

Learn Python Programming
Through Real Examples

Asim Jalis

This book is for sale at http://leanpub.com/learnpython

This version was published on 2013-09-18

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and
many iterations to get reader feedback, pivot until you have the right book and build traction once
you do.

©2013 Asim Jalis

http://leanpub.com/learnpython
http://leanpub.com
http://leanpub.com/manifesto

Tweet This Book!
Please help Asim Jalis by spreading the word about this book on Twitter!

The suggested hashtag for this book is #learnpython.

Find out what other people are saying about the book by clicking on this link to search for this
hashtag on Twitter:

https://twitter.com/search/#learnpython

http://twitter.com
https://twitter.com/search/#learnpython
https://twitter.com/search/#learnpython

To my parents who I owe everything.

Contents

Introduction . 1
Instructor . 1
Introductions . 1
Hands-On Learning . 1

History of Python . 2
Guido van Rossum . 2
Python’s Goals . 2
Versions and Timeline . 2
Python 2.7 Versus Python 3.0 . 3
Python 2.7 and 3.0 Differences . 3

Introduction . 5
What is Python . 5
Python vs Perl, Ruby, PHP . 5
Startups Using Python . 5
Jobs in Different Languages . 6
Installing Python . 6
Python Scripts . 6
Python BAT Files . 7
Documentation . 8
Interactive Shell . 8

Numbers . 9
Integers and Floating-Point Numbers . 9
Variables . 9
Python Conventions . 10
Arithmetic Operators . 10
Assignment Operators . 11
Incrementing and Decrementing . 12
Tip Calculator . 13

Strings . 14
Strings . 14

CONTENTS

Single-Quotes and Double-Quotes . 14
Raw Strings . 15
Triple Quotes . 15
Concatenating Strings . 16
Converting Between Numbers and Strings . 16
String Formatting . 17
Printf Formatting . 18
Reading Input . 19
Population Calculator . 19

Functions . 21
Calling Functions . 21
Defining Functions . 21
Default Argument Values . 22
Keyword Arguments . 23
Multiple Return Values . 23
Scoping Rules . 24
Globals . 25
Creating Libraries of Functions . 26

Objects . 27
Interacting with Objects . 27

Introduction
Instructor

• Asim Jalis
• Has worked as software engineer at Microsoft, Hewlett-Packard, and Salesforce.
• http://linkedin.com/in/asimjalis

Introductions

• What is your name? What do you do?
• How are you planning to use what you learn here?
• What is your perfect outcome?

Hands-On Learning

• How will this course work?
– Hands-on class.
– Learn by doing.

• Why hands-on?
– Helps you get most out of class.
– You interact with material more deeply, learn.
– Encourages small mistakes, faster learning.
– Helps get issues resolved here, now.
– Afterwards you retain the experience.

http://linkedin.com/in/asimjalis

History of Python
Guido van Rossum

Who wrote Python?

Python was written by Guido van Rossum, also known as Python’s Benevolent Dictator for Life
(BDFL).

What does he look like?

Here¹ is a picture from 2006.

Python’s Goals

What led him to write it?

According to Guido², “[In] December 1989, I was looking for a ‘hobby’ programming project that
would keep me occupied during the week around Christmas. […] I decided to write an interpreter
for the new scripting language I had been thinking about lately. […] I chose Python as a working
title for the project, being in a slightly irreverent mood (and a big fan of Monty Python’s Flying
Circus).”

What were some of its goals?

In a 1999 DARPA funding proposal, van Rossum defined Python’s goals as follows:

• an easy and intuitive language just as powerful as major competitors
• open source, so anyone can contribute to its development
• code that is as understandable as plain English
• suitability for everyday tasks, allowing for short development times

Versions and Timeline

What has been Python’s timeline?

