

Getting functional with Erlang

Mark Nijhof

This book is for sale at http://leanpub.com/functionalerlang

This version was published on 2015-02-09

This is a Leanpub book. Leanpub empowers authors and
publishers with the Lean Publishing process. Lean Publishing is
the act of publishing an in-progress ebook using lightweight tools
and many iterations to get reader feedback, pivot until you have
the right book and build traction once you do.

©2013 - 2015 Mark Nijhof

http://leanpub.com/functionalerlang
http://leanpub.com
http://leanpub.com/manifesto

Tweet This Book!
Please help Mark Nijhof by spreading the word about this book on
Twitter!

The suggested hashtag for this book is
#gettingfunctionalwitherlang.

Find out what other people are saying about the book by clicking
on this link to search for this hashtag on Twitter:

https://twitter.com/search?q=#gettingfunctionalwitherlang

http://twitter.com
https://twitter.com/search?q=%23gettingfunctionalwitherlang
https://twitter.com/search?q=%23gettingfunctionalwitherlang

Contents

Introduction . i
What is Erlang . ii
What is OTP . ii

Installation . 1
Manage Erlang versions with Kerl 3
Or build Erlang from source 5

The Erlang Shell . 6
Shell functions . 7

Erlang, the basics . 8
Punctuation . 8
Variables . 10
No defensive coding required 12
Modules . 15

Afterword . 20
The main drivers behind the book 20
How does it feel to write a book? 21
Then why do it? . 21

Introduction
I have been a professional developer since
2000, I have spend this time happily pro-
gramming in C#, Delphi, Ruby, Javascript,
and many other languages. But I have
never worked with a proper functional
programming language. That has now
changed; about a year ago I started working
with Erlang. And I have never been happier (while programming
that is).

This book will get you started writing Erlang applications right
from the get go. After some initial chapters introducing the lan-
guage syntax and basic language features we will dive straight
into building Erlang applications. While writing actual code you
will discover and learn more about the different Erlang and OTP
features. Each application we create is geared towards a different
use-case, exposing the different mechanics of Erlang and we will
introduce some common third party OSS libraries as well.

This is a book I wanted to read myself, I want it to be simple and to
the point. Something to help you get functional with Erlang quickly.
I imagine you with one hand holding your e-reader while typing
code with your other hand, suddenly realising it is way past your
bedtime.

I have made a broad assumption; only smart people would want to
learn Erlang (that is you), you are probably also smart enough to
find your way to all the language specifics when needed. So this
book is not meant as a complete reference guide for Erlang. But it
will teach you enough to give you a running start.

Introduction ii

When you have reached the end of this book you will be able to
build a full blown Erlang application and release it into production.
You will understand the core Erlang features like; pattern matching,
message passing, working with processes, and hot code swapping.

If you are completely new to Erlang then following the book from
start to end will probably result in the best experience, but when
you are already comfortable with a topic feel free to skip it.

What is Erlang

Erlang is a programming language used
to build massively scalable soft real-time
systems with requirements on high avail-
ability. Some of its uses are in telecoms,
banking, e-commerce, computer telephony
and instant messaging. Erlang’s runtime

system has built-in support for concurrency, distribution and fault
tolerance.

Created in 1986 by Joe Armstrong, Robert Virding, and Mike
Williams, Erlang was designed to help improve the development
of telephony applications at Ericsson. In 1998 the language was
released as open source.

What is OTP

OTP (Open Telecom Platform) is a set of Erlang libraries and
design principles providing middleware to develop these systems.
It includes its own distributed database, applications to interface
towards other languages, debugging and release handling tools.

The name Open Telecom Platform really shows its heritage, but
don’t let that name fool you; OTP provides you with very useful
functionality, even when you are not building a telecom platform.

Introduction iii

Allthough you can use Erlang without OTP, the functionality pro-
vided by OTP most often outweighs the added memory footprint,
for the purpose of this book OTP usage is assumed.

Installation
This whole process takes a long time, so don’t worry about getting
coffee right now. You will have plenty of time to make and drink
coffee while Erlang and its dependencies are compiling.

