

[image: Learn Perl Programming]

 Learn Perl Programming

 Through Real Examples

 Asim Jalis

 This book is for sale at http://leanpub.com/learnperl

 This version was published on 2013-02-18

 This is a [Leanpub](http://leanpub.com) book. Leanpub empowers authors and publishers with the Lean Publishing process. [Lean Publishing](http://leanpub.com/manifesto) is the act of publishing an in-progress ebook using lightweight tools and many iterations to get reader feedback, pivot until you have the right book and build traction once you do.

 [image: publisher's logo]

 2012 - 2013 Asim Jalis

To my parents.

Table of Contents

 	Preface

	Who should read this book?

	Why was this book written?

	How is this book different from other books?

	Who is the author?

	How should this book be used?

	Final words

	1 Introduction

	1.1 What is Perl

	1.2 Perl Resources

	1.3 Installing Perl

	1.4 Perl Scripts

	1.5 Perl BAT Files

	1.6 Perl Documentation

	2 Perl Data Types

	2.1 Scalars

	2.2 Numeric Scalars

	2.3 String Scalars

	2.4 Perl One-Liners

	2.5 Scalar Variables

	2.6 Arithmetic Operators

	2.7 Assignment Operators

	2.8 Increment/Decrement Operators

	2.9 String Operators

	2.10 Unary Operators

	2.11 Reading Input

	2.12 Population Calculator

	3 Control Flow

	3.1 Using if, elsif, else

	3.2 Relational Operators

	3.3 Ternary Operator: $a ? $b : $c

	3.4 Falseness

	3.5 Logical Operators

	3.6 Short Form if

	3.7 Looping with while and for

Preface

Who should read this book?

This book targets people who want to learn Perl.

At the end of this book you will be able to:

	Write Perl programs

 	Take existing Perl programs and modify them to fit your needs

 	Find useful Perl modules on CPAN and use them in your code

 	Add Perl to your resumÃ©, and apply for Perl jobs

Why was this book written?

This book evolved out of a course on Perl programming
that I teach in the Bay Area. The engagement level in the class peaks
when we write real code.

This book draws on the same energy: We are going to learn by writing
code.

This book is dedicated to people who know the thrill of automating
tedious tasks, who like making the computer do their work for them,
who like getting more done by working smarter.

How is this book different from other books?

This book is written in a pull style. Each new idea is motivated by
a question or a problem. The information then answers the question and
solves the problem. This makes the book more like a conversation or a
murder mystery than a lecture. This book will interact with you and
make you think.

Who is the author?

Asim Jalis has worked as a software developer at Microsoft,
Hewlett-Packard, and Salesforce. He is a software consultant and
instructor in San Francisco, and a CPAN author.

How should this book be used?

This book is highly hands-on and exercise-based. To get the most out
of it I recommend firing up your favorite editor and typing out and
running all the examples. Learning happens when a person hand-writes
the code, makes mistakes, gets stuck, and then experiences the sweet
joy of success. Cutting-and-pasting shortcircuits that process.

I recommend typing out each example and then looking at the book for
what to pay attention to and for concepts.

Final words

Perl is an indispensable tool for people in IT. Any time you are faced
with a mindless repetitive task chances are you can use Perl to
automate it. This book will help make Perl an indispensable part of
your tool set.

Asim Jalis

February 17, 2013

1 Introduction

1.1 What is Perl

What is Perl?

	Perl is a scripting language.

 	Fast edit-compile-run cycle.

 	Fast, interactive, programming experience.

 	Fast!!—ack in Perl is faster than grep in C. (You can download
ack from http://betterthangrep.com.)

 	Great for writing quick scripts, that over time evolve into big
programs.

 	Useful for automating sysadmin tasks, builds, web sites.

 	Ships with Mac and Unix machines by default. Easy to install.
Everywhere.

1.2 Perl Resources

What are some useful Perl resources?

	Perl CPAN
http://search.cpan.org

 	Tutorials
http://learn.perl.org/tutorials

 	Video Tutorials
http://showmedo.com/videotutorials/series?name=perlDevijverPerlIntroSeries

1.3 Installing Perl

Exercise: Install Perl.

