1i%) UGUDDD

=
&)
(T
o)
@)
Z
7))
R
-
)
)
s

PHP for the Web

Learn PHP without a framework

Matthias Noback

This book is for sale at
http://leanpub.com/learning-php-for-the-web-without-a-framework

This version was published on 2022-09-29

)

Leanpub

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean
Publishing process. Lean Publishing is the act of publishing an in-progress ebook
using lightweight tools and many iterations to get reader feedback, pivot until you
have the right book and build traction once you do.

© 2020 - 2022 Matthias Noback

http://leanpub.com/learning-php-for-the-web-without-a-framework
https://leanpub.com/
https://leanpub.com/manifesto

For Liesbeth, thanks for the inspiration!

Contents

Introduction i
Who should read this book? i
Getting started L ii

Bash ii
PHP Runtime iii
An IDE that works well with PHP iv
Firefox iv
An overview of thecontents iv
Thesourcecode. \
Acknowledgements v
Feedback and suggestions L '
Changelog v
31 January 2021 \4

1. Servingresources 1
Serving an index.html file with the built-in web server 1
Addingafavicon 3
Security announcement: The project root should not be the document root 3
Communication between the browser and the server 3
Summary 3
QUIZ . . o e 3

2. Serving PHPscripts. 4
The response: status, headersand body 6
Buildingup aresponse 6
Linking tootherpages 6
Passing values between requests. 6

CONTENTS

Security announcement: user input can’t be trusted
Summary

QUIZ . . o e

Submitting form data as query parameters
Security announcement: Always use output escaping
Adding a select element to the form,
Submitting data via the requestbody
Summary e

QUIZ . . .

4. Cookies
Settingacookie
Usingacookie.
Set-Cookie is a response header, Cookie a request header
Redirecting after processing a POST request
Security announcement: cookies can be manipulated without you knowing
Summary

QUIZ . . .
Challenge

5. SeSSions
Session files and serializeddata
Flashmessages
Using flash messages everywhere
Summary

QUIzZ . . o

6. Authentication
AsecTet Page
Settingupaloginform
Validating the username and the password
Loggingout
Summary

QUIZ . . . e

[)We)

O O O O O I

12

CONTENTS

10.

Projectstructure. 17
Header and footer snippets 17
Passing variables to snippets 19
Flash messages revisited 19
Bootstrapping 19
From htmlto.php 19
Adding navigation L 19
Adding a stylesheet 19
Routing oo 19
Summary 19
QUIZ . . . e 19
Challenge 19
CRUDpart1:Create uein... 20
Saving JSON-encoded datainafile 21
Addingatour 21
Formvalidation 21
Showing the submitted dataintheform 21
Listing tours 21
Summary 21
QUIzZ . . . 21
Challenge 21
CRUDpart2: Therest 22
Introducing some reusable elements 23
Editingtourdata 23
Deletingtours 23
Summary 23
QUIZ . . . e 23
Challenge 23
Fileuploads 24
Adding adetailspage L L 24
Uploadingafile 26
Processing the fileupload 26
Showing the uploaded picture 26

Replacing the existingimage 26

CONTENTS

11.

12.

13.

14.

15.

Form validation for fileuploads 26
Summary 26
QUIZ . . o e 26
Errorhandling L. 27
Producinganerror 27
Using different configuration settings in production 29
PHPerrors e 29
Summary 29
QUIzZ . . . 29
Automated testing o 30
Using Composer to install testing tools. 30
Afirsttest 32
Creating our first browsertest 32
A test for the picturespage 32
Starting witha cleanslate 32
Troubleshooting and suggestions 32
Summary 32
QUIZ . . . 32
Challenge 32
Conclusion 33
Object-oriented programming 33
Frameworks 33
Testing L 33
Partingwords 33
Appendix A: Installing PHP on Windows 34
Appendix B: Answers to the quiz questions 35
Chapter 1. 36
Chapter 2. 36
Chapter 3. 36
Chapter 4. 36
Chapter 5. o 36

Chapter 6. 36

CONTENTS

Chapter 7. o 36
Chapter 8. 36
Chapter 9. 36
Chapter 10 36
Chapter 11 36
Chapter 12 36

16. End of the samplefile 37

Introduction

There are many books for people who want to learn PHP. For me the biggest issue
with most of these books is that they combine too many topics, leading to many
hundreds of pages of things you have to work your way through. They start with
basic PHP programming, then teach you about creating websites using a relational
database, how to send emails from PHP, how to create command-line applications,
etc. It’s all relevant and interesting, but it’s way too much if you ask me. I thought it
would be helpful to have a book that only covers PHP and the web.

