

Learn Perl Programming
Through Real Examples

Asim Jalis

This book is for sale at http://leanpub.com/learnperl

This version was published on 2013-02-18

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and
many iterations to get reader feedback, pivot until you have the right book and build traction once
you do.

©2012 - 2013 Asim Jalis

http://leanpub.com/learnperl
http://leanpub.com
http://leanpub.com/manifesto

Tweet This Book!
Please help Asim Jalis by spreading the word about this book on Twitter!

The suggested hashtag for this book is #learnperl.

Find out what other people are saying about the book by clicking on this link to search for this
hashtag on Twitter:

https://twitter.com/search/#learnperl

http://twitter.com
https://twitter.com/search/#learnperl
https://twitter.com/search/#learnperl

To my parents.

Contents

Preface i

Who should read this book? . i

Why was this book written? . i

How is this book different from other books? . i

Who is the author? . i

How should this book be used? . ii

Final words . ii

1 Introduction 1

1.1 What is Perl . 1

1.2 Perl Resources . 1

1.3 Installing Perl . 1

1.4 Perl Scripts . 2

1.5 Perl BAT Files . 2

1.6 Perl Documentation . 3

2 Perl Data Types 5

2.1 Scalars . 5

2.2 Numeric Scalars . 5

2.3 String Scalars . 6

2.4 Perl One-Liners . 7

2.5 Scalar Variables . 7

2.6 Arithmetic Operators . 8

2.7 Assignment Operators . 9

2.8 Increment/Decrement Operators . 9

2.9 String Operators . 11

2.10 Unary Operators . 13

2.11 Reading Input . 13

2.12 Population Calculator . 14

CONTENTS

3 Control Flow 16

3.1 Using if, elsif, else . 16

3.2 Relational Operators . 17

3.3 Ternary Operator: $a ? $b : $c . 17

3.4 Falseness . 18

3.5 Logical Operators . 18

3.6 Short Form if . 19

3.7 Looping with while and for . 19

Preface
Who should read this book?

This book targets people who want to learn Perl.

At the end of this book you will be able to:

• Write Perl programs
• Take existing Perl programs and modify them to fit your needs
• Find useful Perl modules on CPAN¹ and use them in your code
• Add Perl to your resumÃ©, and apply for Perl jobs

Why was this book written?

This book evolved out of a course on Perl programming² that I teach in the Bay Area. The
engagement level in the class peaks when we write real code.

This book draws on the same energy: We are going to learn by writing code.

This book is dedicated to people who know the thrill of automating tedious tasks, who like making
the computer do their work for them, who like getting more done by working smarter.

How is this book different from other books?

This book is written in a pull style. Each new idea is motivated by a question or a problem. The
information then answers the question and solves the problem. This makes the book more like a
conversation or a murder mystery than a lecture. This book will interact with you and make you
think.

Who is the author?

Asim Jalis has worked as a software developer at Microsoft, Hewlett-Packard, and Salesforce. He is
a software consultant and instructor in San Francisco, and a CPAN author³.

¹http://search.cpan.org
²http://metaprose.com
³http://search.cpan.org/~asimjalis

i

http://search.cpan.org
http://metaprose.com
http://search.cpan.org/~asimjalis
http://search.cpan.org
http://metaprose.com
http://search.cpan.org/~asimjalis

Preface ii

How should this book be used?

This book is highly hands-on and exercise-based. To get the most out of it I recommend firing up
your favorite editor and typing out and running all the examples. Learning happens when a person
hand-writes the code, makes mistakes, gets stuck, and then experiences the sweet joy of success.
Cutting-and-pasting shortcircuits that process.

I recommend typing out each example and then looking at the book for what to pay attention to
and for concepts.

Final words

Perl is an indispensable tool for people in IT. Any time you are faced with a mindless repetitive task
chances are you can use Perl to automate it. This book will help make Perl an indispensable part of
your tool set.

Asim Jalis
February 17, 2013

1 Introduction
1.1 What is Perl

What is Perl?

• Perl is a scripting language.
• Fast edit-compile-run cycle.
• Fast, interactive, programming experience.
• Fast!!—ack in Perl is faster than grep in C. (You can download ack from http://betterthangrep.
com.)

