

[image: Learn WPF MVVM - XAML, C# and the MVVM pattern]

 Learn WPF MVVM - XAML, C# and the MVVM pattern

 Be ready for coding away next week using WPF and MVVM

 Arnaud Weil

 This book is for sale at http://leanpub.com/learnwpf

 This version was published on 2020-02-19

 [image: publisher's logo]

 * * * * *

 This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and many iterations to get reader feedback, pivot until you have the right book and build traction once you do.

 * * * * *

© 2016 - 2020 Arnaud Weil

 To my parents, for teaching me freedom and making sure I can enjoy it.

To my wonderful family. Your love and support fueled this book.

To my readers who suggested improvements to this book, especially Doğan Kartaltepe.

 Table of Contents

 	
 1. Introduction

 	
 1.1 What this book is not

 	
 1.2 Prerequisites

 	
 1.3 How to read this book

 	
 1.4 Tools you need

 	
 1.5 Source code

 	
 2. Why WPF ?

 	
 3. Creating a WPF application

 	
 3.1 Developer - designer workflow

 	
 3.2 Editors

 	
 3.3 Adding a control

 	
 3.4 Simple controls

 	
 3.5 Navigation

 	
 3.6 It’s your turn to code: do-it-yourself

 	
 3.7 Exercise - Create the application and contact page

 	
 3.8 Exercise solution

 	
 3.9 Understanding XAML

 	
 3.10 Events

 	
 3.11 Exercise - Create the menu page

 	
 3.12 Exercise solution

 	
 3.13 Layout

 	
 3.14 List controls

 	
 3.15 Exercise - Create the discussion page

 	
 3.16 Exercise solution

 	
 4. Managing data in a WPF application

 	
 4.1 Data binding

 	
 4.2 DataContext

 	
 4.3 Converters

 	
 4.4 Displaying collections using list controls

 	
 4.5 Customizing list controls

 	
 4.6 Exercise - Display messages from a data object

 	
 4.7 Exercise solution

 	
 4.8 INotifyPropertyChanged

 	
 4.9 INotifyCollectionChanged

 	
 5. Making it shine: customize the look

 	
 5.1 Change a control’s look

 	
 5.2 Resources

 	
 5.3 Exercise - Set the background

 	
 5.4 Exercise solution

 	
 5.5 Styles

 	
 5.6 Themes

 	
 5.7 Transforms

 	
 5.8 Control states

 	
 5.9 Animations

 	
 6. MVVM pattern for WPF

 	
 6.1 Spaghetti code

 	
 6.2 MVC

 	
 6.3 MVVM

 	
 6.4 Recommended steps (simple)

 	
 6.5 Example

 	
 6.6 Example, more complex

 	
 6.7 Commands and methods

 	
 6.8 Recommended steps (complete)

 	
 6.9 Exercise - Display products and details using MVVM

 	
 6.10 Exercise solution

 	
 6.11 MVVM frameworks in short

 	
 A word from the author

 Guide

 	
 Begin Reading

1. Introduction

1.1 What this book is not

I made my best to keep this book small, so that you can learn WPF quickly without getting lost
in petty details. If you’re looking for a reference book where you’ll find answers to all the
questions you may have within the next 4 years of your WPF practice, you’ll find other heavy books for that.

My purpose is to swiftly provide you with the tools you need to code your first WPF
application using the MVVM pattern and be able to look for more by yourself when needed.
While some authors seems to pride themselves in having the thickest book, in this series I’m glad I
achieved the thinnest possible book for my purpose. Though I tried my best to keep all of what seems
necessary, based on my 14 years experience of teaching.

I assume that you know what WPF is and when to use it. In case you don’t, read
the following Why WPF ? chapter.

1.2 Prerequisites

In order for this book to meet its goals, you must :

 	Have basic experience creating an application with C# (any type of application is alright).

 	Have working knowledge of Visual Studio.

 	Have basic knowledge of XML syntax.

 	Have basic knowledge of SQL Server.

 You could as well use VB.NET to code a WPF application. I chose
to include only C# code in that book because I want it small and
my field experience shows that almost every teams chooses C#
over VB.NET nowadays.

1.3 How to read this book

This book’s aim is to make you productive as quickly as possible. For this we’ll use some
theory, several demonstrations, plus exercises. Exercises appear like the following:

 Do it yourself: Time to grab your keyboard and code away to meet the given objectives.