XKCD: http://xkcd.com/303/

Installation 2

Note to the early access reader

Because I am currently focusing more on the coding part of Erlang
then on installing Erlang the following chapter is barely enough for
you to work with. These instructions have been tested in MacOS
but should also work on Linux based systems like Ubuntu.

Before the book is finished this chapter will be revisited and
rewritten in something a bit more resilient.

Installation 3

Manage Erlang versions with Kerl

Kerl¹ is a version manager for Erlang which enables you to switch
between versions. It also makes installing Erlang on your system
quite easy. Kerl will download the source code and build it on your
system, so it is not just downloading some pre-compiled libraries.
Having said that if you rather install Erlang from source yourself
then just go to the next chapter.

To start the process of installing Erlang using Kerl, open your
favourite terminal and execute the following commands:

Installing kerl

cd ~/

curl -O https://raw.githubusercontent.com/spawngrid/ker\

l/master/kerl

chmod +x ./kerl

echo "ERL_CONFIGURE_OPTIONS=\"--enable-hipe\"" >> .kerl\

rc

Kerl is now installed on your system. Next up is getting executing
Kerl to download and install Erlang for you.

Installing Erlang/OTP

cd ~/

./kerl update releases

./kerl build 17.0 17.0

./kerl install 17.0 ~/erlang_17_0

. ~/erlang_17_0/activate

The last line will activate Erlang 17.0 for use in the current terminal
session. When you start a new terminal session then Erlang has not

¹https://github.com/spawngrid/kerl

https://github.com/spawngrid/kerl
https://github.com/spawngrid/kerl

Installation 4

been activated yet. If you want to always use this version then add
the last line to your bash profile.

You can read more about what Kerl can do for you on the github
repository website: https://github.com/spawngrid/kerl².

If you have followed these steps then you can skip the next chapter
and go straight to The Erlang Shell to verify that the installation
of Erlang was successful.

²https://github.com/spawngrid/kerl

https://github.com/spawngrid/kerl
https://github.com/spawngrid/kerl

Installation 5

Or build Erlang from source

You can also manually build Erlang from source.

Ok lets start the installation of Erlang/OTP³. Open your terminal
and follow the script below to install Erlang on your system. For
Windows; just download either the 32-bit or 64-bit installer.

Installing Erlang/OTP

wget http://www.erlang.org/download/otp_src_17.0.tar.gz

tar xf otp_src_17.0.tar.gz

cd otp_src_17.0

export ERL_TOP=`pwd`

./configure --enable-hipe

make

sudo make install

cd ..

rm otp_src_17.0.tar.gz

Learn more?
For complete and proper documentation about the
Erlang/OTP installation procedure go to the otp_src_17.0
directory and open the sub folder HOWTO and find the
specific installation document for your environment.

To verify that your installation was successful, you just have to start
the Erlang Shell. Which incidentally is also what the next chapter
is all about.

³http://www.erlang.org

http://www.erlang.org
http://www.erlang.org

The Erlang Shell
The Erlang shell is an emulator that executes compiled code, this
can be in the form of compiled modules (.beam files) or just
commands you type into the Erlang shell. It is an easy way to
quickly test hypothesis, but it is not as powerful as some of the
REPLs (Read Execute Print Loop) of other languages.

However it is the ideal place for us to start learning Erlang. To start,
open your favourite terminal and type erl to let the magic begin.
The result should look very similar to this:

iterm> starting the Erlang shell

~ � erl

Erlang/OTP 17 [erts-6.0] [source] [64-bit] [smp:8:8]

[async-threads:10] [hipe] [kernel-poll:false]

Eshell V6.0 (abort with ^G)

1>

Awesome! You can now start bragging on Twitter that you have
Erlang running on your machine. Let’s quickly exit the Erlang shell
before things get too exciting. You do this by typing q(). or Ctrl+c
two times.

The Erlang Shell 7

As you may have noticed, clicking Ctrl+c just once gives you some
more options; but for now exiting is probably themost useful action.

iterm> abort menu

BREAK: (a)bort (c)ontinue (p)roc info (i)nfo (l)oaded

(v)ersion (k)ill (D)b-tables (d)istribution

Feel free to repeat this exercise a few times to get more comfortable
with it. The excitement will soon be reduced to an acceptable level,
if not then this might be a good time to take a short break.