• Great for writing quick scripts, that over time evolve into big programs.
• Useful for automating sysadmin tasks, builds, web sites.
• Ships with Mac and Unix machines by default. Easy to install. Everywhere.

1.2 Perl Resources

What are some useful Perl resources?

• Perl CPAN
http://search.cpan.org

• Tutorials
http://learn.perl.org/tutorials

• Video Tutorials
http://showmedo.com/videotutorials/series?name=perlDevijverPerlIntroSeries

1.3 Installing Perl

Exercise: Install Perl.

Solution:

• On Windows install Perl from ActiveState.
http://www.activestate.com/activeperl/downloads

• On Mac Perl comes preinstalled.
• Verify that you have perl.

1

http://betterthangrep.com
http://betterthangrep.com
http://search.cpan.org
http://learn.perl.org/tutorials
http://showmedo.com/videotutorials/series?name=perlDevijverPerlIntroSeries
http://www.activestate.com/activeperl/downloads

Introduction 2

perl -v

1.4 Perl Scripts

Exercise: Write a script that prints Hello, world.

Solution:

• Save this in a text file called hello.pl using an editor like NotePad++, or Sublime Text 2, or
TextPad.

#!/usr/bin/env perl

use strict;

print "Hello, world.\n";

• Type perl hello.pl to run it.
• Or type chmod 755 hello.pl and then type ./hello.pl to run it.

Notes:

• Perl is free-form. Whitespace is insignificant.
• Every statement ends with a semicolon.
• Parentheses are optional.
• print("Hello, world"); also works.

1.5 Perl BAT Files

Exercise: Create a Windows BAT file that prints hello world using Perl.

Solution:

• On Windows save this to file.bat and then you can run it from the command line.

Introduction 3

@echo off

perl.exe -w -x %~f0 %*

goto :EOF

#! -*- perl script start -*-

#line 5

print "Hello, world.\n";

• Or you can save Perl in file.pl and then run it directly through Perl. This works on all
systems.

perl file.pl

1.6 Perl Documentation

Exercise: Find the documentation for the print function.

Solution:

perldoc -f print

Exercise: Find the documentation for $_ variable.

Solution:

perldoc -v \$_

Exercise: Find the FAQ’s related to date

Solution:

perldoc -q date

Exercise: Find the list of all Perl man pages.

Solution:

perldoc perl

Exercise: Find the Perl tutorial for object-oriented programming.

Solution:

Introduction 4

perldoc perl

perldoc perlboot

Who is Larry Wall?

• Larry Wall¹ is the inventor and author of Perl.

What are the three principal virtues of a programmer?

• Laziness
• Impatience
• Hubris

What does PERL stand for?

• Practical Extraction and Reporting Language.
• Also, Pathologically Eclectic Rubbish Lister.

What does TMTOWTDI stand for?

• There’s More Than One Way To Do It.

¹http://upload.wikimedia.org/wikipedia/commons/b/b3/Larry_Wall_YAPC_2007.jpg

http://upload.wikimedia.org/wikipedia/commons/b/b3/Larry_Wall_YAPC_2007.jpg
http://upload.wikimedia.org/wikipedia/commons/b/b3/Larry_Wall_YAPC_2007.jpg

2 Perl Data Types
2.1 Scalars

Perl has string and numeric scalars.

#!/usr/bin/env perl

use strict;

print 1.234, "\n";

print "Hello, world", "\n";

Scalars can be assigned to variables.

#!/usr/bin/env perl

use strict;

my $x = 1234;

my $name = "John Smith";

2.2 Numeric Scalars

Exercise: Print one million.

Solution:

#!/usr/bin/env perl

use strict;

print 1000000, "\n";

print 1000000., "\n";

print 1000000.0, "\n";

print 1e6, "\n";

print 1.0e6, "\n";

print 1_000_000, "\n";

Exercise: Check if Perl distinguishes between floating-point numbers and integers.

Solution:

5

Perl Data Types 6

#!/usr/bin/env perl

use strict;

print 11 / 3, "\n"

2.3 String Scalars

Strings are marked by double-quotes or single-quotes.

