

[image: Learn Python Programming]

 Learn Python Programming

 Through Real Examples

 Asim Jalis

 This book is for sale at http://leanpub.com/learnpython

 This version was published on 2013-09-18

 [image: publisher's logo]

 This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and many iterations to get reader feedback, pivot until you have the right book and build traction once you do.

© 2013 Asim Jalis

To my parents who I owe everything.

Table of Contents

 	
 Introduction

 	
 Instructor

 	
 Introductions

 	
 Hands-On Learning

 	
 History of Python

 	
 Guido van Rossum

 	
 Python’s Goals

 	
 Versions and Timeline

 	
 Python 2.7 Versus Python 3.0

 	
 Python 2.7 and 3.0 Differences

 	
 Introduction

 	
 What is Python

 	
 Python vs Perl, Ruby, PHP

 	
 Startups Using Python

 	
 Jobs in Different Languages

 	
 Installing Python

 	
 Python Scripts

 	
 Python BAT Files

 	
 Documentation

 	
 Interactive Shell

 	
 Numbers

 	
 Integers and Floating-Point Numbers

 	
 Variables

 	
 Python Conventions

 	
 Arithmetic Operators

 	
 Assignment Operators

 	
 Incrementing and Decrementing

 	
 Tip Calculator

 	
 Strings

 	
 Strings

 	
 Single-Quotes and Double-Quotes

 	
 Raw Strings

 	
 Triple Quotes

 	
 Concatenating Strings

 	
 Converting Between Numbers and Strings

 	
 String Formatting

 	
 Printf Formatting

 	
 Reading Input

 	
 Population Calculator

 	
 Functions

 	
 Calling Functions

 	
 Defining Functions

 	
 Default Argument Values

 	
 Keyword Arguments

 	
 Multiple Return Values

 	
 Scoping Rules

 	
 Globals

 	
 Creating Libraries of Functions

 	
 Objects

 	
 Interacting with Objects

Introduction

Instructor

	Asim Jalis

 	Has worked as software engineer at Microsoft, Hewlett-Packard, and
Salesforce.

 	http://linkedin.com/in/asimjalis

Introductions

	What is your name? What do you do?

 	How are you planning to use what you learn here?

 	What is your perfect outcome?

Hands-On Learning

	How will this course work?
 	Hands-on class.

 	Learn by doing.

 	Why hands-on?
 	Helps you get most out of class.

 	You interact with material more deeply, learn.

 	Encourages small mistakes, faster learning.

 	Helps get issues resolved here, now.

 	Afterwards you retain the experience.

History of Python

Guido van Rossum

Who wrote Python?

Python was written by Guido van Rossum, also known as Python’s
Benevolent Dictator for Life (BDFL).

What does he look like?

Here is a picture from 2006.

Python’s Goals

What led him to write it?

According to Guido, “[In] December 1989, I was
looking for a ‘hobby’ programming project that would keep me occupied
during the week around Christmas. […] I decided to write an
interpreter for the new scripting language I had been thinking about
lately. […] I chose Python as a working title for the project, being
in a slightly irreverent mood (and a big fan of Monty Python’s Flying
Circus).”

What were some of its goals?

In a 1999 DARPA funding proposal, van Rossum defined Python’s goals as
follows:

	an easy and intuitive language just as powerful as major competitors

 	open source, so anyone can contribute to its development

 	code that is as understandable as plain English

 	suitability for everyday tasks, allowing for short development times

Versions and Timeline

What has been Python’s timeline?

 	Python Version
 	Released
 	Changes

 	0.9.0
 	Feb 1991
 	Released by Guido Van Rossum to alt.sources

 	1.0
 	Jan 1994
 	Added lambda, map, filter, reduce

 	1.5
 	Dec 1997
 	Bug fixes

 	1.6
 	Sep 2000
 	License changes

 	2.0
 	Oct 2000
 	List comprehensions

 	2.1
 	Apr 2001
 	Generators

 	2.2
 	Dec 2001
 	

 	2.3
 	Jul 2003
 	

 	2.4
 	Nov 2004
 	

 	2.5
 	Sep 2006
 	

 	2.6
 	Oct 2008
 	

 	2.7
 	Jul 2010
 	

 	3.0
 	Dec 2008
 	Compatibility breaking changes

 	3.1
 	Jun 2009
 	

 	3.2
 	Feb 2011
 	

 	3.3
 	Sep 2012
 	

Python 2.7 Versus Python 3.0

Should I use Python 2.7 or Python 3.0?