¹http://upload.wikimedia.org/wikipedia/commons/c/c6/Guido_van_Rossum.jpg
²http://www.python.org/doc/essays/foreword/

http://upload.wikimedia.org/wikipedia/commons/c/c6/Guido_van_Rossum.jpg
http://www.python.org/doc/essays/foreword/
http://upload.wikimedia.org/wikipedia/commons/c/c6/Guido_van_Rossum.jpg
http://www.python.org/doc/essays/foreword/

History of Python 3

Python Version Released Changes

0.9.0 Feb 1991 Released by Guido Van Rossum to alt.sources
1.0 Jan 1994 Added lambda, map, filter, reduce
1.5 Dec 1997 Bug fixes
1.6 Sep 2000 License changes
2.0 Oct 2000 List comprehensions
2.1 Apr 2001 Generators
2.2 Dec 2001
2.3 Jul 2003
2.4 Nov 2004
2.5 Sep 2006
2.6 Oct 2008
2.7 Jul 2010
3.0 Dec 2008 Compatibility breaking changes
3.1 Jun 2009
3.2 Feb 2011
3.3 Sep 2012

Python 2.7 Versus Python 3.0

Should I use Python 2.7 or Python 3.0?

You should use Python 2.7 because:

• Many libraries have not been ported over to 3.0
• 2.7 ships with Mac and other systems by default
• You will encounter code written in 2.7

Some of the changes in 3.0 are under the surface and do not affect the syntax. Others do. We will
discuss important differences as they come up.

Python 2.7 and 3.0 Differences

Differences in print

• Use print("Hello world") not print "Hello world"

• Use print("Hello world", end=" ") not print "Hello world",

• Use print() not print
• Use print("Error", file=sys.stderr) not print>>sys.stderr, "error"

• Use print((a, b)) not print (a,b)

History of Python 4

Differences in integer division

• In 2.7 3/2 is integer division and so it equals 1.
• In 3.0 3/2 is float division and so it equals 1.5.
• In both 2.7 and 3.0 3//2 is integer division.
• When you want integer division use 3//2 in both to be safe.

Introduction
What is Python

What is Python?

• Python is a high-level programming language.
• Fast edit-compile-run cycle. Fast, interactive, programming experience.
• Great for writing quick programs, that over time evolve into big programs.
• Useful for automating sysadmin tasks, builds, web sites.
• Ships with Mac and Unix machines by default. Easy to install. Everywhere.
• Object-oriented and the code does not buckle over as it grows over time.

Python vs Perl, Ruby, PHP

All of these languages are scripting languages. The code can be run immediately without waiting
for the compiler. This leads to a fast interactive fun programming experience.

Feature Python Perl Ruby PHP

No compilation
needed

X X X X

Web framework Django, Flask Catalyst, Dancer Rails CakePHP,
CodeIgniter

For command-line
utilities

X X X

Object-oriented
baked-in

X X

Scales for large
apps

X X

Startups Using Python

What are some applications and startups that use Python ?

• BitTorrent³ was written by Bram Cohen in Python. He started in April 2001, and released it
in July 2001.

³http://en.wikipedia.org/wiki/BitTorrent_

http://en.wikipedia.org/wiki/BitTorrent_
http://en.wikipedia.org/wiki/BitTorrent_

Introduction 6

• eGroups⁴ was written in 200,000 lines of Python according to founder Scott Hassan. It was
later acquired by Yahoo! and turned into Yahoo! Groups.

• Yelp⁵ is written in Python.
• Reddit⁶ was written in Lisp and then rewritten in Python in one weekend.

Jobs in Different Languages

How does Python compare with the other languages in jobs?

Here⁷ is the relative number of jobs based on data from

Installing Python

Exercise: Install Python.

Solution:

• On Windows install Python 2.7.3 from http://www.python.org/getit/
• On Mac Python 2.7 comes preinstalled.
• Verify that you have python.

1 python --version

Python Scripts

Exercise:Write a script that prints Hello, world.

Solution:

• Save this in a text file called hello.py using an editor like Sublime Text, TextWrangler,
NotePad++, or TextPad.

⁴http://wiki.python.org/moin/OrganizationsUsingPython
⁵http://engineeringblog.yelp.com/2010/10/mrjob-distributed-computing-for-everybody.html
⁶http://www.aaronsw.com/weblog/rewritingreddit
⁷http://www.indeed.com/trendgraph/jobgraph.png?q=Python%2C+Perl%2C+Ruby%2C+PHP

http://wiki.python.org/moin/OrganizationsUsingPython
http://engineeringblog.yelp.com/2010/10/mrjob-distributed-computing-for-everybody.html
http://www.aaronsw.com/weblog/rewritingreddit
http://www.indeed.com/trendgraph/jobgraph.png?q=Python%2C+Perl%2C+Ruby%2C+PHP
http://www.python.org/getit/
http://wiki.python.org/moin/OrganizationsUsingPython
http://engineeringblog.yelp.com/2010/10/mrjob-distributed-computing-for-everybody.html
http://www.aaronsw.com/weblog/rewritingreddit
http://www.indeed.com/trendgraph/jobgraph.png?q=Python%2C+Perl%2C+Ruby%2C+PHP

Introduction 7

1 #!/usr/bin/env python

2

3 print "Hello, world."