#!/usr/bin/env perl

use strict;

print "Hello, world.\n";

print 'Hello, world.\n';

What’s the difference between single-quotes and double-quotes?

• Escape sequences like \n only work in double-quotes, not in single-quotes.

What other escape sequences are there?

Sequence Value

\n Newline
\r Carriage return
\t Tab
\b Backspace
\a Bell
\u Uppercase next character
\U Uppercase next word
\l Lowercase next character
\L Lowercase next word
\' Single-quote
\" Double-quote
\\ Backslash

How can I print Jim's Garage in a single-quoted string?

Perl Data Types 7

#!/usr/bin/env perl

use strict;

print 'Jim\'s Garage', "\n";

print q{Jim's Garage}, "\n";

print q[Jim's Garage], "\n";

print q(Jim's Garage), "\n";

print q|Jim's Garage|, "\n";

How can I print Larry "Tim Toady" Wall using a double-quoted string?

#!/usr/bin/env perl

use strict;

print "Larry \"Tim Toady\" Wall\n";

print qq{Larry "Tim Toady" Wall\n};

print qq[Larry "Tim Toady" Wall\n];

print qq(Larry "Tim Toady" Wall\n);

print qq|Larry "Tim Toady" Wall\n|;

2.4 Perl One-Liners

Exercise: Print Hello, world. on the command line.

Solution:

• On Unix:

perl -e 'print "Hello, world.\n"'

• On Windows:

perl -e "print qq|Hello, world\n|"

2.5 Scalar Variables

Exercise: Write a program that greets John Smith.

Solution:

Perl Data Types 8

#!/usr/bin/env perl

use strict;

my $first_name = "John";

my $last_name = "Smith";

print "Hello, $first_name $last_name\n"

Notes:

• Variable names are $ followed by a letter or underscore, followed by letters, underscores, or
numbers.

• Perl convention is to use snake_case rather than camelCase or PascalCase for variable names.
• Variables can be interpolated into strings as long as you use double-quotes (or qq).
• my declares the variable. Variable declarations are only checked when use strict; is enabled.
Leaving out use strict; is not recommended.

• The last line does not need a semicolon.

2.6 Arithmetic Operators

Exercise: If Jim earns $10/hour and he worked 35 hours this week, how much is he owed?

Solution:

#!/usr/bin/env perl

use strict;

my $hourly_rate = 10.0;

my $hours_worked = 35;

my $amount_owed = $hourly_rate * $hours_worked;

print "Jim is owed $amount_owed.\n";

Numeric scalars can be combined using standard arithmetic operations.

Expression Operation

$a + $b Adding $a and $b

$a - $b Subtracting $a from $b

$a * $b Multiplying $a and $b

$a / $b Dividing $a by $b

$a ** $b Raising $a to the power $b
$a % $b Remainder of dividing $a by $b

Perl Data Types 9

2.7 Assignment Operators

Exercise: Suppose Jim is already owed $400 from last week. How much should he be paid?

Solution:

#!/usr/bin/env perl

use strict;

my $amount_owed = 400;

my $hourly_rate = 10.0;

my $hours_worked = 35;

my $amount_owed += $hourly_rate * $hours_worked;

print "Jim is owed $amount_owed.\n";

The operator = assigns the value of the right to the left.

The operator += adds the value of the right to the left.

Assignment Meaning

$a = $b Save $b to $a

$a += $b Add $a to $b and save to $a

$a -= $b Subtract $b from $a and save to $a

$a *= $b Multiply $a and $b and save to $a

$a /= $b Divide $a by $b and save to $a

$a **= $b Raise $a to the power of $b and save to $a

$a %= $b Find the remainder of dividing $a by $b and save to $a

2.8 Increment/Decrement Operators

Exercise: Print the numbers 1 through 5.

Solution:

Perl Data Types 10

#!/usr/bin/env perl

use strict;

my $i = 1;

print "i = ", ++$i, "\n";

print "i = ", ++$i, "\n";

print "i = ", ++$i, "\n";

print "i = ", ++$i, "\n";

print "i = ", ++$i, "\n";

Exercise: Print the numbers 0 through 4.