1.4 Tools you need

The only tool you’ll need to work through that book is Visual Studio 2015. You can get any of those editions:

 	Visual Studio 2015 Community (free)

 	Visual Studio 2015 Professional

1.5 Source code

All of the source code for the demos and do-it-yourself solutions is available at https://bitbucket.org/epobb/learnwpfexercises

It can be downloaded as a ZIP file, or if you installed GIT you can simply type:

git clone https://bitbucket.org/epobb/learnwpfexercises\
.git

2. Why WPF ?

If you’re in a hurry, you can safely skip this chapter and head straight to
the Creating a WPF application chapter. This Why WPF chapter
is there for those that want to know why WPF should be used.

WPF is a .NET development framework for desktop applications that solves several problems encountered
with previous development frameworks.

Applications were counter-intuitive

Do you remember Windows XP? In order to turn off the computer, you had to press a button
titled Start. Not really intuitive, is it? While this is a mainstream example, most
software suffered from bad user experience: it was simply too complicated for a user
to find her way around.

Some programs were even so complicated to use that a wizard was run when launched in order
to guide users through the process of using the application. Wait: “process”? Using an application
shouldn’t be a process. It shouldn’t be complicated to use an application, in fact the
application should adapt to the user.
While that debate would be nice for UX experts, my point is: why were applications so complicated
to use?

The answer to that question is rooted within that simple fact: developers were asked to design the
user-experience using code. Why? Because in many technology stacks, the user experience is coded by
a developer, not drawn by a UX expert. Now, how can we expect someone to work correctly using
inappropriate tools and lacking the necessary knowledge? A developer has little knowledge of user
experience, and a programming language is not an appropriate way to create a user interface.

It all comes down to this: user-experience shouldn’t be created using code, and it should
be designed by a UX expert.

Applications were dull

Here is an application I used for accounting:

 [image:]

Alright, the program did the job it was supposed to do. But oh my, what a dull interface. Plus
it’s not appealing at all. It doesn’t handle resizes correctly, doesn’t fill the available
screen estate, and it looks like the icons were randomly picked. No need to tell you that I wasn’t
eager to use that program as often as I needed to.

But it would be too easy to blame the developer for that application’s dullness. Coding a nice UI
could easily double development time when using frameworks like Windows Forms, because you have to
code in order to handle:

 	Resizing

 	Homogeneity

 	Styling

 	Elements positioning

Another source for that dullness is the fact that few developers have design skills. And vice-versa.

Nice GUIs could be dreamed of but not implemented

When you watch a movie or your favorite series, look at the user interface when people use computers.
Did you notice how well designed, fluid and attractive they are? When some evil hacker tries to enter
a system, he just has to press a big shiny “Hack” button. And when the hero shows the President some
exceptional event live, she just slides through the information, zooms in and out in a fluid manner.

Same goes with Tom Cruise in Minority Report: in order to browse through files, he just moves
around the pictures and movies using gestures:

 [image:]

What does it mean? That people who can create attractive, intuitive, user-friendly IHMs exist. However
they work for movies, not for the computer industry. Why, you ask? Well, they were fed up with us
developers.

Just think about the latest time some designer (or any creative people for that matter)
came in and asked “hey, it would be great if there was a floating unicorn and when you pulled
the hair it would float around and [add whatever you need here]”. What did you answer?
Probably something that goes along those lines: “it’s not possible”. But what you really meant
was: “it’s not possible to do so in a time that is reasonable, since it would take more
time to code than the business logic itself”. And you were right, because your framework
didn’t allow you to do so.

So do you know what happened? Those creative people got tired of seeing their ideas teared down
and they went to work somewhere else. At some place where they wouldn’t hear “no” as the
only answer to their ideas. Movies, series, you name it.

Appearance and logic separation

When Windows Forms, MFC C++, Java Swing or other client application frameworks were designed,
the developers did what seemed natural to them: use the coding language in order to describe
the user interface. For instance, a UI in Windows Forms is described using C# or VB.NET:

 Windows Forms example of a UI description
public class Form1 : Form
{
 public Form1()
 {
 Button b = new Button();
 b.Text = "Buy stocks";
 b.Left = 20;
 b.Top = 40;
 b.Click += new EventHandler(b_Click);
 }
 void b_Click(object sender, EventArgs e)
 {
 // ...
 }
}

In the example above the button creation, position and appearance are set using C#. Which
brings two problems:

 	A designer cannot edit this code. Even if she had the knowledge to do so, would you allow a designer to edit C# code?