• Type python hello.py to run it.
• Or type chmod 755 hello.py and then type ./hello.py to run it.

Notes:

• It is conventional to put the .py extension on Python scripts. However, it is not required. We
could have called the program hello instead of hello.py.

• Whitespace is significant in Python. The indentation of the statement indicates what block it
is in as we will see later. For this program to work, the statement must have zero indentation.

• No semicolon is required to end the statement.
• Print automatically puts a newline after the output.
• If you want to print output without a newline put a comma after it.
• This will not print a newline.

1 #!/usr/bin/env python

2

3 print "Hello, world.",

Python BAT Files

Exercise: Create a Windows BAT file that prints hello world using Python.

Solution:

• On Windows save this to file.bat and then you can run it from the command line.

1 @echo off & python.exe -x "%~f0" %* & goto :EOF

2

3 print "Hello, world."

• Or you can save Python in file.py and then use this file.bat.

1 @echo off

2 python file.py

Introduction 8

Documentation

Exercise: Find the documentation for the raw_input function.

Solution:

• In the Python console type help(raw_input).
• help can be used with Python functions and objects.

Interactive Shell

Exercise: Calculate 3 + 4 on the interactive shell.

Solution:

• Type python.
• At the Python prompt, enter 3 + 4.

Notes:

• Note the difference between being in the Python shell and in the terminal shell. It is like
Inception–shell inside a shell.

• Python has a strong opinion on everything, including how you should exit the shell. To see
this try exiting the shell by typing exit or quit.

Exercise:What is the Zen of Python?

Solution:

• Type python.
• At the Python prompt, enter import this.

Exercise: Run a script from the Python shell.

Solution: You can run a Python script from the Python shell using execfile as follows.

1 execfile(r'/path/to/script/hello.py')

Notes:

• Compare the difference between running scripts from the Python shell versus running the
script from the terminal or the cmd shell.

Numbers
Integers and Floating-Point Numbers

The most basic data type in Python is the number. Python has both integers as well as floating point
numbers. You can enter numbers literally into the shell to see their values.

Exercise: Guess the values and types of these number literals: 123, 0x10, 010, 0, 1.1, 1.1e3, 0.0

Solution:

Literal Value Type

123 123 integer
0x10 16 integer
010 8 integer
0 0 integer
1.1 1.1 floating-point
1.1e3 1100.0 floating-point
0.0 0.0 floating-point

Variables

Exercise:Write a program that divides a restaurant check of $43 between 3 friends.

Solution:

1 # Divide restaurant check of $43 between 3 people.

2

3 persons = 3

4 amount = 43.0

5 amount_per_person = \

6 amount / persons

7 print "Amount per person:", amount_per_person

Notes:

• Variables are slots in memory where data such as numbers are stored.
• A variable acquires a value after it is assigned.

Numbers 10

• The = operator assigns the value from the right to the variable on its left. Its left hand side can
only contain a single variable.

• Variables and numbers can be combined on the right hand side in arithmetic expressions.

Syntactic Notes:

• Statements are executed in sequence.
• Statements end with newline.
• Whitespace and indentation is important.
• Statements must occur on one line.
• If a statement must continue on the following line, end the line with a \.
• Comments start with # and end at the end of line.
• Python programs are minimal and have very little syntactic noise: no semicolons, no $ before
variable names, no mysterious symbols.

Python Conventions

• Variable names are made up of a letter or underscore, followed by letters, underscores, or
numbers.

• Python convention is to use snake_case rather than camelCase or PascalCase for variable
and function names.

• Python class names use PascalCase.
• Python module names which are the same as file names also use snake_case.
• Naming conventions and style guidelines are discussed in more detail in PEP 8 http://www.
python.org/dev/peps/pep-0008.

• PEP stands for Python Enhancement Proposal.

Arithmetic Operators

What arithmetic operators does Python have?

