpf

4.7 Exercise solution

This is just a sample of the full book.

If you like it, get your full version here: https:
//leanpub.com/learnwpf

4.8 INotifyPropertyChanged

This is just a sample of the full book.

If you like it, get your full version here: https:
//leanpub.com/learnwpf

https://leanpub.com/learnwpf
https://leanpub.com/learnwpf
https://leanpub.com/learnwpf
https://leanpub.com/learnwpf
https://leanpub.com/learnwpf
https://leanpub.com/learnwpf

Managing data in a WPF application 43

4.9 INotifyCollectionChanged

This is just a sample of the full book.

If you like it, get your full version here: https:
//leanpub.com/learnwpf

https://leanpub.com/learnwpf
https://leanpub.com/learnwpf

5. Making it shine:
customize the look

5.1 Change a control’s look

This is just a sample of the full book.

If you like it, get your full version here: https:
//leanpub.com/learnwpf

Template

This is just a sample of the full book.

If you like it, get your full version here: https:
//leanpub.com/learnwpf

TemplateBinding

This is just a sample of the full book.

If you like it, get your full version here: https:
//leanpub.com/learnwpf

44

https://leanpub.com/learnwpf
https://leanpub.com/learnwpf
https://leanpub.com/learnwpf
https://leanpub.com/learnwpf
https://leanpub.com/learnwpf
https://leanpub.com/learnwpf

Making it shine: customize the look 45

ItemsPresenter

This is just a sample of the full book.

If you like it, get your full version here: https:
//leanpub.com/learnwpf

5.2 Resources

This is just a sample of the full book.

If you like it, get your full version here: https:
//leanpub.com/learnwpf

ResourceDictionaries

This is just a sample of the full book.

If you like it, get your full version here: https:
//leanpub.com/learnwpf

https://leanpub.com/learnwpf
https://leanpub.com/learnwpf
https://leanpub.com/learnwpf
https://leanpub.com/learnwpf
https://leanpub.com/learnwpf
https://leanpub.com/learnwpf

Making it shine: customize the look 46

5.3 Exercise - Set the background

This is just a sample of the full book.

If you like it, get your full version here: https:
//leanpub.com/learnwpf

5.4 Exercise solution

This is just a sample of the full book.

If you like it, get your full version here: https:
//leanpub.com/learnwpf

5.5 Styles

This is just a sample of the full book.

If you like it, get your full version here: https:
//leanpub.com/learnwpf

https://leanpub.com/learnwpf
https://leanpub.com/learnwpf
https://leanpub.com/learnwpf
https://leanpub.com/learnwpf
https://leanpub.com/learnwpf
https://leanpub.com/learnwpf

Making it shine: customize the look 47

5.6 Themes

This is just a sample of the full book.

If you like it, get your full version here: https:
//leanpub.com/learnwpf

5.7 Transforms

This is just a sample of the full book.

If you like it, get your full version here: https:
//leanpub.com/learnwpf

5.8 Control states

This is just a sample of the full book.

If you like it, get your full version here: https:
//leanpub.com/learnwpf

https://leanpub.com/learnwpf
https://leanpub.com/learnwpf
https://leanpub.com/learnwpf
https://leanpub.com/learnwpf
https://leanpub.com/learnwpf
https://leanpub.com/learnwpf

Making it shine: customize the look 48

5.9 Animations

This is just a sample of the full book.

If you like it, get your full version here: https:
//leanpub.com/learnwpf

https://leanpub.com/learnwpf
https://leanpub.com/learnwpf

6. MVVM pattern for
WPF

6.1 Spaghetti code

This is just a sample of the full book.

If you like it, get your full version here: https:
//leanpub.com/learnwpf

6.2 MVC

This is just a sample of the full book.

If you like it, get your full version here: https:
//leanpub.com/learnwpf

49

https://leanpub.com/learnwpf
https://leanpub.com/learnwpf
https://leanpub.com/learnwpf
https://leanpub.com/learnwpf

MVVM pattern for WPF 50

6.3 MVVM

This is just a sample of the full book.

If you like it, get your full version here: https:
//leanpub.com/learnwpf

6.4 Recommended steps (simple)

This is just a sample of the full book.