Shell functions

In the next chapter wewill be doing some coding exercises using the
Erlang shell. You might find the following commands useful while
following the exercises.

Command

f(). unbinds all variables, perfect for between exercises.
Instead of restarting the Erlang shell you can basically
reset it by just typing f().

f(Foo). unbinds the specific variable Foo, you made a mistake
and want to correct it without having to do everything
over again.

v(N). Uses the return value of the command N in the current
command, if N is positive. If it is negative, the return
value of the Nth previous command is used. Say you
forgot to bind a value with a variable: 10. then X =
v(-1). will fix that for you.

q(). Quits the Erlang shell in a nice way, I usually just kill it
using Ctrl+c + Ctrl+c as that is the Erlang way ;)

Erlang, the basics
The first step into learning Erlang is to get familiar with the
language syntax. Erlang is actually a rather simple language, the
Core Erlang language specification (PDF⁴) describing it is only 31
pages long. Having said that, we won’t be covering all the language
syntax and/or features in this chapter. Just enough to get us through
the initial code examples.

Punctuation

Erlang uses dots, commas and semicolons to separate different
forms, expressions and clauses from each other.

In Erlang the dot is used to terminate a form. A form is either a
module attribute or a function declaration. We will cover those in
more detail in later chapters. For now it is more important to know
that the dot is also used to terminate expressions in the Erlang
shell.

Except from module attributes and function declarations pretty
much everything else are expressions in Erlang. And the comma
is used to separate different expressions from each other.

Almost like English
Forms are very similar to how the English language
constructs sentences. A sentence can be divided into multiple
parts using a comma, and is always terminated with a dot.

⁴http://www.it.uu.se/research/group/hipe/cerl/doc/core_erlang-1.0.3.pdf

http://www.it.uu.se/research/group/hipe/cerl/doc/core_erlang-1.0.3.pdf
http://www.it.uu.se/research/group/hipe/cerl/doc/core_erlang-1.0.3.pdf

Erlang, the basics 9

The semicolon is also important in Erlang as it separates different
clauses, for example function clauses or case clauses. We will
discover the semicolon further in the next main chapter.

Here are a few expressions to get you started, open your Erlang shell
and play along:

erl> Single Erlang expression

1> 5+5.

10

We executed the expression 5+5. and the emulator returns the result
which is 10 (hopefully no surprises here). Next up another exercise:

erl> Multi-part Erlang expression

1> io:format("Hello ~s~n", ["World"]),

1> io:format("My name is ~p~n", ["Yourname"]),

1> io:format("And I am ready to learn Erlang~n").

Hello World

My name is "Yourname"

And I am ready to learn Erlang

ok

Here we have 3 expressions separated by a comma. You may have
noticed while typing along, but the Erlang shell only executes the
expressions once it sees the dot. The output for the first three lines
you probably expected, but the text ok perhaps not. Let’s examine
that a bit closer.

Erlang, the basics 10

erl> What will be returned?

1> 21+21,

1> 63-21,

1> 6*7,

1> 126/3,

1> 252 div 6.

42

In Erlang the result of the last expression is always returned to the
caller. Here it is the result from the expression 252 div 6. In the
previous example the function io:format returned ok which got
printed. There. One more mystery solved.

Finally, when nothing seems to happen, make sure you terminated
the expression with a dot.

erl> Always terminate the expression with a dot

1> io:format("I like this bo")

1>

1>

1> .

I like this book

Being able to do math and write to the console using Erlang is of-
course awesome, but we are going to need a bit more to build an
actual application. So let’s quickly move to the next chapter and
discover what else we can do.

Variables

Variables have been used to store values in the same scope by
programming languages since the beginning of times, and Erlang
is no exception here.

Erlang, the basics 11

The convention in Erlang is that a variable name must start with
an uppercase letter or an underscore. For example correct variable
names are Foo and Bar, but 5Foos is not and neither is fooBar.

Defining a variable and then failing to use it will result in a compiler
warning (not applicable in the Erlang shell). You can easily fix this
by prepending the variable with an underscore like, _FooBar. This
will tell the compiler not to worry about that variable. You can also
just use an underscore, something that is useful in patternmatching.