Narrowing down the topic of this book to just “PHP for the web” wasn’t enough.
There is already plenty of interesting material about building web applications with
PHP. Most of this material is about how to use a framework like Symfony or Laravel
to build web applications. But I think it’s important to learn about all the details that
a framework is hiding for you. When you know how something works, you will be
better at troubleshooting issues. So in this book we’re not going to use a framework.

However, without a framework your application will never be as good as it can
be. You'll be fixing issues that frameworks have fixed long before you. You’ll also
introduce security issues that could have been prevented by using a framework. So
any of the code that is in this book should be considered for educational purposes
only.

In the final chapter of this book, we’ll discuss what kind of code you should write in
a real-world application and where to learn more about that.

Who should read this book?

This book should be interesting for beginning PHP developers who want to learn all
the aspects of using PHP to create dynamic websites. 'm going to assume a small
amount of PHP programming knowledge:

« Variables and assigning values to them

Introduction ii

« Control structures like i f, else, foreach, for

« Strings and string concatenation (using .)

+ Integers

« Expressions and comparisons («, >, etc.)

« Associative arrays (arrays with string keys and value) and indexed arrays
(arrays where only the values are relevant)

I think this book will also be useful for people with experience in other programming
languages who want to learn about PHP and how it deals with the web (as opposed
to Java, Python, etc.).

Besides PHP, I'm relying on a basic knowledge about HTML. We'll only use a few
basic elements but if you don’t know any HTML yet | recommend reading MDN’s
Introduction to HTML' and Web forms - Working with user data®.

Getting started

Before we start with the main content of the book I'm going to explain what you
need to learn PHP for the web. We’ll look at the software that should be installed on
your computer. I'll also provide a list of the topics that I assume you know at least
something about.

Bash

The first thing you need is Bash. We’re going to use it to work with the command-line.
On Linux and Mac you’ll have it installed already. To use Bash, open the Terminal
application.

On Windows I recommend installing Git®, which comes with Git Bash. Once you’ve
installed it, open the Git Bash application to use it.

You should see a blinking cursor. Type in the following, and press Enter:

'https://developer.mozilla.org/en-US/docs/Learn/HTML/Introduction_to_HTML
*https://developer.mozilla.org/en-US/docs/Learn/Forms
*https://git-scm.com/downloads

https://developer.mozilla.org/en-US/docs/Learn/HTML/Introduction_to_HTML
https://developer.mozilla.org/en-US/docs/Learn/Forms
https://git-scm.com/downloads
https://developer.mozilla.org/en-US/docs/Learn/HTML/Introduction_to_HTML
https://developer.mozilla.org/en-US/docs/Learn/Forms
https://git-scm.com/downloads

Introduction iii

bash --version

You should now see some information about the Bash version that you have on your
computer. The blinking cursor indicates that you can type in your next command.

P Some tips for working with Bash

Copy and paste shortcuts (Ctrl + C,Ctrl + V) usually don’t work with
Bash. If you want to copy or paste values in the Terminal, right-click on the
Terminal window and you should see a menu. This menu contains options
for Copy and Paste that you can click on. There are usually alternative
keyboard shortcuts like Ctr1 + Shift + C and Ctrl + Shift + V that
should work too.

If you press Up you'll see the previous command you ran. You can press Up
multiple times to go further back in the history.

From now on, when I say something like “Run” or “Type at the command-line”, I
mean: open the terminal or Git Bash, and run a command, just like you ran bash

--version.

PHP Runtime

You’ll also need a PHP Runtime installed on your computer. Please note: you don’t
need a web server like Apache, Nginx, or IIS. We’ll only use PHP from the
command-line.

On Linux you may install it using apt or any other preferred package manager. On
Mac you may use something like brew to install it. For Windows you may follow the
instruction in Appendix A

To verify that you have installed and can use PHP from the command-line, run the
following command:

php -v

It should show you some information about the current version of PHP.

Introduction iv

An IDE that works well with PHP

I won'’t say you have to buy and install PhpStorm* but in my opinion, that will be
your best choice. If you have experience with some other IDE that works well with
PHP code, please go ahead. Things you should look for in an IDE:

« It should show programming mistakes
« It should have a code formatter
« It should offer suggestions while typing code (“code completion”)

Firefox

One last thing we’ll need is the web browser Firefox®. This doesn’t have to become
your default browser, but it will be easier to understand what I'm talking about if we
both use the same browser.