 	A quick look at that code doesn’t give a clue about the button appearance. Which makes any design work harder.

In fact, we all know that presentation code and logical code should not be mixed. But Windows Forms made
the mistake. And many other frameworks did.

The WPF solution

In the HTML world, problems aren’t so tough: designers work on the appearance while coders work on the business
logic. Why is it so? Simply because things are separated: designers work in HTML and CSS files that describe the appearance,
while developers work in JavaScript files. Plus HTML and CSS are quite adequate for describing an appearance.

Microsoft took the same approach with WPF. But HTML would have been too limited for desktop applications so they simply
created XAML. XAML (XML application markup language) is XML, and you can think of it as HTML on steroids.

Since mixing presentation code and logical code was an error, WPF separates them. For each screen we have two files:

 	a XAML file, describing the appearance, including any animation;

 	a C# file, describing the functional logic of the screen. That file is called code-behind.

Practically, when you create a screen named MyScreen, it will be made of two files:
MyScreen.xaml (appearance) and MyScreen.xaml.cs (code-behind).

Using separate files makes everything better: designers and developers can work on the same project, each
on their own files.

Apart from this separation, WPF also introduced the following features:

 	Controls composition: most controls can host other controls. For instance you can have buttons inside a ListBox control , or any shape and even video inside a Button control.

 	Adaptation to any screen resolution: when working with pixels as in Windows Forms, programs get smaller as the resolution rises. WPF uses device-independent pixels, that state the real size independently of the screen resolution.

What does it all mean?

WPF simply allows for gorgeous user interfaces, which can be created before, during, or after the business
logic is written. This allows for instance for a prototype to be turned into an application just by
adding the business logic in C#.

XAML being very flexible, most of the design work that would have taken weeks using previous frameworks
is done in hours. For instance, adding close buttons to tabs in Windows Forms takes 5 days, but doing so
in WPF is a matter of minutes even though the TabControl didn’t include them.

XAML

Though it can easily be used by a designer, XAML is an extremely powerful tool. Being XML-based, it
can cope with several XAML-specific or XML tools:

 [image:]

One feature that makes XAML so powerful is that it is a very easy way to instantiate .NET classes.
More about that in the Understanding XAML chapter.

3. Creating a WPF application

3.1 Developer - designer workflow

When working on a WPF application there are two roles:

 [image:]

The designer is in charge of creating the wireframe and then high quality version
of the user interface. The developer is in charge of coding the business logic,
connecting with data and, well, um… debugging.

I’m talking about roles here. On a small team, the developers themselves could
take the the designer role. On a large team however, it’s a good idea to have
separate people in charge of those roles. Simply because a developer is not a
designer. Though this book is going to teach you how to use the designer tools,
you’ll realize that using a hammer doesn’t make you a craftsman. Designing
nice user interfaces has its own learning curve.

In fact, I’ve been very impressed by the designer work on the large WPF projects
I took part in. In a few days they were able to provide XAML files that made
the application really appealing to the users. Without impacting business code.

3.2 Editors

Since there are two roles, there are two tools. Though you could use any of those
tools in order to do all the work, each of them makes specific parts of the job
faster and more convenient.

Visual Studio targets developers. Use it when adding controls, manually editing
XAML, and writing the business logic.

Blend for Visual Studio targets designers. It is used when changing the appearance
of controls and creating animations.

 Blend for Visual Studio is now installed together with Visual Studio. It was
previously sold as a separate program, Expression Blend. When working with
WPF with versions of Visual Studio that are older than Visual Studio 2013, you’ll
need to separately install Expression Blend if you need to use it.

3.3 Adding a control

There are two ways to add a control to a screen[^screen]:

 	drag and drop the control from the toolbox;

 	simply add an XML element in the XAML file.

In case you manually add the XML element, its position and size
depends on the container. We’ll talk about containers in the
Layout chapter, but for now just be aware that
the control will take all the screen size when added to a
Grid, or remain at the top-left corner when added to a Canvas.