Expression Result

a + b Adding a and b

a - b Subtracting b from a

a * b Multiplying a and b

a / b Dividing a by b (produces fraction in 3.0)
a // b Dividing a by b (integer division)
a ** b Raising a to the power b
a % b Remainder of dividing a by b

http://www.python.org/dev/peps/pep-0008
http://www.python.org/dev/peps/pep-0008

Numbers 11

Notes:

• These operators don’t change the value of the variables in the expression.
• They produce a new value which can be assigned to a variable.
• In x = a + b the value of a and b are not changed. Only the value of x. Only the variable to
the left of = changes.

Assignment Operators

Exercise: A large 14’’ pizza at Extreme Pizza costs $14.45. Each topping is $1.70. Suppose we want
jalapenos, olives, artichoke hearts, and sun-dried tomatoes. How much will the total be?

Solution 1:

1 crust = 14.45

2 topping = 1.70

3

4 price = crust

5 price = price + topping # jalapenos

6 price = price + topping # olives

7 price = price + topping # artichoke hearts

8 price = price + topping # sun-dried tomatoes

9

10 print "Pizza Price:", price

Notes:

• A variable can be assigned to multiple times.
• A variable can recycle its own previous value on the left of =.
• = is not mathematical equality. So price = price + topping is not a paradox.
• = is simply assignment.

Solution 2:

Numbers 12

1 crust = 14.45

2 topping = 1.70

3

4 price = crust

5 price += topping # basil

6 price += topping # olives

7 price += topping # cilantro

8 price += topping # pesto

9

10 print "Pizza Price:", price

Notes:

• Because the pattern x = x + a occurs a lot there is a short-hand for it: x += a.
• Read this as: modify x by adding a to it.
• += is called an assignment operator.
• It is a relative of =.
• It too changes the value of the variable only on its left hand side.

What are the different assignment operators?

Assignment Meaning

a = b Modify a by setting it to b

a += b Modify a by adding b to it
a -= b Modify a by subtracting b from it
a *= b Modify a by multiplying b with it
a /= b Modify a by dividing it by b

a **= b Modify a by raising it to the power b
a %= b Modify a by setting it to the remainder of dividing it by b

Incrementing and Decrementing

Exercise:Write the statement for incrementing the value of a by 1.

Solution:

1 a += 1

Exercise:Write the statement for decrementing the value of a by 1.

Solution:

Numbers 13

1 a -= 1

Tip Calculator

Exercise: Write a program that divides a restaurant check of $43 between 3 friends and adds a tip
as well.

Solution:

1 persons = 3

2 amount = 43.0

3 tip_rate = 0.15

4 tip = amount * tip_rate

5 amount_per_person = amount / persons

6 tip_per_person = tip / persons

7 amount_per_person += tip_per_person

8 print "Amount per person:", amount_per_person

Strings
Strings

Besides integers and floating-point numbers you can also use strings as a data type. String represent
text.

Strings are marked by double-quotes or single-quotes. These quotes have the same meaning.

1 message1 = 'Hello'

2 message2 = 'Goodbye'

3 print message1

4 print message2

Single-Quotes and Double-Quotes

What’s the difference between single-quotes and double-quotes?

• There is no difference in Python.
• You can enclose a single-quote easily in a double-quoted string, and a double-quote in a single-
quoted string.

• Escape sequences like \n work in both double-quotes, as well as in single-quotes.

What other escape sequences are there?

Sequence Value

\n Newline
\t Tab
\a Bell
\' Single-quote
\" Double-quote
\\ Backslash

Exercise: Print Jim's Garage.

Solution 1:

Strings 15

1 print 'Jim\'s Garage'

Solution 2:

1 print "Jim's Garage"

Raw Strings

Exercise: Print c:\temp\dir\file.txt.

Solution 1::

1 print 'c:\\temp\\dir\\file.txt'

Solution 2:

1 print r'c:\temp\dir\file.txt'

Solution 3:

1 print r"c:\temp\dir\file.txt"

Notes:

• The r prefix before the string turns it into a raw string.
• What you see is what you get.
• The backslashes are no longer escape characters. Instead they are just backslashes.
• The raw string is like a zip lock bag. The string is preserved exactly as you save it.
• You can put the r prefix before a single-quoted string, a double-quoted string, or a triple-
quoted string. It has the same effect in all cases.