Solution:

#!/usr/bin/env perl

use strict;

my $i = 1;

print "i = ", $i++, "\n";

print "i = ", $i++, "\n";

print "i = ", $i++, "\n";

print "i = ", $i++, "\n";

print "i = ", $i++, "\n";

What are the different ways of incrementing the value of $i?

$i = $i + 1;

$i += 1;

$i++;

++$i;

What will be the output of these two tests?

Perl Data Types 11

#!/usr/bin/env perl

use strict;

my $i;

print "Test 1\n";

$i = 0; print $i++, "\n" ; print $i, "\n" ;

print "Test 2\n";

$i = 0; print ++$i, "\n" ; print $i, "\n" ;

Notes:

• $i++ increments $i after returning its value.
• ++$i increments $i and then returns its value.

Exercise: Determine the output of these two tests.

Solution:

#!/usr/bin/env perl

use strict;

my $i;

print "Test 1\n";

$i = 0; print $i--, "\n" ; print $i, "\n" ;

print "Test 2\n";

$i = 0; print --$i, "\n" ; print $i, "\n" ;

Hints:

• $i-- decrements $i after returning its value.
• --$i decrements $i and then returns its value.

2.9 String Operators

Exercise: Write Happy Birthday, Dmitri! and draw 25 candles.

Solution:

Perl Data Types 12

#!/usr/bin/env perl

use strict;

my $name = 'Dmitri';

my $age = 29;

my $candle_flames = '.' x $age;

my $candle_sticks = '|' x $age;

print "Happy Birthday, " . $name . "!\n";

print "$candle_flames\n";

print "$candle_sticks\n";

Notes:

• The . operator concatenates strings.
• The x operator multiplies strings.
• '-' x 79 is useful for printing lines.
• They do no modify the values of their arguments. Only assignment modifies values.
• Variable interpolation replaces ${name} inside the string with its value. The braces are
optional.

Exercise: What will be the output of this program?

Solution:

#!/usr/bin/env perl

use strict;

my $x = 'hello';

$x .= ' world';

print $x, "\n";

Exercise: What will be the output of this program?

Solution:

Perl Data Types 13

#!/usr/bin/env perl

use strict;

my $x = 'a';

$x x= 10;

print $x, "\n";

2.10 Unary Operators

Exercise: Fix the capitalization of "MORT" and tell him his balance is -25.

Solution:

#!/usr/bin/env perl

use strict;

my $name = "MORT";

$name = ucfirst(lc($name));

my $balance = -25;

print "Hello ${name}.\n";

print "Your balance is ${balance}!\n";

Unary operators do not modify the value of their argument.

Operator Result

uc($a) Uppercase $a
ucfirst($a) Uppercase first letter of $a
lc($a) Lowercase $a
lcfirst($a) Lowercase first letter of $a
int($a) Integer part of $a
length($a) Length of $a as a string
cos($a) Cosine of $a
rand($a) Random decimal number from 0 to less than $a

2.11 Reading Input

Exercise: Prompt the user for name, cost per gallon of gas and gallons of gas, and tell them the total
amount they owe.

Solution:

Perl Data Types 14

#!/usr/bin/env perl

use strict;

print "Name: ";

my $name = <STDIN>;

chomp $name;

print "Price per gallon: ";

my $price_per_gallon = <STDIN>;

print "Gallons: ";

my $gallons = <>;

my $total_amount = $price_per_gallon * $gallons;

print "Hello ${name}!\n";

print "Total amount due: \$${total_amount}\n";

Notes:

• <STDIN> waits until the user enters a newline and returns the line.
• <> is an abbreviation for <STDIN>.
• chomp removes the newline from the end of the input.
• Unlike other unary operators chomp has an effect on its input.
• The $ character in \$${total_amount} is escaped.

2.12 Population Calculator

Exercise: Estimate the population of California in 2021. The population in 2012 was 38,000,000 and
the growth rate was 1%. The population can be estimated as $P = P0 (1 + R)ˆT$, where T is the
number of years since 2012, $P0$ is the population in 2012, R is the population growth rate.