For instance, the following XAML code will display a Button control
that spans the whole screen:

<Grid xmlns="...">
 <Button Content="Hello world" />
</Grid>

3.4 Simple controls

WPF provides relatively few controls. This is due to the fact that their appearance can
be easily and completely revamped using pure XAML as we’ll see in
the Change a control’s look chapter. Let’s review the basic ones.

Basic controls

There is almost no need to explain much about those controls. On the left, you can see
their declaration in XAML; on the right, their default[^basicdefault] appearance.

 [image:]

Those controls are symmetrical. While TextBlock and TextBox allow for a string to be
displayed or input as their Text property, ProgressBar and Slider allow for a double
to be displayed or input as their Value property.

Note that in order to display text, the TextBlock control should be preferred to the Label
control. The Label control is a much more flexible content control,
which means it can display much more than text. Since it can display anything, the
Label control lacks properties like TextWrapping that enable long text to be wrapped,
and can be found on the TextBlock control.

Multimedia controls

The Image control displays, well, any picture, and the MediaElement displays
movies. Both share a common resizing behavior:

 	they resize their content to fit the size assigned to the control;

 	they provide a Stretch property that enables you to specify how the content is resized.

The most interesting values of the Stretch property are:

 	Uniform (default): Image is resized proportionally, leaving transparent margins on the sides as needed.

 	Fill: Image is resized proportionally, filling up the whole space assigned to the Image control.

The following code will display a picture resized to be 50 tall (width is automatically computed
since it is not provided) and a movie with the same characteristics.

<Image Source="fleurs.jpg" Height="50" />

<MediaElement Source="ic09.wmv" Height="50" />

 As stated earlier, sizes in WPF are not provided in pixels, since specifying pixels doesn’t
scale well when the screen resolution increases. Sizes are provided in device-independent pixels.
If a screen is correctly calibrated, one device-independent pixel is about half a millimeter. This
means that 50 represents around 2.5 centimeters on screen. This size would remain the same whatever
the screen resolution you chose. Great news: that enables your application to perform well
on nowadays’ high screen resolutions.

Drawing controls

The Ellipse, Rectangle and Path controls are basic shape
drawing controls. They all share common properties:

 	Fill: a Brush used to paint the inside of the control;

 	Strike: a Brush used to paint the outline of the control;

 	Stretch: how the control should resize its shape when resized, just like we saw for multimedia controls.

The Path control is very flexible: it enables you to provide
a list of points and have them connected using segments or Bezier
curves. Manually providing the points is too tedious so you
have two options: draw the shape using Blend for Visual Studio
or export the shape from a drawing or converter tool that
generates XAML.

They are not container control so they can’t have a child,
but who cares? Should you need to add text to them, you can place
a TextBlock over them, grouping both in a Grid control
so they have the same size.

Apart from placing them anywhere on a screen, you can use them
inside templates in order to give outstanding new appearances
to existing controls. More about that a
little later.

Content controls

Content controls have a content that can be anything. For this, they expose a Content property.
The following are content controls:

 	Button

 	Border

 	ScrollViewer

 	ViewBox

Here are some buttons. Again, their default appearance displayed on
the right:

 [image:]

Note that the Content property is assigned using a Content attribute. That
works well with simple content. When you need to assign more complex content,
you can provide a child element to your content control instead of using the
Content attribute. Here are two examples:

 [image:]

As I wrote, the content can be anything. Did you note how the example above
adds a checkbox to a button? This simply wasn’t possible with frameworks like
Windows Forms because the Button control didn’t have an EnableCheckBox property. Using
WPF, you can simply combine controls in order to get the functionality you need.
Plus you can also change their appearance, as we’ll see later.

That gives you a great deal of flexibility. For instance, you may
add scrolling around any control by just wrapping it inside a ScrollViewer control.
Or a border to any control by wrapping it inside a Border control: don’t look
for a Border property on e.g. a TextBlock control: simply wrap it inside
a Border control.

Here are examples of using the Border control and adding scrollbars to a
movie using the ScrollViewer control.

 [image:]

Now is time to introduce one of my preferred WPF controls to you: ViewBox.
I love the ViewBox control because it shows the flexibility of WPF. It is
able to resize any content just as if it were a picture, and the content
remains usable. That means you can quickly have any kind of screen resized
to the available width and height. It will come in very handy in control
templates and many parts of your application.