Having a variable start with an underscore but with the full name
will help make the code more readable. Programmers read code at
least ten times more then they actually write. So please write it for
readability, I might have to fix a bug in there one day.

Enough talk, let’s play:

erl> Variable names

1> Five = 5.

5

2> Four = 4.

4

3> Nine = Five + Four.

9

4> _NotUsed = <<“Variable is not important here">>.

<<“Variable is not important here">>

Awesome! Now we can store state locally. This Erlang thing is
starting to look like a normal programming language already.

Erlang, the basics 12

erl> Variable names

1> SelectedValue = 5.

5

2> SelectedValue = 4.

** exception error: no match of right hand side value 4

Errr!?

All state is immutable

It is so easy to think of state as something you can change whenever
youwant, but in Erlang all state is immutable. Which is a fancy way
of saying; once you define a variable to beXYZ it will remain XYZ
forever and ever and ever.

Having immutable state has many benefits for concurrent program-
ming and the code itself is oftenmuch easier to understand. Initially,
this may seem like a pain to deal with, but over time you will come
to see its value and start appreciating it. I promise.

No defensive coding required

When writing code we often try to prevent crashes, because a
crash is expensive to deal with. I have seen some weird defensive
programming practices in my career, just because programmers are
afraid to crash the application.

Not in Erlang. You probably didn’t even notice, but in the previous
code example, part of the Erlang shell crashed and was restarted
again. The reason you might not have noticed this is because it is
lightning fast.

Erlang embraces the fact that no system can be perfect and that
failure will happen from time to time. Erlang is designed in such

Erlang, the basics 13

a way that recovery from a crash is fast and deterministic, and it
offers enough isolation between processes so that a crash will not
bring down the whole application.

Crashing is an expected scenario in Erlang. It means you write
code to handle things you expect to happen. When something
unexpected happens you just let it crash. No more compulsive null
checking before each function call, if it’s undefined and it should
not be undefined, then you just crash.

A true war story
We have had a case where the system was crashing and
recovering constantly and still processing a live video stream
without anybody noticing. The only trace that something
was wrong was in the log files. It was a bug and should not
have been there, but impressive nonetheless.

Now that we have improved your understanding, lets look at that
crash again:

erl> Let it crash

1> SelectedValue = 5.

5

2> SelectedValue = 4.

** exception error: no match of right hand side value 4

3> SelectedValue.

5

What you just experienced consciously is a little bit of the Erlang
shell crashing and recovering again. The Erlang shell has logic to
restore previous declared variables after a crash and thus Selected-
Value was still defined as 5 after the crash. This same logic is also
what makes calling f(). and f(SelectedValue). work.

Erlang, the basics 14

erl> Reset the Erlang shell

1> SelectedValue = 5.

5

2> f(SelectedValue).

ok

3> SelectedValue = 4.

4

But variables where immutable, right? In reality, the Erlang shell
has been cheating. This behaviour does not work in your code!

Crashes can be helpful

Trying to make the Erlang shell crash is sometimes an easy way to
check whether everything is still ok. When nothing seems to work
anymore, type 1=2. andwait for the crash. If the crash didn’t happen
then you probably forgot a quote or something in the previous
expression.

Erlang, the basics 15

Modules

A module is the basic unit of code in Erlang, this is where all your
functions go. Modules contain a series of module attributes and
forms.

XKCD: http://xkcd.com/378/

Let’s open a new file in your favourite code editor, copy the
following text and press control+x control+s to save it.

emacs hello_world.erl

-module(hello_world).

This creates a valid, but useless module called hello_world. The
module name should be the same as the file name without its
extension.

Erlang, the basics 16

There is no namespacing mechnism
Unfortunately Erlang does not have a mechanism for
namespacing. The module name is the only thing that makes
it unique in the application, including its dependencies.
Which means that whatever name you choose should be
unique within your code, but also unique within your
dependencies code.

It is regarded good practise to prefix your module names
with for example the project name. Especially when your
code is meant to be used by others.

The extensions
Erlang source code files have .erl extensions and compiles
files have .beam extensions.

Ok back to code again:

emacs hello_world.erl

-module(hello_world).

say_hello_to(Name) ->

io:format("Hello ~s, how are you?~n", [Name]).