You should use Python 2.7 because:

	Many libraries have not been ported over to 3.0

 	2.7 ships with Mac and other systems by default

 	You will encounter code written in 2.7

Some of the changes in 3.0 are under the surface and do not affect the
syntax. Others do. We will discuss important differences as they come
up.

Python 2.7 and 3.0 Differences

Differences in print

	Use print("Hello world") not print "Hello world"

 	Use print("Hello world", end=" ") not print "Hello world",

 	Use print() not print

 	Use print("Error", file=sys.stderr) not print>>sys.stderr, "error"

 	Use print((a, b)) not print (a,b)

Differences in integer division

	In 2.7 3/2 is integer division and so it equals 1.

 	In 3.0 3/2 is float division and so it equals 1.5.

 	In both 2.7 and 3.0 3//2 is integer division.

 	When you want integer division use 3//2 in both to be safe.

Introduction

What is Python

What is Python?

	Python is a high-level programming language.

 	Fast edit-compile-run cycle. Fast, interactive, programming
experience.

 	Great for writing quick programs, that over time evolve into big
programs.

 	Useful for automating sysadmin tasks, builds, web sites.

 	Ships with Mac and Unix machines by default. Easy to install.
Everywhere.

 	Object-oriented and the code does not buckle over as it grows over
time.

Python vs Perl, Ruby, PHP

All of these languages are scripting languages. The code can be run
immediately without waiting for the compiler. This leads to a fast
interactive fun programming experience.

 	Feature
 	Python
 	Perl
 	Ruby
 	PHP

 	No compilation needed
 	X
 	X
 	X
 	X

 	Web framework
 	Django, Flask
 	Catalyst, Dancer
 	Rails
 	CakePHP, CodeIgniter

 	For command-line utilities
 	X
 	X
 	X
 	

 	Object-oriented baked-in
 	X
 	X
 	
 	

 	Scales for large apps
 	X
 	X
 	
 	

Startups Using Python

What are some applications and startups that use Python ?

	BitTorrent was written by Bram Cohen in Python.
He started in April 2001, and released it in July 2001.

 	eGroups was written in 200,000 lines of Python
according to founder Scott Hassan. It was later acquired by Yahoo!
and turned into Yahoo! Groups.

 	Yelp is written in Python.

 	Reddit was written in Lisp and then rewritten in
Python in one weekend.

Jobs in Different Languages

How does Python compare with the other languages in jobs?

Here is the relative number of jobs based on data
from .

Installing Python

Exercise: Install Python.

 Solution:

	On Windows install Python 2.7.3 from
http://www.python.org/getit/

 	On Mac Python 2.7 comes preinstalled.

 	Verify that you have python.

1 python --version

Python Scripts

Exercise: Write a script that prints Hello, world.

 Solution:

	Save this in a text file called hello.py using an editor like
Sublime Text, TextWrangler, NotePad++, or TextPad.

1 #!/usr/bin/env python
2
3 print "Hello, world."

	Type python hello.py to run it.

 	Or type chmod 755 hello.py and then type ./hello.py to run it.

 Notes:

	It is conventional to put the .py extension on Python scripts.
However, it is not required. We could have called the program
hello instead of hello.py.

 	Whitespace is significant in Python. The indentation of the
statement indicates what block it is in as we will see later. For
this program to work, the statement must have zero indentation.

 	No semicolon is required to end the statement.

 	Print automatically puts a newline after the output.

 	If you want to print output without a newline put a comma after it.

 	This will not print a newline.

1 #!/usr/bin/env python
2
3 print "Hello, world.",

Python BAT Files

Exercise: Create a Windows BAT file that prints hello world using
Python.

 Solution:

	On Windows save this to file.bat and then you can run it from
the command line.