An overview of the contents

A brief overview of the contents, before we dive in:

Chapter 1 shows how we can use PHP’s built-in server to serve static resources:
HTML files, pictures, CSS files, etc. In Chapter 2 we serve our first PHP script. Using
PHP we can build in some dynamic aspects to our pages. Chapter 3 demonstrates
the use of HTML forms, whose data can be processed by a PHP script. We talk about
the difference between GET and POST requests. Chapter 4 covers cookies, and how
they can be used to store some data in the browser and pass it to the next request.
In Chapter 5 we use a special cookie, the session cookie, to store data on the server
instead of in the browser. Combining techniques from all previous chapters, we build
an authentication system in Chapter 6. Arriving at Chapter 7 it’s time to restructure
the project a bit, and make it easier to work with in the following chapters. Next
we're going to build a full CRUD interface for creating, updating, and deleting tours
that we’re going to show on our website. We need two chapters for that, Chapter 8
and Chapter 9. To make everything look a bit nicer we’re going to add the ability

“https://www.jetbrains.com/phpstorm/
*https://www.mozilla.org/en-US/exp/firefox/new/

https://www.jetbrains.com/phpstorm/
https://www.mozilla.org/en-US/exp/firefox/new/
https://www.jetbrains.com/phpstorm/
https://www.mozilla.org/en-US/exp/firefox/new/

Introduction \%

to upload a picture for every tour in Chapter 10. In Chapter 11 we’ll build a custom
solution that catches PHP errors and exceptions and shows a proper error page for
them. Chapter 12 shows how to describe and test all the features you’ve built in this
book using an automated test runner. Finally, we’ll reach the point where you’ve
learned the basics and are ready to move on to the next book or course. I'll provide
some suggestions for further learning in Chapter 13.

The source code

You can find all the code samples from this book on GitHub®. At the end of each
chapter I've committed the current state of the project. You can look at the code in
the browser or if you want you can create a copy of the project on your own computer
by running:

git clone git@github.com:matthiasnoback/php-for-the-web.git

You can check out the state of the project at the end of every chapter by looking up the
chapter in the list of commits’. Copy the corresponding commit hash (e.g. b596da2)
from the list and run:

git checkout b596da21d8af@afe91£549efa2eb98da203eeecaa

Acknowledgements
Feedback and suggestions

Changelog

31 January 2021

“https://github.com/matthiasnoback/php-for-the-web
"https://github.com/matthiasnoback/php-for-the-web/commits/master

https://github.com/matthiasnoback/php-for-the-web
https://github.com/matthiasnoback/php-for-the-web/commits/master
https://github.com/matthiasnoback/php-for-the-web
https://github.com/matthiasnoback/php-for-the-web/commits/master

1. Serving resources

Serving an index.html file with the built-in
web server

The simplest way of creating a web application is by “serving” .html files. In this
chapter we’re going to do that using PHP’s built-in web server.

First, create a directory for your project. This could be anywhere on your computer.
For example, I've created a directory called /home/matthias/Projects/php- for-the-web.
Open this directory in your IDE (preferably PhpStorm). Now create a file in your
project directory called index.html. In that file, paste the following HTML:

<IDOCTYPE html>
<html lang="en">
<head>
<title>Index</title>
</head>
<body>
<h1>This is the index</h1>
</body>
</html>

On the command-line, navigate to your project directory using cd (or if you’re on
Windows, go to your project directory, right-click on it and select “Open Git-Bash
here” in the menu that pops up).

cd /home/matthias/Projects/php-for-the-web

Now we can start PHP’s built-in web server?:

'https://www.php.net/manual/en/features.commandline.webserver.php

https://www.php.net/manual/en/features.commandline.webserver.php
https://www.php.net/manual/en/features.commandline.webserver.php

Serving resources 2

php -S localhost:8000
In the terminal you should see something like this:
[...] PHP [...] Development Server (http://localhost:8000) started

This means that the PHP Development Server (a.k.a. the built-in server) has started,
great! The server is “listening” on localhost:8000. That’s because we told PHP to
do so using the -S command-line option:

php -S localhost: 8000

To see if the server works, open a browser and go to http://localhost:8000. You should
see “This is the index”:

This is the index

This is the index

http://localhost:8000

Serving resources 3

Adding a favicon

Security announcement: The project root
should not be the document root

Communication between the browser and the
server

Summary

Quiz

2. Serving PHP scripts

In Chapter 1 we've looked at serving static resources, in particular index.html and
favicon.ico. These are the things a browser can deal with: it can show an HTML
page, and use the favicon.ico as a nice visual icon inside the browser tab. However, if
all we could do was return . html files and images to the browser, we could never build
an actual web application. An .html file can’t process data that a user provides by
filling in a form. An .htm! file can’t talk to a database and produce a list of available
products. An .html file can’t remember that it’s me and say “Hey Matthias, welcome
back!”. That’s because an .html file is a static resources. If the browser fetches it the
second time, it will be the same file as when it fetched it the first time.