Triple Quotes

Python also has triple-quotes for strings that span multiple lines.

Exercise: Define usage_text for a tip calculator.

Solution:

Strings 16

1 usage_text= '''TIP CALCULATOR

2

3 USAGE

4 python tip.py AMOUNT PERSONS TIP_RATE

5

6 NOTES

7 Prints out the total amount due per person including tip.'''

Notes:

• The opening ''' have to be immediately before the first line to avoid a blank line at the
beginning.

• The closing ''' have to be immediately after the last line to avoid a newline at the end.

Concatenating Strings

Strings can be concatenated using the + operator.

Exercise: Combine a first name and last name with a space in the middle.

Solution 1:

1 first_name = 'Dmitri'

2 last_name = 'Hayward'

3 full_name = first_name + ' ' + last_name

4 print full_name

Solution 2:

1 name = ''

2 name += 'Dmitri'

3 name += ' '

4 name += 'Hayward'

5 print name

Notes:

• We could have written name += 'Dmitri' as name = name + 'Dmitri' as well.
• The assignment operator += for strings means modify the variable on the left hand side by
appending the expression on the right hand side to it.

Converting Between Numbers and Strings

Exercise: Convert a string "43.0" to a floating-point number.

Solution:

Strings 17

1 amount_string = "43.0"

2 amount = float(amount_string)

Exercise: Convert a string "3" to an integer.

Solution:

1 people_string = "3"

2 people = int(people_string)

Exercise: Convert a number 14.33 to a string.

Solution:

1 amount_per_person = 14.33

2 amount_per_person_string = str(14.33)

Notes:

• The function int converts all data types to integers.
• Similarly, the function float converts its input to floating-point number.
• And the function str convert any data type to a string.

Exercise: Check what happens if you call float("hello").

String Formatting

Exercise:Write a program that divides a restaurant check of $43 between 3 friends. Print the answer
formatted nicely with a dollar sign.

Solution:

1 persons = 3

2 amount = 43.0

3 amount_per_person = amount / persons

4 print "Amount per person: ${0}".format(amount_per_person)

Notes:

• The .format function is applied to a string and returns a string which is printed by print.
• We could have saved it as a variable as well.

Strings 18

1 output = "Amount per person: ${0}".format(amount_per_person)

2 print output

Exercise: Trim the amount to two decimal places.

Solution:

1 persons = 3

2 amount = 43.0

3 amount_per_person = amount / persons

4 print "Amount per person: ${0:.2f}".format(amount_per_person)

Exercise:What will be the output of these format strings?

1 print "{0}, {1}, {2}".format("a", "b", "c")

2 print "{1}, {2}, {0}".format("a", "b", "c")

3 print "{2}, {2}, {2}".format("a", "b", "c")

Solution:

1 a, b, c

2 b, c, a

3 c, c, c

Notes:

• The number in the parentheses refers to the position of the argument of format.
• You can use an argument as many times as you want. And in any order.

Printf Formatting

Exercise:Write a program that divides a restaurant check of $43 between 3 friends. Print the answer
formatted nicely with a dollar sign.

Solution:

Strings 19

1 persons = 3

2 amount = 43.0

3 amount_per_person = amount / persons

4 print "Amount per person: %.2f" % (amount_per_person)

Notes:

• The % operator is like the format function, except it uses traditional C printf format syntax.
• This is deprecated in Python 3.0 and format is the preferred way of formatting output.
• However, this is commonly used and you will see this in code often.

Reading Input

Exercise:Write a program that asks a user for his name and then says hello to him or her.

Solution:

1 import readline

2 user_name = raw_input('What is your name? ')

3 print 'Hello, {0}!'.format(user_name)

Notes:

• You can put import readline at the top of the file. This line enables Unix readline editing of
the input.

• In Python 3.0 raw_input has been renamed to input.

Population Calculator

Exercise: Estimate the population of California in 2021. The population in 2012 was 38,000,000 and
the growth rate was 1%. The population can be estimated as

1 pop = pop_initial * (1 + growth_rate)**years

Here years is the number of years since 2012, pop_initial is the population in 2012.

Solution:

Strings 20

1 pop_initial = 38 * 1000 * 1000

2 year_initial = 2012

3 year_final = 2021

4 year_count = year_final - year_initial

5 pop_rate = 0.01

6 pop_final = pop_initial * ((1 + pop_rate) ** year_count)

7 print "The population of California in year {0} will be {1:,.0f}".format(

8 year_final, pop_final)

Notes:

• {1:,.0f} prints a floating point number with zero decimal places and with commas.