1 @echo off & python.exe -x "%~f0" %* & goto :EOF
2
3 print "Hello, world."

	Or you can save Python in file.py and then use this file.bat.

1 @echo off
2 python file.py

Documentation

Exercise: Find the documentation for the raw_input function.

 Solution:

	In the Python console type help(raw_input).

 	help can be used with Python functions and objects.

Interactive Shell

Exercise: Calculate 3 + 4 on the interactive shell.

 Solution:

	Type python.

 	At the Python prompt, enter 3 + 4.

 Notes:

	Note the difference between being in the Python shell and in the
terminal shell. It is like Inception–shell inside a shell.

 	Python has a strong opinion on everything, including how you should
exit the shell. To see this try exiting the shell by typing exit
or quit.

Exercise: What is the Zen of Python?

Solution:

	Type python.

 	At the Python prompt, enter import this.

Exercise: Run a script from the Python shell.

Solution: You can run a Python script from the Python shell using
execfile as follows.

1 execfile(r'/path/to/script/hello.py')

 Notes:

	Compare the difference between running scripts from the Python shell
versus running the script from the terminal or the cmd shell.

Numbers

Integers and Floating-Point Numbers

The most basic data type in Python is the number. Python has both
integers as well as floating point numbers. You can enter numbers
literally into the shell to see their values.

Exercise: Guess the values and types of these number literals:
123, 0x10, 010, 0, 1.1, 1.1e3, 0.0

Solution:

 	Literal
 	Value
 	Type

 	123
 	123
 	integer

 	0x10
 	16
 	integer

 	010
 	8
 	integer

 	0
 	0
 	integer

 	1.1
 	1.1
 	floating-point

 	1.1e3
 	1100.0
 	floating-point

 	0.0
 	0.0
 	floating-point

Variables

Exercise: Write a program that divides a restaurant check of $43
between 3 friends.

 Solution:

1 # Divide restaurant check of $43 between 3 people.
2
3 persons = 3
4 amount = 43.0
5 amount_per_person = \
6 amount / persons
7 print "Amount per person:", amount_per_person

 Notes:

	Variables are slots in memory where data such as numbers are stored.

 	A variable acquires a value after it is assigned.

 	The = operator assigns the value from the right to the variable on
its left. Its left hand side can only contain a single variable.

 	Variables and numbers can be combined on the right hand side in
arithmetic expressions.

 Syntactic Notes:

	Statements are executed in sequence.

 	Statements end with newline.

 	Whitespace and indentation is important.

 	Statements must occur on one line.

 	If a statement must continue on the following line, end the line
with a \.

 	Comments start with # and end at the end of line.

 	Python programs are minimal and have very little syntactic noise: no
semicolons, no $ before variable names, no mysterious symbols.

Python Conventions

	Variable names are made up of a letter or underscore, followed by
letters, underscores, or numbers.

 	Python convention is to use snake_case rather than camelCase or
PascalCase for variable and function names.

 	Python class names use PascalCase.

 	Python module names which are the same as file names also use
snake_case.

 	Naming conventions and style guidelines are discussed in more detail
in PEP 8 http://www.python.org/dev/peps/pep-0008.

 	PEP stands for Python Enhancement Proposal.

Arithmetic Operators

What arithmetic operators does Python have?

 	Expression
 	Result

 	a + b
 	Adding a and b

 	a - b
 	Subtracting b from a

 	a * b
 	Multiplying a and b

 	a / b
 	Dividing a by b (produces fraction in 3.0)

 	a // b
 	Dividing a by b (integer division)

 	a ** b
 	Raising a to the power b

 	a % b
 	Remainder of dividing a by b

 Notes:

	These operators don’t change the value of the variables in the
expression.

 	They produce a new value which can be assigned to a variable.

 	In x = a + b the value of a and b are not changed. Only the
value of x. Only the variable to the left of = changes.

Assignment Operators

Exercise: A large 14’’ pizza at Extreme Pizza costs $14.45. Each
topping is $1.70. Suppose we want jalapenos, olives, artichoke hearts,
and sun-dried tomatoes. How much will the total be?