 Solution:

	On Windows install Perl from ActiveState.
http://www.activestate.com/activeperl/downloads

 	On Mac Perl comes preinstalled.

 	Verify that you have perl.

 perl -v

1.4 Perl Scripts

Exercise: Write a script that prints Hello, world.

 Solution:

	Save this in a text file called hello.pl using an editor like
NotePad++, or Sublime Text 2, or TextPad.

 #!/usr/bin/env perl
 use strict;

 print "Hello, world.\n";

	Type perl hello.pl to run it.

 	Or type chmod 755 hello.pl and then type ./hello.pl to run it.

 Notes:

	Perl is free-form. Whitespace is insignificant.

 	Every statement ends with a semicolon.

 	Parentheses are optional.

 	print("Hello, world"); also works.

1.5 Perl BAT Files

Exercise: Create a Windows BAT file that prints hello world using
Perl.

 Solution:

	On Windows save this to file.bat and then you can run it from
the command line.

 @echo off
 perl.exe -w -x %~f0 %*
 goto :EOF
 #! -*- perl script start -*-
 #line 5

 print "Hello, world.\n";

	Or you can save Perl in file.pl and then run it directly through
Perl. This works on all systems.

 perl file.pl

1.6 Perl Documentation

Exercise: Find the documentation for the print function.

 Solution:

perldoc -f print

Exercise: Find the documentation for $_ variable.

 Solution:

perldoc -v \$_

Exercise: Find the FAQ’s related to date

 Solution:

perldoc -q date

Exercise: Find the list of all Perl man pages.

 Solution:

perldoc perl

Exercise: Find the Perl tutorial for object-oriented programming.

 Solution:

perldoc perl
perldoc perlboot

Who is Larry Wall?

	Larry Wall
is the inventor and author of Perl.

What are the three principal virtues of a programmer?

	Laziness

 	Impatience

 	Hubris

What does PERL stand for?

	Practical Extraction and Reporting Language.

 	Also, Pathologically Eclectic Rubbish Lister.

What does TMTOWTDI stand for?

	There’s More Than One Way To Do It.

2 Perl Data Types

2.1 Scalars

Perl has string and numeric scalars.

#!/usr/bin/env perl
use strict;

print 1.234, "\n";
print "Hello, world", "\n";

Scalars can be assigned to variables.

#!/usr/bin/env perl
use strict;

my $x = 1234;
my $name = "John Smith";

2.2 Numeric Scalars

Exercise: Print one million.

 Solution:

#!/usr/bin/env perl
use strict;

print 1000000, "\n";
print 1000000., "\n";
print 1000000.0, "\n";
print 1e6, "\n";
print 1.0e6, "\n";
print 1_000_000, "\n";

Exercise: Check if Perl distinguishes between floating-point numbers
and integers.

 Solution:

#!/usr/bin/env perl
use strict;

print 11 / 3, "\n"

2.3 String Scalars

Strings are marked by double-quotes or single-quotes.

#!/usr/bin/env perl
use strict;

print "Hello, world.\n";
print 'Hello, world.\n';

What’s the difference between single-quotes and double-quotes?

	Escape sequences like \n only work in double-quotes, not in
single-quotes.

What other escape sequences are there?

 	Sequence
 	Value

 	\n
 	Newline

 	\r
 	Carriage return

 	\t
 	Tab

 	\b
 	Backspace

 	\a
 	Bell

 	\u
 	Uppercase next character

 	\U
 	Uppercase next word

 	\l
 	Lowercase next character

 	\L
 	Lowercase next word

 	\'
 	Single-quote

 	\"
 	Double-quote

 	\\
 	Backslash

How can I print Jim's Garage in a single-quoted string?

#!/usr/bin/env perl
use strict;

print 'Jim\'s Garage', "\n";
print q{Jim's Garage}, "\n";
print q[Jim's Garage], "\n";
print q(Jim's Garage), "\n";
print q|Jim's Garage|, "\n";

How can I print Larry "Tim Toady" Wall using a double-quoted string?