Exercise: Are the parentheses around (1 + $pop_rate) ** $year_count required?

Solution:

• Precedence from higher to lower is: ** * / + -

• So strictly parentheses are not needed.
• However, it is safer to use parentheses and not guess precendence if it’s not clear.

Exercise: Generalize this program to take any year as input.

Functions
Calling Functions

Exercise:Write a program that throws a dice.

Solution 1:

1 import random

2 dice = random.randint(1,6)

3 print 'The dice was {0}'.format(dice)

Solution 2:

1 from random import *

2 dice = randint(1,6)

3 print 'The dice was {0}'.format(dice)

Solution 3:

1 import random as r

2 dice = r.randint(1,6)

3 print 'The dice was {0}'.format(dice)

Notes:

• import pulls in functions from other packages.
• Besides built-in functions, all functions and classes require import.
• Usually import is put at the beginning of the file, but it can occur anywhere before the function
call.

• import random imports functions and variables into the random namespace.
• from random import * imports functions and variables into the current namespace.
• import random as r imports functions and variables into the namespace r. This is useful if
you want to abbreviate a long namespace name.

Defining Functions

Exercise:Write a function that takes a name and returns a greeting, and then call it.

Solution:

Functions 22

1 name = 'Jim'

2

3 def greet(name):

4 greeting = "Hello, " + name + "!"

5 return greeting

6

7 print greet(name)

8 print greet('Dmitri')

9 print greet('Alice')

10 print greet('Jim')

Notes:

• The indentation is important. Python determines where the function ends based on the
indentation.

• The function parameter name contains a copy of the value that is passed into the function call.
If you modify name in the function that will not affect the caller’s variable value.

• If a function has no body you can simply put pass in it.
• Functions cannot be called before they are defined.

Exercise: Write two functions. The first converts Celsius to Fahrenheit. The second converts
Fahrenheit to Celsius.

Solution:

1 def c2f(c):

2 f = (c * 9./5.) + 32.

3 return f

4

5 def f2c(f):

6 c = (f - 32.) * 5./9.

7 return c

Notes:

• All variables introduced in the function for example f and c disappear as soon as the function
exits.

• They do not have any connection to variables of the same name outside the function.

Default Argument Values

Exercise: Create a tip calculator function that assumes a default tip rate of 15%.

Solution:

Functions 23

1 def calculate_tip(amount, tip_rate = 0.15):

2 tip = amount * float(tip_rate)

3 return tip

4

5 print calculate_tip(10, 0.20)

6 print calculate_tip(10, 0.15)

7 print calculate_tip(10)

Keyword Arguments

Exercise: Create a tip calculator function that calculates the total amount per person including tip.
It assumes a default tip rate of 15% and assumes that by default there is only one person.

Solution:

1 def calculate_tip(amount, persons=1, tip_rate=0.15):

2 tip = amount * float(tip_rate)

3 amount += tip

4 amount_per_person = amount / persons

5 return amount_per_person

6

7 print calculate_tip(43, 3, 0.15)

8 print calculate_tip(43, persons=3, tip_rate=0.20)

9 print calculate_tip(amount=43, persons=3, tip_rate=0.20)

10 print calculate_tip(amount=43, tip_rate=0.20)

11 print calculate_tip(amount=43, tip_rate=0.20, persons=3)

12 print calculate_tip(tip_rate=0.20, persons=3, amount=43)

Notes:

• You can combine position arguments and keyword arguments.
• However, once you start using keywords arguments you cannot go back to positional
arguments in that function call.

Multiple Return Values

Exercise:Write a function that prompts the user for amount, people, and tip rate, and then returns
all three values.

Solution 1:

Functions 24

1 def get_input():

2 amount = float(raw_input('Amount: '))

3 people = int(raw_input('People: '))

4 tip_rate = float(raw_input('Tip Rate: '))

5 return amount, people, tip_rate

6

7 amount, people, tip_rate = get_input()

8

9 print amount, people, tip_rate

Solution 2:

1 def get_input():

2 amount = float(raw_input('Amount: '))

3 people = int(raw_input('People: '))

4 tip_rate = float(raw_input('Tip Rate: '))

5 return (amount, people, tip_rate)

6

7 (amount, people, tip_rate) = get_input()

8

9 print amount, people, tip_rate

Notes:

• In effect the two solutions are equivalent.
• In both cases the three variables amount, people, and tip_rate will get the values the user
entered.