 Solution 1:

 1 crust = 14.45
 2 topping = 1.70
 3
 4 price = crust
 5 price = price + topping # jalapenos
 6 price = price + topping # olives
 7 price = price + topping # artichoke hearts
 8 price = price + topping # sun-dried tomatoes
 9
10 print "Pizza Price:", price

 Notes:

	A variable can be assigned to multiple times.

 	A variable can recycle its own previous value on the left of =.

 	= is not mathematical equality. So price = price + topping
is not a paradox.

 	= is simply assignment.

 Solution 2:

 1 crust = 14.45
 2 topping = 1.70
 3
 4 price = crust
 5 price += topping # basil
 6 price += topping # olives
 7 price += topping # cilantro
 8 price += topping # pesto
 9
10 print "Pizza Price:", price

 Notes:

	Because the pattern x = x + a occurs a lot there is a short-hand
for it: x += a.

 	Read this as: modify x by adding a to it.

 	+= is called an assignment operator.

 	It is a relative of =.

 	It too changes the value of the variable only on its left hand side.

What are the different assignment operators?

 	Assignment
 	Meaning

 	a = b
 	Modify a by setting it to b

 	a += b
 	Modify a by adding b to it

 	a -= b
 	Modify a by subtracting b from it

 	a *= b
 	Modify a by multiplying b with it

 	a /= b
 	Modify a by dividing it by b

 	a **= b
 	Modify a by raising it to the power b

 	a %= b
 	Modify a by setting it to the remainder of dividing it by b

Incrementing and Decrementing

Exercise: Write the statement for incrementing the value of a by
1.

Solution:

1 a += 1

Exercise: Write the statement for decrementing the value of a by
1.

 Solution:

1 a -= 1

Tip Calculator

Exercise: Write a program that divides a restaurant check of $43
between 3 friends and adds a tip as well.

 Solution:

1 persons = 3
2 amount = 43.0
3 tip_rate = 0.15
4 tip = amount * tip_rate
5 amount_per_person = amount / persons
6 tip_per_person = tip / persons
7 amount_per_person += tip_per_person
8 print "Amount per person:", amount_per_person

Strings

Strings

Besides integers and floating-point numbers you can also use strings
as a data type. String represent text.

Strings are marked by double-quotes or single-quotes. These quotes
have the same meaning.

1 message1 = 'Hello'
2 message2 = 'Goodbye'
3 print message1
4 print message2

Single-Quotes and Double-Quotes

What’s the difference between single-quotes and double-quotes?

	There is no difference in Python.

 	You can enclose a single-quote easily in a double-quoted string, and
a double-quote in a single-quoted string.

 	Escape sequences like \n work in both double-quotes, as well as in
single-quotes.

What other escape sequences are there?

 	Sequence
 	Value

 	\n
 	Newline

 	\t
 	Tab

 	\a
 	Bell

 	\'
 	Single-quote

 	\"
 	Double-quote

 	\\
 	Backslash

Exercise: Print Jim's Garage.

 Solution 1:

1 print 'Jim\'s Garage'

 Solution 2:

1 print "Jim's Garage"

Raw Strings

Exercise: Print c:\temp\dir\file.txt.

Solution 1::

1 print 'c:\\temp\\dir\\file.txt'

 Solution 2:

1 print r'c:\temp\dir\file.txt'

 Solution 3:

1 print r"c:\temp\dir\file.txt"

 Notes:

	The r prefix before the string turns it into a raw string.

 	What you see is what you get.

 	The backslashes are no longer escape characters. Instead they are
just backslashes.

 	The raw string is like a zip lock bag. The string is preserved
exactly as you save it.

 	You can put the r prefix before a single-quoted string, a
double-quoted string, or a triple-quoted string. It has the same
effect in all cases.

Triple Quotes

Python also has triple-quotes for strings that span multiple lines.

Exercise: Define usage_text for a tip calculator.

 Solution:

1 usage_text= '''TIP CALCULATOR
2
3 USAGE
4 python tip.py AMOUNT PERSONS TIP_RATE
5
6 NOTES
7 Prints out the total amount due per person including tip.'''