In this chapter we’re going to create dynamic resources. When the browser fetches a
dynamic resource, it may get a different response the second time it fetches the same
resource.

Let’s make such a dynamic resource now by creating a new PHP file called
random.php and put it inside public/. Copy and paste the following code into
random.php:

<!DOCTYPE html>
<html lang="en">
<head>
<title>Your lucky number</title>
</head>
<body>
<h1>Your lucky number is: <?php echo random_int(1, 10); 7></h1>
</body>
</html>

Now let’s try to run our new random.php script. Because we created the file inside
public/, random.php is inside the document root and therefore accessible from the
browser. Go to http://localhost:8000/random.php and you should see:

http://localhost:8000/random.php

Serving PHP scripts 5

Your lucky number is: 7

Your lucky number is 7

Or some other number actually, because we’ve used the random_int() function® to
generate a random number. Refresh the page and you’ll see that it produces other
numbers too.

By the way, if your browser tells you that it’s “Unable to connect”, your PHP server
isn’t running yet. In that case, open the Terminal, go to your project directory and
run:

php -S localhost:8000 -t public/

'https://www.php.net/random_int

https://www.php.net/random_int
https://www.php.net/random_int

Serving PHP scripts

The response: status, headers and body
Building up a response

Linking to other pages

Passing values between requests

Security announcement: user input can’'t be
trusted

Summary

Quiz

3. Forms

In Chapter 2 we’ve seen how you can let the PHP server serve PHP scripts. We also
saw how you can provide input to these scripts using query parameters, which are
part of the URL. This works great if the input is something the application produces,
like the random number in /random. php. But if we want the user to provide the input
themselves, we’d better use an HTML form. A form is much more user-friendly since
the user doesn’t have to modify the URL manually. They can just type something
in a form field, select an item from a combobox, put a checkmark somewhere, and
submit the data to the server.

Submitting form data as query parameters

We’re going to add a simple form to the /kittens.php page. The form has a field for
providing a number. Once you submit the form, the form data will be sent as query
parameters.

First, add the form to kittens.php, just before the closing </body> tag:

<!DOCTYPE html>

<html lang="en">

<head>
<title>Kittens</title>

</head>

<body>

<?7php

$numberOfKittens = isset($_GET['number']) ? (int) $_GET['number'] : 1;

14

V7

2>

<form>

Forms 8

<div>
<label for="number">
Number of kittens to show:
</label>
<input name="number" id="number">
</div>
<div>
<button type="submit">Submit</button>
</div>
</form>
</body>
</html>

Now go to http://localhost:8000/kittens.php and you should see the form at the
bottom of the page:

Cat 1:

Number of kittens to show: []

Submit

The new form on /kittens.php
Fill in a number and submit the form. You should now see the same number of
pictures on your screen. Nice!

But why is that? Take a look at the URL: if you filled in 4, the URL is now
http://localhost:8000/kittens.php?number=4 Exactly what we wanted. There’s only

http://localhost:8000/kittens.php
http://localhost:8000/kittens.php?number=4

Forms 9

one usability issue: after submitting the form the number field is empty. That’s
inconvenient, because to correct a mistake you have to type in the whole number
again instead of just making the change to the number you already provided.

Security announcement: Always use output
escaping

Adding a select element to the form
Submitting data via the request body
Summary

Quiz

4. Cookies

HTTP is what they call a stateless protocol. The server processes a request, and when
the response has been delivered, the server forgets all about that request and starts
processing the next request. There is no link between these requests, not even a way
to know if a request comes from the same person as the previous request. Unless you
find a way to pass data between requests. This is what cookies are for.

Say we want to know the user’s name, and show it on every page they visit. We
start by providing a page where the user can enter their name. Create a script called
name.php in public/ and copy-paste the following code into this file:

<IDOCTYPE html>
<html lang="en">
<head>
<title>Name</title>
</head>
<body>
<form method="post">
<p>
<label for="name">
Your name:
</label>
<input type="text" name="name" id="name">
</p>
<p>
<button type="submit">Submit</button>
</p>
</form>
</body>
</html>

Go to http://localhost:8000/name.php and you should see this simple form:

http://localhost:8000/name.php

Cookies 11

Your name: (]

Submit
The new form asking for the user’s name

Open the Network panel, fill out the form, and submit it. In the list of requests you
should see a new POST request for name . php. When you select it and open the Request
tab, it shows that the name is submitted correctly:

[*(Headers Cookies Params Response Timings
¥ Filter Request Parameters

v Form data

¥ Request payload

1 name=Matthias

The submitted form data

Cookies 12

Setting a cookie
Using a cookie

Set-Cookie is a response header, Cookie a
request header

Redirecting after processing a posT request

Security announcement: cookies can be
manipulated without you knowing

Ssummary
Quiz

Challenge

5. Sessions

In Chapter 4 we saw how you can use cookies to pass data between requests. We
ended with a warning that cookies can be manipulated, because they are headers, so
they can’t really be trusted. Another security aspect is that the contents of cookies
are visible. Both of these aspects of cookies make them unsuitable for sensitive
information, or information that only you as the programmer should be able to
manipulate.