#!/usr/bin/env perl
use strict;

print "Larry \"Tim Toady\" Wall\n";
print qq{Larry "Tim Toady" Wall\n};
print qq[Larry "Tim Toady" Wall\n];
print qq(Larry "Tim Toady" Wall\n);
print qq|Larry "Tim Toady" Wall\n|;

2.4 Perl One-Liners

Exercise: Print Hello, world. on the command line.

 Solution:

	On Unix:

 perl -e 'print "Hello, world.\n"'

 	On Windows:

 perl -e "print qq|Hello, world\n|"

2.5 Scalar Variables

Exercise: Write a program that greets John Smith.

 Solution:

#!/usr/bin/env perl
use strict;

my $first_name = "John";
my $last_name = "Smith";
print "Hello, $first_name $last_name\n"

 Notes:

	Variable names are $ followed by a letter or underscore, followed
by letters, underscores, or numbers.

 	Perl convention is to use snake_case rather than camelCase or
PascalCase for variable names.

 	Variables can be interpolated into strings as long as you use
double-quotes (or qq).

 	my declares the variable. Variable declarations are only checked
when use strict; is enabled. Leaving out use strict; is not
recommended.

 	The last line does not need a semicolon.

2.6 Arithmetic Operators

Exercise: If Jim earns $10/hour and he worked 35 hours this week, how
much is he owed?

 Solution:

#!/usr/bin/env perl
use strict;

my $hourly_rate = 10.0;
my $hours_worked = 35;
my $amount_owed = $hourly_rate * $hours_worked;
print "Jim is owed $amount_owed.\n";

Numeric scalars can be combined using standard arithmetic operations.

 	Expression
 	Operation

 	$a + $b
 	Adding $a and $b

 	$a - $b
 	Subtracting $a from $b

 	$a * $b
 	Multiplying $a and $b

 	$a / $b
 	Dividing $a by $b

 	$a ** $b
 	Raising $a to the power $b

 	$a % $b
 	Remainder of dividing $a by $b

2.7 Assignment Operators

Exercise: Suppose Jim is already owed $400 from last week. How much
should he be paid?

 Solution:

#!/usr/bin/env perl
use strict;

my $amount_owed = 400;
my $hourly_rate = 10.0;
my $hours_worked = 35;
my $amount_owed += $hourly_rate * $hours_worked;
print "Jim is owed $amount_owed.\n";

The operator = assigns the value of the right to the left.

The operator += adds the value of the right to the left.

 	Assignment
 	Meaning

 	$a = $b
 	Save $b to $a

 	$a += $b
 	Add $a to $b and save to $a

 	$a -= $b
 	Subtract $b from $a and save to $a

 	$a *= $b
 	Multiply $a and $b and save to $a

 	$a /= $b
 	Divide $a by $b and save to $a

 	$a **= $b
 	Raise $a to the power of $b and save to $a

 	$a %= $b
 	Find the remainder of dividing $a by $b and save to $a

2.8 Increment/Decrement Operators

Exercise: Print the numbers 1 through 5.

 Solution:

#!/usr/bin/env perl
use strict;

my $i = 1;
print "i = ", ++$i, "\n";
print "i = ", ++$i, "\n";
print "i = ", ++$i, "\n";
print "i = ", ++$i, "\n";
print "i = ", ++$i, "\n";

Exercise: Print the numbers 0 through 4.

 Solution:

#!/usr/bin/env perl
use strict;

my $i = 1;
print "i = ", $i++, "\n";
print "i = ", $i++, "\n";
print "i = ", $i++, "\n";
print "i = ", $i++, "\n";
print "i = ", $i++, "\n";

What are the different ways of incrementing the value of $i?

$i = $i + 1;
$i += 1;
$i++;
++$i;

What will be the output of these two tests?

#!/usr/bin/env perl
use strict;

my $i;
print "Test 1\n";
$i = 0; print $i++, "\n" ; print $i, "\n" ;
print "Test 2\n";
$i = 0; print ++$i, "\n" ; print $i, "\n" ;

 Notes:

	$i++ increments $i after returning its value.