 Notes:

	The opening ''' have to be immediately before the first line to
avoid a blank line at the beginning.

 	The closing ''' have to be immediately after the last line to
avoid a newline at the end.

Concatenating Strings

Strings can be concatenated using the + operator.

Exercise: Combine a first name and last name with a space in the
middle.

 Solution 1:

1 first_name = 'Dmitri'
2 last_name = 'Hayward'
3 full_name = first_name + ' ' + last_name
4 print full_name

 Solution 2:

1 name = ''
2 name += 'Dmitri'
3 name += ' '
4 name += 'Hayward'
5 print name

 Notes:

	We could have written name += 'Dmitri' as name = name + 'Dmitri'
as well.

 	The assignment operator += for strings means modify the variable
on the left hand side by appending the expression on the right hand
side to it.

Converting Between Numbers and Strings

Exercise: Convert a string "43.0" to a floating-point number.

 Solution:

1 amount_string = "43.0"
2 amount = float(amount_string)

Exercise: Convert a string "3" to an integer.

 Solution:

1 people_string = "3"
2 people = int(people_string)

Exercise: Convert a number 14.33 to a string.

 Solution:

1 amount_per_person = 14.33
2 amount_per_person_string = str(14.33)

 Notes:

	The function int converts all data types to integers.

 	Similarly, the function float converts its input to floating-point
number.

 	And the function str convert any data type to a string.

Exercise: Check what happens if you call float("hello").

String Formatting

Exercise: Write a program that divides a restaurant check of $43
between 3 friends. Print the answer formatted nicely with a dollar
sign.

 Solution:

1 persons = 3
2 amount = 43.0
3 amount_per_person = amount / persons
4 print "Amount per person: ${0}".format(amount_per_person)

 Notes:

	The .format function is applied to a string and returns a string
which is printed by print.

 	We could have saved it as a variable as well.

1 output = "Amount per person: ${0}".format(amount_per_person)
2 print output

Exercise: Trim the amount to two decimal places.

 Solution:

1 persons = 3
2 amount = 43.0
3 amount_per_person = amount / persons
4 print "Amount per person: ${0:.2f}".format(amount_per_person)

Exercise: What will be the output of these format strings?

1 print "{0}, {1}, {2}".format("a", "b", "c")
2 print "{1}, {2}, {0}".format("a", "b", "c")
3 print "{2}, {2}, {2}".format("a", "b", "c")

 Solution:

1 a, b, c
2 b, c, a
3 c, c, c

 Notes:

	The number in the parentheses refers to the position of the argument
of format.

 	You can use an argument as many times as you want. And in any order.

Printf Formatting

Exercise: Write a program that divides a restaurant check of $43
between 3 friends. Print the answer formatted nicely with a dollar
sign.

 Solution:

1 persons = 3
2 amount = 43.0
3 amount_per_person = amount / persons
4 print "Amount per person: %.2f" % (amount_per_person)

 Notes:

	The % operator is like the format function, except it uses
traditional C printf format syntax.

 	This is deprecated in Python 3.0 and format is the preferred way
of formatting output.

 	However, this is commonly used and you will see this in code often.

Reading Input

Exercise: Write a program that asks a user for his name and then
says hello to him or her.

 Solution:

1 import readline
2 user_name = raw_input('What is your name? ')
3 print 'Hello, {0}!'.format(user_name)

 Notes:

	You can put import readline at the top of the file. This line
enables Unix readline editing of the input.

 	In Python 3.0 raw_input has been renamed to input.

Population Calculator

Exercise: Estimate the population of California in 2021. The
population in 2012 was 38,000,000 and the growth rate was 1%. The
population can be estimated as

1 pop = pop_initial * (1 + growth_rate)**years

Here years is the number of years since 2012, pop_initial is the
population in 2012.

 Solution:

1 pop_initial = 38 * 1000 * 1000
2 year_initial = 2012
3 year_final = 2021
4 year_count = year_final - year_initial
5 pop_rate = 0.01
6 pop_final = pop_initial * ((1 + pop_rate) ** year_count)
7 print "The population of California in year {0} will be {1:,.0f}".format(
8 year_final, pop_final)

 Notes:

	{1:,.0f} prints a floating point number with zero decimal places
and with commas.