For situations where using a cookie isn’t a good idea, but you still want to keep some
kind of information between requests, you can use a session. Cookie data is managed
by the browser, session data is managed by the server. This gives you full control over
the data, and prevents it from being visible elsewhere, or being manipulated without
you knowing. Let’s see how this works.

We’re going to rewrite the name . php script to store the user’s name in the session, not
in a cookie. The first thing we should do in the script is start the session using the
session_start()' function. Session data should be saved in a superglobal variable
called $_SESSION, which is an associative array. In this case we assign the value of
$_POST['name'] to $_SESSION['name']:

<?php
session_start();

if (isset($_POST['name'])) {
$_SESSION['name'] = $_POST['name'];
header('Location: /random.php');
exit;

}

?2>

Let’s see what happens. First, open the Storage panel and remove all existing cookies,
just so we don’t get confused. Now open the Network panel and go to http://localhost:

'https://www.php.net/session_start

https://www.php.net/session_start
http://localhost:8000/name.php
http://localhost:8000/name.php

Sessions 14

8000/name.php. In the list of requests you should see a GET request for name.php.
Select this request and take a look at the Response Headers section of the Headers
tab:

Request URL: http://localhost:8000/name.php

Request Method: GET
Remote Address: [::1]:8000

Status Code: B 0K (®

Version: HTTP/1.1 Edit and Resend

Response Headers (362 B) Raw Headers

Cache-Control: no-store, no-cache, must-revalidate
Connection: close

Content-type: text/html; charset=UTF-8

Date: Fri, 15 May 2020 07:51:10 GMT

Expires: Thu, 19 Nov 1981 08:52:00 GMT

Host: localhost:8000

Pragma: no-cache

Set-Cookie: PHPSESSID=hjo095in539e 1mmdibquuhrjca; path=/

Response headers of the GET request for name. php

Session files and serialized data
Flash messages

Using flash messages everywhere
Summary

Quiz

6. Authentication

A web application usually has:

1. A public part
2. A part for known users who are logged in
3. A part that’s only accessible for administrators

Public pages will be accessible by so-called anonymous users. For other pages, like a
list of previously created orders, or a page where the user can edit their profile, they
need to authenticate first. Authentication means we establish the identity of the user.
After providing their username and a password, we know that it’s them, not someone
else. After all, nobody else is supposed to know someone else’s password; it’s a secret.
As you know, this assumption is where a lot of security risks are: the user could have
their password written on a post-it next to their monitor. Or they could have shared
their credentials with their grandson. Or they could have a password that is easy to
guess. There are many things to consider, and I definitely recommend you doing that,
but it’s beyond the scope of this book. I can highly recommend OWASP as a source of
security-related instructions for programmers. For the topic of authentication, check
out their Authentication Cheat Sheet'.

'https://cheatsheetseries.owasp.org/cheatsheets/Authentication_Cheat_Sheet.html

https://cheatsheetseries.owasp.org/cheatsheets/Authentication_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Authentication_Cheat_Sheet.html

Authentication

A secret page

Setting up a login form

Validating the username and the password
Logging out

Ssummary

Quiz

16

7. Project structure

Header and footer snippets

Along the way, you may have noticed some duplication in the code we copied and
pasted in several places. For starters, we’ve been duplicating most of the basic HTML
structure (<!DOCTYPE html><html...) every time we created a new page. What’s
inside <body> . .. </body> will be different for every page, but the rest of the HTML
can be included from a shared snippet. Let’s start by moving the common HTML code
out of login.php into reusable snippets. First, create a file in the root directory of the
project (not in public/ since this is a snippet, not a page) and call it _header . php. In
this file, we're going to put the shared code for the top part of the HTML:

<IDOCTYPE html>

<html lang="en">

<head>
<title>Login</title>

</head>

<body>

We're going to do the same for the bottom part of the HTML. Create a file called
_footer .php and put the following code in it:

</body>
</html>

Now go back to login.php and include both of these files in the right place:

Project structure

<?php
include(__DIR__ . '/../_header.php');
2>
<form method="post">
<div>
<label for="username">
Username:
</label>

<input type="text" name="username" id="username">

</div>
<div>
<label for="password">
Password:
</label>
<input type="password" name="password" id
</div>
<div>
<button type="submit">Submit</button>
</div>
</form>
<?php
include(__DIR__ . '/../_footer.php');

password">

18

Project structure

Passing variables to snippets
Flash messages revisited
Bootstrapping

From .html to .php

Adding navigation

Adding a stylesheet

Routing

Summary

Quiz

Challenge

19

8. CRUD part 1: Create

In this chapter we’ll combine all of the previously discussed techniques by creating
something many applications have: a CRUD interface.