Here is how the ViewBox control works:

 [image:]

Now guess what? The ViewBox control has a Strech property that states
how its content should be resized. And it behaves exactly like
the Strech property of Image and MediaElement controls.

Let me show you simple uses of the ViewBox control together with their resulting
display.

 [image:]

In the above example, there is no ViewBox control. As we’ll see later, a Grid control
will stretch its content to fill in all of this space. So the Button control takes up
all of the Grid control size.

 [image:]

In that second example above, I just inserted a ViewBox control between the Grid control
and the Button Control. The Button control is thus drawn using the size it needs (since
there are no other constraints here, the size necessary to display its text), and then
stretched up by the ViewBox control in order to fill all of the Grid control size.
Note how the Button borders look thicker: all of the control was proportionally stretched.

Now, let me add just one attribute to the ViewBox control we used:

 [image:]

Notice the result? The Button control is distorted.

Best part is that since ViewBox is a content control it can be used in order
to resize a full screen. Suppose you have the following screen:

<Grid xmlns="...">
 <Button Content="Hello world" ... />
 <ListBox ... />
 <DataGrid ... />
</Grid>

You can have that whole screen resize to any dimension just adding a
ViewBox control:

<ViewBox xmlns="...">
 <Grid>
 <Button Content="Hello world" ... />
 <ListBox ... />
 <DataGrid ... />
 </Grid>
</ViewBox>

This method is quick to implement but has its drawbacks: it resizes
all of the content. If you want some more complex resizing like
providing more space to the ListBox control, you should use
layout controls.

3.5 Navigation

Users are now used to navigating inside an application. Going back to the previous screen,
and back again in the history, is likely to be part of your application’s requirements.
WPF comes in with a navigation framework that may come handy, though you are free to
use another one.

When using WPF navigation system, screens are Pages, and they are displayed within
a single Frame control. Think of the Frame control as a Web browser and of
the Pages as Web pages.

 [image:]

Pages are XAML files, and you can consider them just like Windows except they have
no borders or window-related properties. They are a subclass of user controls, so you
could also think of them as user controls. Anyway, in order to create a page you
just add a Page element using Visual Studio, and get roughly the following XAML:

<Page x:Class="..." Title="...">
 <Grid>
 ...
 </Grid>
<Page>

You will create as many pages as your application needs screens, and then you’ll add
a Frame control that will serve as the page browser. A natural place to put
the Frame control is the MainWindow.xaml window that has been created by default.
Next, you tell the Frame control which page to display using the
Source property.

You get something like that (probably inside MainWindow.xaml):

<Frame Source="/Welcome.xaml">
<Frame>

 Don’t forget the “/” in front of the page name.

This code would display the Welcome page. Now, you need a way for the user
to move from one page to another. You can do so using XAML or C#.

 Navigate to another page using code-behind
NavigationService.Navigate(
 new Uri("/Payment.xaml", UriKind.Relative)
);

 Link to another page using XAML
<Label>
 <Hyperlink NavigateUri="/Payment.xaml">
 Pay now
 </Hyperlink>
</Label>

3.6 It’s your turn to code: do-it-yourself

Now is your turn to grab the keyboard and code away. Oh, just let me explain you how that
works, in case you’re not familiar with my Learn collection books.

About exercises in this book

All of the exercises are linked together: you’re going to build a
small e-commerce application. You’ll allow users to browse through your products, add
them to their basket, and you’ll also create a full back-end where the site administrators
will be able to list, create, modify, and delete products.

In case you get stuck

You should be able to solve the exercise all by yourself. If you get stuck or don’t
have a computer at hand (or you don’t have the prerequisites for that book, which
is fine with me!), no problem. I’ll provide the solution for all of the exercises
in this book, right after each of them.

3.7 Exercise - Create the application and contact page

 Create a new WPF application named BikeShop.

 Add a new page named Contact.xaml to the application.

 Add two TextBox controls and two TextBlock controls to
the Contact page so that a user can input a message.

 Make sure that the Contact page is displayed by default on the
MainWindow.xaml screen

 Your application should look like the following:

 [image:]

I know, it’s basic, but you need to learn some more things before you can do more.

Beginner badge unlocked: let’s proceed to the next level.

3.8 Exercise solution

 	Start Visual Studio.

 	Click on the File / New / Project… menu entry.