 	++$i increments $i and then returns its value.

Exercise: Determine the output of these two tests.

 Solution:

#!/usr/bin/env perl
use strict;

my $i;
print "Test 1\n";
$i = 0; print $i--, "\n" ; print $i, "\n" ;
print "Test 2\n";
$i = 0; print --$i, "\n" ; print $i, "\n" ;

 Hints:

	$i-- decrements $i after returning its value.

 	--$i decrements $i and then returns its value.

2.9 String Operators

Exercise: Write Happy Birthday, Dmitri! and draw 25 candles.

 Solution:

#!/usr/bin/env perl
use strict;

my $name = 'Dmitri';
my $age = 29;
my $candle_flames = '.' x $age;
my $candle_sticks = '|' x $age;

print "Happy Birthday, " . $name . "!\n";
print "$candle_flames\n";
print "$candle_sticks\n";

 Notes:

	The . operator concatenates strings.

 	The x operator multiplies strings.

 	'-' x 79 is useful for printing lines.

 	They do no modify the values of their arguments. Only assignment
modifies values.

 	Variable interpolation replaces ${name} inside the string with
its value. The braces are optional.

Exercise: What will be the output of this program?

 Solution:

#!/usr/bin/env perl
use strict;

my $x = 'hello';
$x .= ' world';
print $x, "\n";

Exercise: What will be the output of this program?

 Solution:

#!/usr/bin/env perl
use strict;

my $x = 'a';
$x x= 10;
print $x, "\n";

2.10 Unary Operators

Exercise: Fix the capitalization of "MORT" and tell him his balance
is -25.

 Solution:

#!/usr/bin/env perl
use strict;

my $name = "MORT";
$name = ucfirst(lc($name));
my $balance = -25;
print "Hello ${name}.\n";
print "Your balance is ${balance}!\n";

Unary operators do not modify the value of their argument.

 	Operator
 	Result

 	uc($a)
 	Uppercase $a

 	ucfirst($a)
 	Uppercase first letter of $a

 	lc($a)
 	Lowercase $a

 	lcfirst($a)
 	Lowercase first letter of $a

 	int($a)
 	Integer part of $a

 	length($a)
 	Length of $a as a string

 	cos($a)
 	Cosine of $a

 	rand($a)
 	Random decimal number from 0 to less than $a

2.11 Reading Input

Exercise: Prompt the user for name, cost per gallon of gas and gallons
of gas, and tell them the total amount they owe.

 Solution:

#!/usr/bin/env perl
use strict;

print "Name: ";
my $name = <STDIN>;
chomp $name;
print "Price per gallon: ";
my $price_per_gallon = <STDIN>;
print "Gallons: ";
my $gallons = <>;
my $total_amount = $price_per_gallon * $gallons;
print "Hello ${name}!\n";
print "Total amount due: \$${total_amount}\n";

 Notes:

	<STDIN> waits until the user enters a newline and returns the line.

 	<> is an abbreviation for <STDIN>.

 	chomp removes the newline from the end of the input.

 	Unlike other unary operators chomp has an effect on its input.

 	The $ character in \$${total_amount} is escaped.

2.12 Population Calculator

Exercise: Estimate the population of California in 2021. The
population in 2012 was 38,000,000 and the growth rate was 1%. The
population can be estimated as $P = P0 (1 + R)^T$, where T is the
number of years since 2012, $P0$ is the population in 2012, R
is the population growth rate.

 Solution:

#!/usr/bin/env perl
use strict;

my $pop_initial = 38_000_000;
my $year_initial = 2012;
my $year_final = 2021;
my $year_count = $year_final - $year_initial;
my $pop_rate = 0.01;
my $pop_final =
 $pop_initial * ((1 + $pop_rate) ** $year_count);
print "The population of California " .
 "in $year_final will be $pop_final.\n";

Exercise: Are the parentheses around (1 + $pop_rate) ** $year_count
required?

 Solution:

	Look at perldoc perop and look up operator precedence to
verify they are not required.