If you like it, get your full version here: https:
//leanpub.com/learnwpf

6.5 Example

This is just a sample of the full book.

If you like it, get your full version here: https:
//leanpub.com/learnwpf

https://leanpub.com/learnwpf
https://leanpub.com/learnwpf
https://leanpub.com/learnwpf
https://leanpub.com/learnwpf
https://leanpub.com/learnwpf
https://leanpub.com/learnwpf

MVVM pattern for WPF 51

6.6 Example, more complex

This is just a sample of the full book.

If you like it, get your full version here: https:
//leanpub.com/learnwpf

6.7 Commands and methods

This is just a sample of the full book.

If you like it, get your full version here: https:
//leanpub.com/learnwpf

Commands: the apparently easy way

This is just a sample of the full book.

If you like it, get your full version here: https:
//leanpub.com/learnwpf

https://leanpub.com/learnwpf
https://leanpub.com/learnwpf
https://leanpub.com/learnwpf
https://leanpub.com/learnwpf
https://leanpub.com/learnwpf
https://leanpub.com/learnwpf

MVVM pattern for WPF 52

Methods: the straightforward way

This is just a sample of the full book.

If you like it, get your full version here: https:
//leanpub.com/learnwpf

6.8 Recommended steps
(complete)

This is just a sample of the full book.

If you like it, get your full version here: https:
//leanpub.com/learnwpf

6.9 Exercise - Display products and
details using MVVM

This is just a sample of the full book.

If you like it, get your full version here: https:
//leanpub.com/learnwpf

https://leanpub.com/learnwpf
https://leanpub.com/learnwpf
https://leanpub.com/learnwpf
https://leanpub.com/learnwpf
https://leanpub.com/learnwpf
https://leanpub.com/learnwpf

MVVM pattern for WPF 53

6.10 Exercise solution

This is just a sample of the full book.

If you like it, get your full version here: https:
//leanpub.com/learnwpf

6.11 MVVM frameworks in short

This is just a sample of the full book.

If you like it, get your full version here: https:
//leanpub.com/learnwpf

https://leanpub.com/learnwpf
https://leanpub.com/learnwpf
https://leanpub.com/learnwpf
https://leanpub.com/learnwpf

A word from the author
I sincerely hope you enjoyed reading this book as much
as I likedwriting it and that you quickly become proficient
enough with WPF and the MVVM pattern.

If you would like to get in touch you can use :

• email: books@aweil.fr
• Facebook: https://facebook.com/learncollection
• Twitter: @epo

In case your project needs it, I’m also available for
speaking, teaching, consulting and coding, all around the
world.

If you liked this book, you probably saved a lot of time
thanks to it. I’d be very grateful if you took some minutes
of your precious time to leave a comment on the site
where you purchased this book. Thanks a ton!

54

https://facebook.com/learncollection

	Table of Contents
	Introduction
	What this book is not
	Prerequisites
	How to read this book
	Tools you need
	Source code

	Why WPF ?
	Creating a WPF application
	Developer - designer workflow
	Editors
	Adding a control
	Simple controls
	Navigation
	It's your turn to code: do-it-yourself
	Exercise - Create the application and contact page
	Exercise solution
	Understanding XAML
	Events
	Exercise - Create the menu page
	Exercise solution
	Layout
	List controls
	Exercise - Create the discussion page
	Exercise solution

	Managing data in a WPF application
	Data binding
	DataContext
	Converters
	Displaying collections using list controls
	Customizing list controls
	Exercise - Display messages from a data object
	Exercise solution
	INotifyPropertyChanged
	INotifyCollectionChanged

	Making it shine: customize the look
	Change a control's look
	Resources
	Exercise - Set the background
	Exercise solution
	Styles
	Themes
	Transforms
	Control states
	Animations

	MVVM pattern for WPF
	Spaghetti code
	MVC
	MVVM
	Recommended steps (simple)
	Example
	Example, more complex
	Commands and methods
	Recommended steps (complete)
	Exercise - Display products and details using MVVM
	Exercise solution
	MVVM frameworks in short

	A word from the author