 	In the New Project dialog box, select the WPF Application template making sure that you select Templates / Visual C# / Windows on the left-hand side. In the Name zone at the bottom, type “BikeShop”. Click the OK button.

 	Open the Solution Explorer clicking on the View / Solution Explorer menu entry.

 	In the Solution Explorer, right-click the project (not the solution), and select Add / Page from the context menu.

 	In the Add New Item dialog box, look for the Name zone at the bottom, and type “Contact”. Click the Add button.

 	Open the Toolbox clicking on the View / Toolbox menu entry.

 	Drag and drop two TextBlock controls and two TextBox controls from the toolbox to the design surface. Position them and resize them so that the screen looks as expected.

 	Make sure that the Properties window is displayed clicking on the View / Properties Window menu entry.

 	Click the first TextBlock control and change its Text property to Sender.

 	Click the second TextBlock control and change its Text property to Message.

 	Click the first TextBox control and change its Text property to be an empty string.

 	Click the second TextBox control and change its Text property to be an empty string.

 	In the Solution Explorer, double-click the MainWindow.xaml file.

 	Inside the Grid element, add a Frame element. The MainWindow.xaml code should look like this:

<Window ...>
 <Grid>
 <Frame Source="/Contact.xaml" />
 </Grid>
</Window>

 	Run the application (click on the Debug / Start Debugging menu entry).

 	Close the application.

3.9 Understanding XAML

 This is just a sample of the full book.

 If you like it, get your full version here:
https://leanpub.com/learnwpf

XAML namespaces

 This is just a sample of the full book.

 If you like it, get your full version here:
https://leanpub.com/learnwpf

Object creation

 This is just a sample of the full book.

 If you like it, get your full version here:
https://leanpub.com/learnwpf

Properties definition

 This is just a sample of the full book.

 If you like it, get your full version here:
https://leanpub.com/learnwpf

Naming

 This is just a sample of the full book.

 If you like it, get your full version here:
https://leanpub.com/learnwpf

3.10 Events

 This is just a sample of the full book.

 If you like it, get your full version here:
https://leanpub.com/learnwpf

3.11 Exercise - Create the menu page

 This is just a sample of the full book.

 If you like it, get your full version here:
https://leanpub.com/learnwpf

3.12 Exercise solution

 This is just a sample of the full book.

 If you like it, get your full version here:
https://leanpub.com/learnwpf

3.13 Layout

Why our screens don’t resize

 This is just a sample of the full book.

 If you like it, get your full version here:
https://leanpub.com/learnwpf

Size allocation

 This is just a sample of the full book.

 If you like it, get your full version here:
https://leanpub.com/learnwpf

Panel controls

 This is just a sample of the full book.

 If you like it, get your full version here:
https://leanpub.com/learnwpf

Canvas

 This is just a sample of the full book.

 If you like it, get your full version here:
https://leanpub.com/learnwpf

StackPanel

 This is just a sample of the full book.

 If you like it, get your full version here:
https://leanpub.com/learnwpf

DockPanel

 This is just a sample of the full book.

 If you like it, get your full version here:
https://leanpub.com/learnwpf

WrapPanel

 This is just a sample of the full book.

 If you like it, get your full version here:
https://leanpub.com/learnwpf

UniformGrid

 This is just a sample of the full book.

 If you like it, get your full version here:
https://leanpub.com/learnwpf

Grid

 This is just a sample of the full book.

 If you like it, get your full version here:
https://leanpub.com/learnwpf

Summary of panel controls

 This is just a sample of the full book.

 If you like it, get your full version here:
https://leanpub.com/learnwpf

3.14 List controls

 This is just a sample of the full book.

 If you like it, get your full version here:
https://leanpub.com/learnwpf

Selection controls

 This is just a sample of the full book.

 If you like it, get your full version here:
https://leanpub.com/learnwpf

3.15 Exercise - Create the discussion page

 This is just a sample of the full book.

 If you like it, get your full version here:
https://leanpub.com/learnwpf

3.16 Exercise solution

 This is just a sample of the full book.

 If you like it, get your full version here:
https://leanpub.com/learnwpf

4. Managing data in a WPF application

4.1 Data binding

 This is just a sample of the full book.

 If you like it, get your full version here:
https://leanpub.com/learnwpf

Binding examples

 This is just a sample of the full book.