It’s safer to use parentheses and not guess precendence if it’s not
clear.

 	Associativity
 	Precedence

 	nonassoc
 	++ --

 	right
 	**

 	left
 	* / % x

 	left
 	+ - .

 	left
 	<< >>

 	nonassoc
 	named unary operators

 	nonassoc
 	< > <= >= lt gt le ge

 	nonassoc
 	== != <=> eq ne cmp ~~

 	left
 	&

 	left
 	^

 	left
 	&&

 	right
 	?:

 	right
 	= += -= *= etc.

 	left
 	, =>

 	nonassoc
 	list operators (rightward)

 	right
 	not

 	left
 	and

 	left
 	or xor

3 Control Flow

3.1 Using if, elsif, else

Exercise: Write a program that calculates a letter grade based on a
student’s GPA.

 	Grade
 	GPA Minimum

 	A
 	3.5

 	B
 	2.5

 	C
 	1.5

 	D
 	1.0

 	F
 	0.0

 Solution:

#!/usr/bin/env perl
use strict;

print "Enter GPA: ";
my $gpa = <>;
my $grade = "";
if ($gpa >= 3.5) {
 $grade = "A";
}
elsif ($gpa >= 2.5) {
 $grade = "B";
}
elsif ($gpa >= 1.5) {
 $grade = "C";
}
elsif ($gpa >= 1.0) {
 $grade = "D";
}
else {
 $grade = "F";
}
print "Final Grade: $grade\n";

 Notes:

	The if/elsif/else construct represents a fork in the road.

 	The program evaluates each condition and takes the first branch
whose condition is true.

 	If no condition is true then it takes the else clause.

 	The elsif and the else are optional.

 	So if no condition is true, and there is no else clause then it
ignores the whole construct.

Why did we have to declare $grade before the if?

	Each block marked by curly braces defines a new scope. A
variable defined in a block with my disappears when the
program exits the block.

3.2 Relational Operators

Here is a list of the numeric relational operators that can be used to
compare numbers.

 	Numeric Relations
 	Is True When

 	$a < $b
 	$a is less than $b

 	$a <= $b
 	$a is less than or equal to $b

 	$a > $b
 	$a is great than $b

 	$a >= $b
 	$a is great than or equal to $b

 	$a == $b
 	$a is equal to $b

 	$a != $b
 	$a is not equal to $b

Here is a list of the string relational operators that can be used to
compare strings.

 	String Relations
 	Is True When

 	$a eq $b
 	$a is equal to $b

 	$a ne $b
 	$a is not equal to $b

 	$a lt $b
 	$a is less than $b

 	$a le $b
 	$a is less than or equal to $b

 	$a gt $b
 	$a is greater than $b

 	$a ge $b
 	$a is greater than or equal to $b

With string relational operators “less than” implies earlier in
dictionary order where the letters are ordered using their ASCII
codes. So a is less than b and A is less than a.

3.3 Ternary Operator: $a ? $b : $c

$a ? $b : $c. If $a is true, this evaluates to $b. Otherwise it
evaluates to $c.

Exercise: Set $x to 0 or 1. Print "True" if it is true, and
"False" if it is false.

 Solution:

#!/usr/bin/env perl
use strict;

my $input = 1;
my $message = $input ? "x is True" : "x is False";
print "$message\n";

3.4 Falseness

Which values of scalars are false and which are true?

	0, "", "0" are false.

 	All representations of 0 are false. For example, 0.0,
0.0e+100, 00.00, 000_000.000

 	All other scalars are true including "Hello", " ", "00".

 	All string representations of 0 are false except "0". For
example "0.0", "00", "0.0e+100".

Exercise: What will be the output of this program?