Exercise: Are the parentheses around (1 + $pop_rate) **
$year_count required?

 Solution:

	Precedence from higher to lower is: ** * / + -

 	So strictly parentheses are not needed.

 	However, it is safer to use parentheses and not guess precendence if
it’s not clear.

Exercise: Generalize this program to take any year as input.

Functions

Calling Functions

Exercise: Write a program that throws a dice.

 Solution 1:

1 import random
2 dice = random.randint(1,6)
3 print 'The dice was {0}'.format(dice)

 Solution 2:

1 from random import *
2 dice = randint(1,6)
3 print 'The dice was {0}'.format(dice)

 Solution 3:

1 import random as r
2 dice = r.randint(1,6)
3 print 'The dice was {0}'.format(dice)

 Notes:

	import pulls in functions from other packages.

 	Besides built-in functions, all functions and classes require
import.

 	Usually import is put at the beginning of the file, but it can
occur anywhere before the function call.

 	import random imports functions and variables into the random
namespace.

 	from random import * imports functions and variables into the
current namespace.

 	import random as r imports functions and variables into the
namespace r. This is useful if you want to abbreviate a long
namespace name.

Defining Functions

Exercise: Write a function that takes a name and returns a
greeting, and then call it.

 Solution:

 1 name = 'Jim'
 2
 3 def greet(name):
 4 greeting = "Hello, " + name + "!"
 5 return greeting
 6
 7 print greet(name)
 8 print greet('Dmitri')
 9 print greet('Alice')
10 print greet('Jim')

 Notes:

	The indentation is important. Python determines where the function
ends based on the indentation.

 	The function parameter name contains a copy of the value that is
passed into the function call. If you modify name in the function
that will not affect the caller’s variable value.

 	If a function has no body you can simply put pass in it.

 	Functions cannot be called before they are defined.

Exercise: Write two functions. The first converts Celsius to
Fahrenheit. The second converts Fahrenheit to Celsius.

 Solution:

1 def c2f(c):
2 f = (c * 9./5.) + 32.
3 return f
4
5 def f2c(f):
6 c = (f - 32.) * 5./9.
7 return c

 Notes:

	All variables introduced in the function for example f and c
disappear as soon as the function exits.

 	They do not have any connection to variables of the same name
outside the function.

Default Argument Values

Exercise: Create a tip calculator function that assumes a default
tip rate of 15%.

 Solution:

1 def calculate_tip(amount, tip_rate = 0.15):
2 tip = amount * float(tip_rate)
3 return tip
4
5 print calculate_tip(10, 0.20)
6 print calculate_tip(10, 0.15)
7 print calculate_tip(10)

Keyword Arguments

Exercise: Create a tip calculator function that calculates the
total amount per person including tip. It assumes a default tip rate
of 15% and assumes that by default there is only one person.

 Solution:

 1 def calculate_tip(amount, persons=1, tip_rate=0.15):
 2 tip = amount * float(tip_rate)
 3 amount += tip
 4 amount_per_person = amount / persons
 5 return amount_per_person
 6
 7 print calculate_tip(43, 3, 0.15)
 8 print calculate_tip(43, persons=3, tip_rate=0.20)
 9 print calculate_tip(amount=43, persons=3, tip_rate=0.20)
10 print calculate_tip(amount=43, tip_rate=0.20)
11 print calculate_tip(amount=43, tip_rate=0.20, persons=3)
12 print calculate_tip(tip_rate=0.20, persons=3, amount=43)

 Notes:

	You can combine position arguments and keyword arguments.

 	However, once you start using keywords arguments you cannot go back
to positional arguments in that function call.

Multiple Return Values

Exercise: Write a function that prompts the user for amount,
people, and tip rate, and then returns all three values.