 If you like it, get your full version here:
https://leanpub.com/learnwpf

Binding Mode

 This is just a sample of the full book.

 If you like it, get your full version here:
https://leanpub.com/learnwpf

Extra properties

 This is just a sample of the full book.

 If you like it, get your full version here:
https://leanpub.com/learnwpf

Binding errors

 This is just a sample of the full book.

 If you like it, get your full version here:
https://leanpub.com/learnwpf

4.2 DataContext

 This is just a sample of the full book.

 If you like it, get your full version here:
https://leanpub.com/learnwpf

4.3 Converters

 This is just a sample of the full book.

 If you like it, get your full version here:
https://leanpub.com/learnwpf

4.4 Displaying collections using list controls

 This is just a sample of the full book.

 If you like it, get your full version here:
https://leanpub.com/learnwpf

4.5 Customizing list controls

 This is just a sample of the full book.

 If you like it, get your full version here:
https://leanpub.com/learnwpf

4.6 Exercise - Display messages from a data object

 This is just a sample of the full book.

 If you like it, get your full version here:
https://leanpub.com/learnwpf

4.7 Exercise solution

 This is just a sample of the full book.

 If you like it, get your full version here:
https://leanpub.com/learnwpf

4.8 INotifyPropertyChanged

 This is just a sample of the full book.

 If you like it, get your full version here:
https://leanpub.com/learnwpf

4.9 INotifyCollectionChanged

 This is just a sample of the full book.

 If you like it, get your full version here:
https://leanpub.com/learnwpf

5. Making it shine: customize the look

5.1 Change a control’s look

 This is just a sample of the full book.

 If you like it, get your full version here:
https://leanpub.com/learnwpf

Template

 This is just a sample of the full book.

 If you like it, get your full version here:
https://leanpub.com/learnwpf

TemplateBinding

 This is just a sample of the full book.

 If you like it, get your full version here:
https://leanpub.com/learnwpf

ItemsPresenter

 This is just a sample of the full book.

 If you like it, get your full version here:
https://leanpub.com/learnwpf

5.2 Resources

 This is just a sample of the full book.

 If you like it, get your full version here:
https://leanpub.com/learnwpf

ResourceDictionaries

 This is just a sample of the full book.

 If you like it, get your full version here:
https://leanpub.com/learnwpf

5.3 Exercise - Set the background

 This is just a sample of the full book.

 If you like it, get your full version here:
https://leanpub.com/learnwpf

5.4 Exercise solution

 This is just a sample of the full book.

 If you like it, get your full version here:
https://leanpub.com/learnwpf

5.5 Styles

 This is just a sample of the full book.

 If you like it, get your full version here:
https://leanpub.com/learnwpf

5.6 Themes

 This is just a sample of the full book.

 If you like it, get your full version here:
https://leanpub.com/learnwpf

5.7 Transforms

 This is just a sample of the full book.

 If you like it, get your full version here:
https://leanpub.com/learnwpf

5.8 Control states

 This is just a sample of the full book.

 If you like it, get your full version here:
https://leanpub.com/learnwpf

5.9 Animations

 This is just a sample of the full book.

 If you like it, get your full version here:
https://leanpub.com/learnwpf

6. MVVM pattern for WPF

6.1 Spaghetti code

 This is just a sample of the full book.

 If you like it, get your full version here:
https://leanpub.com/learnwpf

6.2 MVC

 This is just a sample of the full book.

 If you like it, get your full version here:
https://leanpub.com/learnwpf

6.3 MVVM

 This is just a sample of the full book.

 If you like it, get your full version here:
https://leanpub.com/learnwpf

6.4 Recommended steps (simple)

 This is just a sample of the full book.

 If you like it, get your full version here:
https://leanpub.com/learnwpf

6.5 Example

 This is just a sample of the full book.

 If you like it, get your full version here:
https://leanpub.com/learnwpf

6.6 Example, more complex

 This is just a sample of the full book.

 If you like it, get your full version here:
https://leanpub.com/learnwpf

6.7 Commands and methods

 This is just a sample of the full book.

 If you like it, get your full version here:
https://leanpub.com/learnwpf

Commands: the apparently easy way

 This is just a sample of the full book.

 If you like it, get your full version here:
https://leanpub.com/learnwpf

Methods: the straightforward way

 This is just a sample of the full book.