 Solution:

#!/usr/bin/env perl
use strict;

my $a;

$a = 0; print $a ? "True\n" : "False\n";
$a = 0.0; print $a ? "True\n" : "False\n";
$a = ""; print $a ? "True\n" : "False\n";
$a = "0"; print $a ? "True\n" : "False\n";
$a = 1; print $a ? "True\n" : "False\n";
$a = -1; print $a ? "True\n" : "False\n";
$a = +1; print $a ? "True\n" : "False\n";
$a = 2; print $a ? "True\n" : "False\n";
$a = " "; print $a ? "True\n" : "False\n";
$a = "a"; print $a ? "True\n" : "False\n";
$a = "true"; print $a ? "True\n" : "False\n";
$a = "false"; print $a ? "True\n" : "False\n";

3.5 Logical Operators

Boolean values of true and false can be combined using logical
operators.

 	Operator
 	Alternative
 	Is True When

 	$a && $b
 	$a and $b
 	$a is true and $b is true

 	$a || $b
 	$a or $b
 	$a is true or $b is true

 	!$a
 	not $a
 	$a is false

These operators short-circuit—the evaluation stops as soon as the
outcome is clear.

Exercise: Write a program that greets user by name and uses the
default name of "stranger" if the user doesn’t provide one.

 Solution:

#!/usr/bin/env perl
use strict;

my $name = <>;
chomp $name;
$name ||= "stranger";
print "Hello, $name.\n";

The ||= idiom is frequently used for default values. Consider $name
= $name || "stranger". If $name is not blank, it’s true, so the
|| short-circuits and $name is set to $name. Otherwise it is set
to "stranger".

3.6 Short Form if

Exercise: Print “You are the millionth customer!” for the millionth
customer.

 Solution:

#!/usr/bin/env perl
use strict;

my $customer = 1_000_000;
print "You are the millionth customer!" if $customer == 1_000_000;

When the if block has only one statement you can put the if and
the condition after the statement.

3.7 Looping with while and for

Exercise: Pick a number from 1 to 10 and then prompt the user to guess
it.

 Solution:

#!/usr/bin/env perl
use strict;

my $number = int(rand(10)) + 1;
my $guess = -1;
print "I picked a number.\n";
while ($number != $guess) {
 print "Guess what number I picked: ";
 $guess = <>;
 chomp $guess;
 if ($number == $guess) {
 print "Yes, you guessed right.\n";
 }
 else {
 print "You were wrong. Try again.\n";
 }
}

The program keeps running the code in the while block until the
condition becomes false.

Exercise: Rewrite the program as an infinite loop. Terminate using
last.

 Solution:

#!/usr/bin/env perl
use strict;

my $number = int(rand(10)) + 1;
my $guess = -1;
print "I picked a number.\n";
while (1) {
 print "Guess what number I picked: ";
 $guess = <>;
 chomp $guess;
 if ($number == $guess) {
 print "Yes, you guessed right.\n";
 last;
 }
 else {
 print "You were wrong. Try again.\n";
 next;
 }
}

Use last to break out of a loop early.

Use next to start from the start of the block again.

Exercise: Print the squares of the numbers from 0 through 19.

 Solution:

#!/usr/bin/env perl
use strict;

my $i = 0;
while ($i < 20) {
 my $square = $i ** 2;
 print "square of $i = $square\n";
 $i++;
}

Loops for going through sequences of numbers are so commonly used that
there is a special construct for it: the for loop.

#!/usr/bin/env perl
use strict;

for (my $i = 0 ; $i < 20 ; $i++) {
 my $square = $i ** 2;
 print "square of $i = $square\n";
}

Exercise: Write a program that finds all the numbers from 0 to 100
that have an integer square root.

Exercise: Write a program that repeatedly picks a number and then asks
a user to guess it. The program terminates when you user types q.

OEBPS/images/leanpub_tip.png

OEBPS/images/leanpub_question.png

OEBPS/images/leanpub_exercise.png

OEBPS/images/leanpub_leanpub_logo.png
Leanpub

OEBPS/images/leanpub_information.png
1

OEBPS/images/leanpub_warning.png

OEBPS/images/leanpub_discussion.png

OEBPS/images/leanpub_error.png

OEBPS/images/leanpub-logo.png
Leanpub
EYy—33

OEBPS/images/title_page.jpg
Quick Guide To Perl

Learn Perl
Programming

Through Real Examples

Asim Jalis

Step-by-Step Guide