Now we added the function say_hello_to that takes one parameter
Name and it prints a nice welcome message. Lets try and compile
the hello_world module. Open the Erlang shell and start typing:

Erlang, the basics 17

erl> compiling: hello_world.erl

1> c(hello_world).

hello_world.erl:3: Warning: function say_hello_to/1

is unused

{ok,hello_world}

Hmm a warning, warnings are not critical, right? Lets run it
anyway!

erl> using: hello_world.erl

2> hello_world:say_hello_to("Mark").

** exception error: undefined function

hello_world:say_hello_to/1

Interesting; let’s take a look at both the warning and the error. The
warning says, the function say_hello_to/1 is unused. But the error
says, the function say_hello_to/1 is undefined? That sounds like a
contradiction to me.

The problem is that the function say_hello_to/1 is not visible out-
side themodule hello_world. All functions are private by default. To
expose them use -export([function_name/N]) where the function
name is an atom and N is the number of arguments.

Atoms
Atoms are literals, constants with their own name as the
value. These are purely for you, the developer. To make your
code more readable. Be careful to not create atoms from user
generated data, because each atom once created stays in
memory. Users could crash your server by generating these
atoms until it runs out of memory. Bad, but they are
absolutely great otherwise, you’ll see.

Erlang, the basics 18

emacs hello_world.erl

-module(hello_world).

-export([say_hello_to/1]).

say_hello_to(Name) ->

io:format("Hello ~s, how are you?~n", [Name]).

The export function takes a list with functions to export, and it can
be calledmultiple times as well. This is a nice way to group different
exports together.

emacs hello_world.erl

-module(hello_world).

-export([

say_hello_to/1

,say_hello_to/2

]).

-export([say_bye_to/1]).

say_hello_to(Name) ->

io:format("Hello ~s, how are you?~n", [Name]).

say_hello_to(Name1, Name2) ->

io:format("Hello ~s and ~s, how are you?~n",

[Name1, Name2]).

say_bye_to(Name) ->

io:format("Bye ~s!~n", [Name]).

Let’s try to compile and run it now, again in the Erlang shell:

Erlang, the basics 19

erl> compiling: hello_world.erl

1> c(hello_world).

{ok,hello_world}

2> hello_world:say_hello_to("Mark").

Hello Mark, how are you?

ok

Success! How awesome is this? You are almost a senior Erlang
programmer by now. You know how to compose modules that
expose functions, also you can print welcome messages.

Wow!

Afterword
So, why write a book? Because as you may know, writing a book is
really, really, (pause to breath) really difficult. It takes a lot of time
and energy away from your family, work and other fun things in
life. What possesses a person to do such a thing? Short side-step;
did you notice I included work in the fun things of life collection?
Make sure you are in the same situation!

The main drivers behind the book

First of all, the main driver behind this book comes from the idea
that you can only explain something to someone else if you truly
understand the topic yourself. Bywriting this book I have learned so
much more about Erlang then I would have by just coding Erlang.
Instead of taking things at face value, I now need to understand
them properly. It is funny how that works.

Next up is that I want to improve my writing skills. And the only
way to do that is by writing more and taking it seriously. I used
to blog quite a bit, but writing a book puts writing at a completely
different level. Writing a blog post is quite easy, but as I am still
writing this chapter, I have already re-read/edited it more times
then I care to tell you.

Afterword 21

How does it feel to write a book?

It is scary you know, because unlike a blog post, people tend to take
books serious. And when people take something serious they can
get pretty mean about it.

I saw this image of Harpo and his kids on Twitter today and it shows
pretty much how I imagine people when they hear I amwriting this
book, or any book for that matter.

Harpo and Kids - wikipedia

Then why do it?

Because it is also a lot of fun!

Thanks for reading,

-Mark

Afterword 22

	Table of Contents
	Introduction
	What is Erlang
	What is OTP

	Installation
	Manage Erlang versions with Kerl
	Or build Erlang from source

	The Erlang Shell
	Shell functions

	Erlang, the basics
	Punctuation
	Variables
	No defensive coding required
	Modules

	Afterword
	The main drivers behind the book
	How does it feel to write a book?
	Then why do it?