CRUD stands for “Create - Read - Updated - Delete”. And although at some point
you’ll talk to people who don’t like it at all, it can be a powerful way of looking
at your application’s abilities. In the following sections we’re going to expand our
online business. We're going to become a serious travel agency which offers tours
from Amsterdam to all kinds of interesting cities nearby. The first thing our business
needs is to show a list of all the available tours. Also, since we think traveling should
be for everyone, we’re going to take special care to make most of our tours accessible.

Before we can show a list of tours on the website, we first have to define them
somewhere. We could hard-code them as an array:

$tours = |
[
'destination' => 'Berlin’,
"number_of_tickets_available' => 10,
'"is_accessible' => true
1,

// and so on. ..

1;

But if we do this, we’d have to redeploy the website every time we want to add a
new tour, edit an existing one, or remove one. This is where CRUD comes in: we’d
want to offer the user to make all of these changes on the website itself. A user who
is logged in and is known to be an administrator should have the ability to edit a tour,
add a new one, or delete one. Normal users should be able to list tours and select a
tour to take a closer look at its details. Most web applications would use a database
to store this kind of data, but since this book doesn’t cover databases, nor assumes
any prior experience with them, we’re going to store the data in a file for now.

CRUD part 1: Create

Saving JSON-encoded data in a file
Adding a tour

Form validation

Showing the submitted data in the form
Listing tours

Summary

Quiz

Challenge

21

9. CRUD part 2: The rest

We’ve successfully built a form that enables the user to add a tour to the list of tours.
The next step will be to allow the user to edit the tour, in case they made a typo, or
they just want to change part of its data. Before we can do that, we need a way to
identify the tour and say: I want to edit this tour, not that other tour. So whenever we
create a tour and add it to the $toursData array, we should also add an id property to
give it a unique identifier (ID). A unique ID could be a number that hasn’t been used
before. My suggestion would be to count the number of tours we have in $toursData

and add one to it. If we use the resulting number as an ID, the first tour would have
ID 1, the second 2, and so on. As long as we don’t delete elements from the array this
ID will be unique. Let’s modify create-tour.php so it will set an ID for every tour:

if (count($formErrors) === 0) {
// Provide a unique ID for this new tour:
$normalizedData['id'] = count($toursData) + 1;

$toursData[] = $normalizedData;

If you didn’t delete your tours. json at the end of the previous chapter, now is a good
time to do it. Existing data in tours. json doesn’t have an ID, so to ensure that all
tours will have an ID we need to get rid of the existing ones. Or, if you like, you can
also modify the JSON data and manually add IDs to the existing tours.

Now let’s see if the code actually works. Go to http://localhost:8000/create-tour, fill
out the form and submit it. Take a look at tours. json and you should see that the
first tour has "id": 1:

http://localhost:8000/create-tour

CRUD part 2: The rest 23

[

{
"destination": "Berlin",
"number_of_tickets_available": 10,
"is_accessible": true,
"id": 1

}

]

Create some other tours, and you should see that they each get their own unique ID.
Introducing some reusable elements

Editing tour data

Deleting tours

Summary

Quiz

Challenge

10. File uploads

What’s missing in the catalog of tours is a nice picture of the destination. We’d like
to allow administrators to upload a picture and show that picture on the detail page
of the tour (which, by the way, we don’t have yet). Allowing users to upload files
to the server is even more of a potential security risk than any other thing we did
before. People could upload all kinds of bad files: files that look like pictures but are
programs, pictures that show inappropriate things, crash the browser, etc. However,
since only an administrator should be able to upload pictures we don’t have to assume
the worst.