 If you like it, get your full version here:
https://leanpub.com/learnwpf

6.8 Recommended steps (complete)

 This is just a sample of the full book.

 If you like it, get your full version here:
https://leanpub.com/learnwpf

6.9 Exercise - Display products and details using MVVM

 This is just a sample of the full book.

 If you like it, get your full version here:
https://leanpub.com/learnwpf

6.10 Exercise solution

 This is just a sample of the full book.

 If you like it, get your full version here:
https://leanpub.com/learnwpf

6.11 MVVM frameworks in short

 This is just a sample of the full book.

 If you like it, get your full version here:
https://leanpub.com/learnwpf

A word from the author

I sincerely hope you enjoyed reading this book as much as I liked writing it and that you quickly become proficient enough with WPF and the MVVM pattern.

If you would like to get in touch you can use :

 	email: books@aweil.fr

 	Facebook: https://facebook.com/learncollection

 	Twitter: @epo

In case your project needs it, I’m also available for speaking, teaching, consulting and coding, all around the world.

If you liked this book, you probably saved a lot of time thanks to it. I’d be very grateful if you took some minutes of your precious time to leave a comment on the site where you purchased this book. Thanks a ton!

OEBPS/images/leanpub_pencil.png

OEBPS/images/leanpub_warning.png

OEBPS/images/borderandscrollviewer.png
<Border Background="Orange"
CornerRadius="10" Padding="5">
<Button Content="Un bouton" />
</Border>

<Border Background="Blue"

CornerRadius="10,0,10,0" Padding="5">
<Button Content="Un bouton" />
</Border>

<ScrollViewer Height="100" Width="100"

HorizontalScrollBarVisibility="Auto">
<MediaElement Source="ic09.wmv"
Stretch="None" />
</ScrollViewer>

OEBPS/images/viewboxexplained.png

OEBPS/images/viewboxinaction1.png
<Grid Height="60" Width="100" Background="LightBlue">

<Button Content="A" />
</Grid>

OEBPS/images/developerdesigner.png
Designer Developer
Blend Visual Studio

OEBPS/images/basiccontrols.png
<TextBlock Text="TextBlock" /> TextBlock

<TextBox Text='"TextBox" /> TextBox

<ProgressBar Value="50" Width="60"
Height="20" /> [

<Slider Value="5" Width="60" />

<PasswordBox Password="Secret" />

OEBPS/images/contentcontrols.png
<Button Content="Un bouton" />
<ToggleButton Content="ToggleButton" />

<CheckBox Content="CheckBox" />

<RadioButton Content="RadioButton" />

(O RadioButton

OEBPS/images/contentcontrolscomplexcontent.png
<Button Padding="10">
<MediaElement Source="ic09.wmv"
Height="50" />
</Button>

<Button Width="100">
<CheckBox>
<TextBlock
Text="Avec un retour a la ligne”
TextWrapping="Wrap" />
</CheckBox>
</Button>

|z| Avec un

retour 3 la
ligne

OEBPS/images/dullapplication.jpg
Fichier Paramtres Saisie Editions Options Internet ?

N @ xS0 @
| Pointage des éciitwes | Etat de rapprochement ban|

|2012/2006 BQ1
]21,‘1’//7[|05E!m

/12/2006 BQ1 i
Joumalde [op 3

tésorerie =

Date I 1 Mont
Refbence

Libellé Comg

[Ventilation du montant TTC

Enteg

01/04/2007 | 2212

OEBPS/images/minorityreport.jpg

OEBPS/images/xamltools.png

OEBPS/images/leanpub-logo.png
[

Leanpub

OEBPS/images/title_page.png
Arnaud Weil @

Learn WPF MVVM

XAML, C# and the MVVM pattern

OEBPS/images/viewboxinaction2.png
<Grid Height="60" Width="100" Background="LightBlue">
<Viewbox>
<Button Content="
</Viewbox>
</Grid>

" />

OEBPS/images/viewboxinaction3.png
<Grid Height="60" Width="100" Background="LightBlue">
<Viewbox Stretch="Fill"> PaN
<Button Content="A" />
</Viewbox>
</Grid>

OEBPS/images/navigationsystem.png
e e

OEBPS/images/exxercisecreateapplication.png
MainWindow

Sender

Message