Solution:

#!/usr/bin/env perl

use strict;

my $pop_initial = 38_000_000;

my $year_initial = 2012;

my $year_final = 2021;

my $year_count = $year_final - $year_initial;

my $pop_rate = 0.01;

my $pop_final =

$pop_initial * ((1 + $pop_rate) ** $year_count);

print "The population of California " .

"in $year_final will be $pop_final.\n";

Perl Data Types 15

Exercise: Are the parentheses around (1 + $pop_rate) ** $year_count required?

Solution:

• Look at perldoc perop and look up operator precedence to verify they are not required.

It’s safer to use parentheses and not guess precendence if it’s not clear.

Associativity Precedence

nonassoc ++ --

right **

left * / % x

left + - .

left << >>

nonassoc named unary operators

nonassoc < > <= >= lt gt le ge

nonassoc == != <=> eq ne cmp ∼∼
left &

left ˆ

left &&

right ?:

right = += -= *= etc.

left , =>

nonassoc list operators (rightward)

right not

left and

left or xor

3 Control Flow
3.1 Using if, elsif, else

Exercise: Write a program that calculates a letter grade based on a student’s GPA.

Grade GPA Minimum

A 3.5
B 2.5
C 1.5
D 1.0
F 0.0

Solution:

#!/usr/bin/env perl

use strict;

print "Enter GPA: ";

my $gpa = <>;

my $grade = "";

if ($gpa >= 3.5) {

$grade = "A";

}

elsif ($gpa >= 2.5) {

$grade = "B";

}

elsif ($gpa >= 1.5) {

$grade = "C";

}

elsif ($gpa >= 1.0) {

$grade = "D";

}

else {

$grade = "F";

}

print "Final Grade: $grade\n";

Notes:

• The if/elsif/else construct represents a fork in the road.

16

Control Flow 17

• The program evaluates each condition and takes the first branch whose condition is true.
• If no condition is true then it takes the else clause.
• The elsif and the else are optional.
• So if no condition is true, and there is no else clause then it ignores the whole construct.

Why did we have to declare $grade before the if?

• Each block marked by curly braces defines a new scope. A variable defined in a block with
my disappears when the program exits the block.

3.2 Relational Operators

Here is a list of the numeric relational operators that can be used to compare numbers.

Numeric Relations Is True When

$a < $b $a is less than $b

$a <= $b $a is less than or equal to $b

$a > $b $a is great than $b

$a >= $b $a is great than or equal to $b

$a == $b $a is equal to $b

$a != $b $a is not equal to $b

Here is a list of the string relational operators that can be used to compare strings.

String Relations Is True When

$a eq $b $a is equal to $b

$a ne $b $a is not equal to $b

$a lt $b $a is less than $b

$a le $b $a is less than or equal to $b

$a gt $b $a is greater than $b

$a ge $b $a is greater than or equal to $b

With string relational operators “less than” implies earlier in dictionary order where the letters are
ordered using their ASCII codes. So a is less than b and A is less than a.

3.3 Ternary Operator: $a ? $b : $c

$a ? $b : $c. If $a is true, this evaluates to $b. Otherwise it evaluates to $c.

Exercise: Set $x to 0 or 1. Print "True" if it is true, and "False" if it is false.

Solution:

Control Flow 18

#!/usr/bin/env perl

use strict;

my $input = 1;

my $message = $input ? "x is True" : "x is False";

print "$message\n";

3.4 Falseness

Which values of scalars are false and which are true?

• 0, "", "0" are false.
• All representations of 0 are false. For example, 0.0, 0.0e+100, 00.00, 000_000.000
• All other scalars are true including "Hello", " ", "00".
• All string representations of 0 are false except "0". For example "0.0", "00", "0.0e+100".

Exercise: What will be the output of this program?