We need several ingredients that we’ll add one by one:

1. The create and edit form should be prepared for uploading a file.

2. After the form has been validated we should take the uploaded file and move
it to a place inside the document root.

3. We should save the filename in tours. json as well.

4. We should then show the image on the details page of a tour.

Adding a details page

First, let’s prepare the details page for the tour. This is where we show all the
information we have about a tour, including the picture. For now, we only have the
destination, the number of available tickets, and whether or not the tour is accessible.
So let’s start with that information. We assume that the tour ID is provided as a query
parameter. Then we can use the existing 1oad_tour_data() function to load the data
for this specific tour. In pages/ create a new file called tour .php and copy/paste the
following code into it:

File uploads

<7php
include(_DIR__ . '/functions/tour-crud.php');
include(__DIR__ . '/../bootstrap.php');

if (lisset($_GET['id'])) {
header('Location: /list-tours');
exit;

$tourId = (int)$_GET['id'];
$tourData = load_tour_data($tourlid);

include(__DIR__ . '/../_header.php');

2>
<h1>Tour to <?php

echo htmlspecialchars($tourData['destination'], ENT_QUOTES);
25</h1>
<p>This tour is <?php echo $tourData['is_accessible']

? 'accessible'

'not accessible'; 7>.</p>

<p>There are <7php

echo htmlspecialchars(

$tourData['number_of_tickets_available'], ENT_QUOTES

)i
?> tickets available.</p>
<?php
include(__DIR__ . '/../_footer.php');

To make this new page accessible we should add it to the $uriMap in index

25

.php too:

File uploads

$uriMap = |

'/create-tour' => 'create-tour.php',

'/list-tours' => 'list-tours.php',
'/edit-tour' => 'edit-tour.php',

'/delete-tour' => 'delete-tour.php',

'/tour' => 'tour.php',
Y/

Uploading a file

Processing the file upload
Showing the uploaded picture
Replacing the existing image

Form validation for file uploads

Summary

Quiz

26

11. Error handling

As soon as we started using a PHP server to serve .php scripts in Chapter 2 we
had to worry about errors and showing them in the browser. I mentioned back then
that you need to make a distinction between the website as it is still running on
your own computer and the website as it is running on a publicly accessible server.
You may find that people talk about this distinction in different ways. When you’re
working on your website on your own computer you’re running it “locally” or on
your “development server”. When it runs on a publicly accessible server it has been
“deployed” to the “production server”. We use different words here because these
are different contexts or environments and there will be some differences in server
configuration and behavior of the website depending on whether it runs locally or
on the production server. In this chapter we’ll improve the way our website handles
errors and we’ll make this dependent on the environment in which the website runs.

Producing an error

Before we can improve error handling, let’s create a file that produces an error, so we
can see how our website handles it. Create a new script in pages/ called oops. php.
Also add it to the $urlMap in index.php so we can open the page in the browser:

$urlMap = [
'/oops' => 'oops.php',
/S

1;

This isn’t going to be a real page, and we should remove it later, but we just need
a place where we can freely produce errors. The first type of error we have to deal
with is an exception'. You can use an exception to indicate that the script can’t do
what it was asked to do. We already saw one back in Chapter 9 where the function

'https://www.php.net/manual/en/language.exceptions.php

https://www.php.net/manual/en/language.exceptions.php
https://www.php.net/manual/en/language.exceptions.php

Error handling 28

load_tour_data(). The function “throws” an exception when it is asked to load data
for a tour that doesn’t exist:

function load_tour_data(int $id): array

{
$toursData = load_all_tours_data();
foreach ($toursData as $tourData) {
if ($tourData['id'] === $id) {
return $tourData;
}
}
throw new RuntimeException('Could not find tour with ID ' . $id);
}

In oops . php we’ll also throw an exception to see what that looks like for a user:
<?php

throw new RuntimeException('Something went wrong');

Start the PHP server if it isn’t already running:

php -S 0.0.0.0:8000 -t public/ -c php.ini

Then go to http://localhost:8000/00ps. You should see the following:

Fatal error: Uncaught RuntimeException: Something went wrong in /app/pages
/oops.php:3 Stack trace: #0 /app/public/index.php(21): include() #1 {main} thrown in
/app/pages/oops.php on line 3

Fatal error: Uncaught RuntimeException
The reason the error shows up on the page is because we have set the PHP setting

display_errors to On in our custom php.ini file. We loaded this file using the -c
command-line option.

http://localhost:8000/oops

Error handling 29

Seeing error messages on the screen is very useful for a developer like yourself: it
will help you fix issues quickly. But it would be quite embarrassing if this showed
up in the browser of an actual visitor of the website.

Using different configuration settings in
production

PHP errors
Ssummary

Quiz

12. Automated testing

I’'m always disappointed when book authors mention test automation only in the last
chapter, but here we are. Let’s talk about automated testing.

Testing is a very important part of a developer’s life. So far we’ve been making
changes in the code and “testing” it by going to the browser. This is called exploratory
testing, and you need a person for that. In this final chapter I'd like to show you a
technique that let’s the computer do the testing. By doing so you can save yourself
a lot of time clicking around the website.