Solution 1:

1 def get_input():
2 amount = float(raw_input('Amount: '))
3 people = int(raw_input('People: '))
4 tip_rate = float(raw_input('Tip Rate: '))
5 return amount, people, tip_rate
6
7 amount, people, tip_rate = get_input()
8
9 print amount, people, tip_rate

 Solution 2:

1 def get_input():
2 amount = float(raw_input('Amount: '))
3 people = int(raw_input('People: '))
4 tip_rate = float(raw_input('Tip Rate: '))
5 return (amount, people, tip_rate)
6
7 (amount, people, tip_rate) = get_input()
8
9 print amount, people, tip_rate

 Notes:

	In effect the two solutions are equivalent.

 	In both cases the three variables amount, people, and tip_rate
will get the values the user entered.

 	Under the hood Solution 1 returns a tuple. Solution 2 makes that
explicit by using the tuple notation. We will discuss tuples in a
future section.

 	Solution 1 is more idiomatic and is commonly used in Python code.

Scoping Rules

Python’s scoping rules can be remembered using this mneumonic: LEGB.

 	Scope
 	Meaning

 	Local
 	Defined in the current def

 	Enclosed
 	Defined in the enclosing def

 	Global
 	Defined in the module

 	Builtin
 	Python builtin

Note that this means that you can override builtin variables.

Exercise: Redefine raw_input to throw an exception.

 Solution:

1 def raw_input(message):
2 raise Exception(
3 "raw_input: not implemented")
4
5 name = raw_input("What is your name? ")
6 print "Hello " + name + "!"

Notes:

	When a variable is read it is looked up first in the local scope,
and then in enclosed, then global, then builtin. If it is not found
in any of them an error is raised.

 	When a variable is assigned to it becomes attached to the scope
where the assignment happens.

 	A more local variable can hide a less local variable within its
scope.

 	New scopes are introduced in function definitions.

 	In general a function can read the variables defined in outer
scopes, but cannot write to them.

Globals

Exercise: Define a module variable using VERBOSE = True. Then
reset it to False in a function called disableVerbose().

 Solution:

1 VERBOSE = True
2
3 def disableVerbose():
4 global VERBOSE
5 VERBOSE = False
6
7 disableVerbose()
8 print 'Verbose: ' + str(VERBOSE)

 Notes:

	The global keyword puts variables in the module or global scope
within the scope in which it is used.

 	Without the global keyword the VERBOSE inside disableVerbose
will be redefined as a local variable, and setting it to False
will have no effect on the VERBOSE in the global scope.

 	If global is used in the module or global scope it has no effect.

Creating Libraries of Functions

Exercise: Create a util.py file and then import it into your
program.

 Solution:

In util.py, type:

1 def greet():
2 print "Hello, world"

In your Python file type:

1 import util
2 util.greet()

Notes:

If the file is not in the same directory add these lines first.

1 import sys
2 dir = '/path/to/dir-containing-file'
3 sys.path.append(dir)

Objects

Interacting with Objects

How do you interact with objects?

	In Python everything is an object.

 	Here is how you interact with objects.

1 obj.method(arg1, arg2, arg3)

 	Every object has methods on it, which are like functions, except
they are specialized to that object.

 	For example, a car and a computer both have a start function, but
they mean specific things for that object.

Why is the point of all this?

	Objects allow the code to be modular and more organized.

 	Each part of the system only knows about itself.

 	Objects are introverts.

 	So changes to an object’s insides are less likely to break the
system.

Exercise: Look at the string functions on the Python console and
then find a way to uppercase a string. You can find the functions for
an object using the dir(obj) function.

Exercise: Find out if a string ends with a question mark.

Exercise: Find the format function on the string.

OEBPS/images/leanpub_tip.png

OEBPS/images/leanpub_question.png

OEBPS/images/leanpub_exercise.png

OEBPS/images/leanpub_leanpub_logo.png
Leanpub

OEBPS/images/leanpub_information.png
1

OEBPS/images/leanpub_warning.png

OEBPS/images/leanpub_discussion.png

OEBPS/images/leanpub_error.png

OEBPS/images/leanpub-logo.png
Leanpub
EYy—33

OEBPS/images/title_page.jpg
Quick Guide To Python

Learn Python
Programming

Through Real Examples

Asim Jalis

Step-by-Step Guide