• Under the hood Solution 1 returns a tuple. Solution 2 makes that explicit by using the tuple
notation. We will discuss tuples in a future section.

• Solution 1 is more idiomatic and is commonly used in Python code.

Scoping Rules

Python’s scoping rules can be remembered using this mneumonic: LEGB.

Scope Meaning

Local Defined in the current def
Enclosed Defined in the enclosing def

Global Defined in the module
Builtin Python builtin

Functions 25

Note that this means that you can override builtin variables.

Exercise: Redefine raw_input to throw an exception.

Solution:

1 def raw_input(message):

2 raise Exception(

3 "raw_input: not implemented")

4

5 name = raw_input("What is your name? ")

6 print "Hello " + name + "!"

Notes:

• When a variable is read it is looked up first in the local scope, and then in enclosed, then
global, then builtin. If it is not found in any of them an error is raised.

• When a variable is assigned to it becomes attached to the scopewhere the assignment happens.
• A more local variable can hide a less local variable within its scope.
• New scopes are introduced in function definitions.
• In general a function can read the variables defined in outer scopes, but cannot write to them.

Globals

Exercise:Define a module variable using VERBOSE = True. Then reset it to False in a function called
disableVerbose().

Solution:

1 VERBOSE = True

2

3 def disableVerbose():

4 global VERBOSE

5 VERBOSE = False

6

7 disableVerbose()

8 print 'Verbose: ' + str(VERBOSE)

Notes:

• The global keyword puts variables in the module or global scope within the scope in which
it is used.

• Without the global keyword the VERBOSE inside disableVerbose will be redefined as a local
variable, and setting it to False will have no effect on the VERBOSE in the global scope.

• If global is used in the module or global scope it has no effect.

Functions 26

Creating Libraries of Functions

Exercise: Create a util.py file and then import it into your program.

Solution:

In util.py, type:

1 def greet():

2 print "Hello, world"

In your Python file type:

1 import util

2 util.greet()

Notes:

If the file is not in the same directory add these lines first.

1 import sys

2 dir = '/path/to/dir-containing-file'

3 sys.path.append(dir)

Objects
Interacting with Objects

How do you interact with objects?

• In Python everything is an object.
• Here is how you interact with objects.

1 obj.method(arg1, arg2, arg3)

• Every object has methods on it, which are like functions, except they are specialized to that
object.

• For example, a car and a computer both have a start function, but they mean specific things
for that object.

Why is the point of all this?

• Objects allow the code to be modular and more organized.
• Each part of the system only knows about itself.
• Objects are introverts.
• So changes to an object’s insides are less likely to break the system.

Exercise: Look at the string functions on the Python console and then find a way to uppercase a
string. You can find the functions for an object using the dir(obj) function.

Exercise: Find out if a string ends with a question mark.

Exercise: Find the format function on the string.

	Table of Contents
	Introduction
	Instructor
	Introductions
	Hands-On Learning

	History of Python
	Guido van Rossum
	Python's Goals
	Versions and Timeline
	Python 2.7 Versus Python 3.0
	Python 2.7 and 3.0 Differences

	Introduction
	What is Python
	Python vs Perl, Ruby, PHP
	Startups Using Python
	Jobs in Different Languages
	Installing Python
	Python Scripts
	Python BAT Files
	Documentation
	Interactive Shell

	Numbers
	Integers and Floating-Point Numbers
	Variables
	Python Conventions
	Arithmetic Operators
	Assignment Operators
	Incrementing and Decrementing
	Tip Calculator

	Strings
	Strings
	Single-Quotes and Double-Quotes
	Raw Strings
	Triple Quotes
	Concatenating Strings
	Converting Between Numbers and Strings
	String Formatting
	Printf Formatting
	Reading Input
	Population Calculator

	Functions
	Calling Functions
	Defining Functions
	Default Argument Values
	Keyword Arguments
	Multiple Return Values
	Scoping Rules
	Globals
	Creating Libraries of Functions

	Objects
	Interacting with Objects