Solution:

#!/usr/bin/env perl

use strict;

my $a;

$a = 0; print $a ? "True\n" : "False\n";

$a = 0.0; print $a ? "True\n" : "False\n";

$a = ""; print $a ? "True\n" : "False\n";

$a = "0"; print $a ? "True\n" : "False\n";

$a = 1; print $a ? "True\n" : "False\n";

$a = -1; print $a ? "True\n" : "False\n";

$a = +1; print $a ? "True\n" : "False\n";

$a = 2; print $a ? "True\n" : "False\n";

$a = " "; print $a ? "True\n" : "False\n";

$a = "a"; print $a ? "True\n" : "False\n";

$a = "true"; print $a ? "True\n" : "False\n";

$a = "false"; print $a ? "True\n" : "False\n";

3.5 Logical Operators

Boolean values of true and false can be combined using logical operators.

Control Flow 19

Operator Alternative Is True When

$a && $b $a and $b $a is true and $b is true
$a || $b $a or $b $a is true or $b is true
!$a not $a $a is false

These operators short-circuit—the evaluation stops as soon as the outcome is clear.

Exercise: Write a program that greets user by name and uses the default name of "stranger" if the
user doesn’t provide one.

Solution:

#!/usr/bin/env perl

use strict;

my $name = <>;

chomp $name;

$name ||= "stranger";

print "Hello, $name.\n";

The ||= idiom is frequently used for default values. Consider $name = $name || "stranger". If
$name is not blank, it’s true, so the || short-circuits and $name is set to $name. Otherwise it is set to
"stranger".

3.6 Short Form if

Exercise: Print “You are the millionth customer!” for the millionth customer.

Solution:

#!/usr/bin/env perl

use strict;

my $customer = 1_000_000;

print "You are the millionth customer!" if $customer == 1_000_000;

When the if block has only one statement you can put the if and the condition after the statement.

3.7 Looping with while and for

Exercise: Pick a number from 1 to 10 and then prompt the user to guess it.

Solution:

Control Flow 20

#!/usr/bin/env perl

use strict;

my $number = int(rand(10)) + 1;

my $guess = -1;

print "I picked a number.\n";

while ($number != $guess) {

print "Guess what number I picked: ";

$guess = <>;

chomp $guess;

if ($number == $guess) {

print "Yes, you guessed right.\n";

}

else {

print "You were wrong. Try again.\n";

}

}

The program keeps running the code in the while block until the condition becomes false.

Exercise: Rewrite the program as an infinite loop. Terminate using last.

Solution:

#!/usr/bin/env perl

use strict;

my $number = int(rand(10)) + 1;

my $guess = -1;

print "I picked a number.\n";

while (1) {

print "Guess what number I picked: ";

$guess = <>;

chomp $guess;

if ($number == $guess) {

print "Yes, you guessed right.\n";

last;

}

else {

print "You were wrong. Try again.\n";

next;

}

}

Control Flow 21

Use last to break out of a loop early.

Use next to start from the start of the block again.

Exercise: Print the squares of the numbers from 0 through 19.

Solution:

#!/usr/bin/env perl

use strict;

my $i = 0;

while ($i < 20) {

my $square = $i ** 2;

print "square of $i = $square\n";

$i++;

}

Loops for going through sequences of numbers are so commonly used that there is a special construct
for it: the for loop.

#!/usr/bin/env perl

use strict;

for (my $i = 0 ; $i < 20 ; $i++) {

my $square = $i ** 2;

print "square of $i = $square\n";

}

Exercise: Write a program that finds all the numbers from 0 to 100 that have an integer square root.

Exercise: Write a program that repeatedly picks a number and then asks a user to guess it. The
program terminates when you user types q.

	Contents
	Preface
	Who should read this book?
	Why was this book written?
	How is this book different from other books?
	Who is the author?
	How should this book be used?
	Final words

	Introduction
	What is Perl
	Perl Resources
	Installing Perl
	Perl Scripts
	Perl BAT Files
	Perl Documentation

	Perl Data Types
	Scalars
	Numeric Scalars
	String Scalars
	Perl One-Liners
	Scalar Variables
	Arithmetic Operators
	Assignment Operators
	Increment/Decrement Operators
	String Operators
	Unary Operators
	Reading Input
	Population Calculator

	Control Flow
	Using if, elsif, else
	Relational Operators
	Ternary Operator: $a ? $b : $c
	Falseness
	Logical Operators
	Short Form if
	Looping with while and for