What [think is even more useful about automated testing is that you can save the
tests and run them whenever you like. When you’re programming, a change in one
file might cause a problem in another file. Running the tests after every change
will expose such problems. This way tests become a safety net. That’s why they are
sometimes called regression tests: they will help you keep going forward.

Using Composer to install testing tools

Before we can write tests and run them we should first install some tools. There
are some excellent libraries available that you can use for the automated testing of
websites. Most frameworks offer their own tools for this too. In this case, I'd like to
use PHPUnit' in combination with Panther®. You can only install it using Composer
which is a tool for installing PHP packages (including libraries and frameworks) in
your project. In order to use Composer you first have to install it on your computer.
In the Terminal make sure that you are in the root directory of your project. Then
follow the setup instructions on Composer’s website’. When you’re done you should
have a composer . phar file in the root of your project. Now we can install PHPUnit
and Panther:

'https://phpunit.de/
*https://github.com/symfony/panther
*https://getcomposer.org/download/

https://phpunit.de/
https://github.com/symfony/panther
https://getcomposer.org/download/
https://phpunit.de/
https://github.com/symfony/panther
https://getcomposer.org/download/

Automated testing 31

php composer.phar require --dev \
phpunit/phpunit symfony/panther symfony/css-selector symfony/mime

It may take some time, but the output should look something like this:

Using version "0.7.1 for symfony/panther

./composer . json has been created

Loading composer repositories with package information
Updating dependencies (including require-dev)

Package operations: 15 installs, @ updates, @ removals

- Installing symfony/panther (v@.7.1): Downloading (100%)

Writing lock file
Generating autoload files

In your project you’ll now have a vendor/ directory (if you use Git for version control,
make sure that /vendor/ is in your .gitignore file). The vendor/ directory is where
all the third-party code can be found (so far Panther, PHPUnit and its dependencies).
You'll also see a composer . json file in the root directory of your project. This file
contains a list of all the packages that you have declared as dependencies of your
project. Yes, we'll need a lot of packages just to start creating automated tests. But
that’s because all these packages make a lot of complicated things really easy for us.

Automated testing 32

A first test

Creating our first browser test

A test for the pictures page
Starting with a clean slate
Troubleshooting and suggestions
Summary

Quiz

Challenge

13. Conclusion
Object-oriented programming
Frameworks

Testing

Parting words

14. Appendix A: Installing PHP
on Windows

Appendix B: Answers to the quiz questions 36

15. Appendix B: Answers to the
guiz questions

Chapter 1
Chapter 2
Chapter 3
Chapter 4
Chapter 5
Chapter 6
Chapter 7
Chapter 8
Chapter 9
Chapter 10
Chapter 11

Chapter 12

16. End of the sample file

Thanks for downloading the sample file! I hope you liked it and of course I hope
yowll buy the full version of the book. Use this link to get it for only 9 dollars:
http://leanpub.com/learning-php-for-the-web-without-a-framework/c/SAMPLE

You can reach me on Twitter (@matthiasnoback® or send an email to info@matthiasnoback.nl?.

'https://twitter.com/matthiasnoback
“mailto:info@matthiasnoback.nl

https://twitter.com/matthiasnoback
mailto:info@matthiasnoback.nl
https://twitter.com/matthiasnoback
mailto:info@matthiasnoback.nl

	Table of Contents
	Introduction
	Who should read this book?
	Getting started
	Bash
	PHP Runtime
	An IDE that works well with PHP
	Firefox

	An overview of the contents
	The source code
	Acknowledgements
	Feedback and suggestions
	Changelog
	31 January 2021

	Serving resources
	Serving an index.html file with the built-in web server
	Adding a favicon
	Security announcement: The project root should not be the document root
	Communication between the browser and the server
	Summary
	Quiz

	Serving PHP scripts
	The response: status, headers and body
	Building up a response
	Linking to other pages
	Passing values between requests
	Security announcement: user input can't be trusted
	Summary
	Quiz

	Forms
	Submitting form data as query parameters
	Security announcement: Always use output escaping
	Adding a select element to the form
	Submitting data via the request body
	Summary
	Quiz

	Cookies
	Setting a cookie
	Using a cookie
	Set-Cookie is a response header, Cookie a request header
	Redirecting after processing a POST request
	Security announcement: cookies can be manipulated without you knowing
	Summary
	Quiz
	Challenge

	Sessions
	Session files and serialized data
	Flash messages
	Using flash messages everywhere
	Summary
	Quiz

	Authentication
	A secret page
	Setting up a login form
	Validating the username and the password
	Logging out
	Summary
	Quiz

	Project structure
	Header and footer snippets
	Passing variables to snippets
	Flash messages revisited
	Bootstrapping
	From .html to .php
	Adding navigation
	Adding a stylesheet
	Routing
	Summary
	Quiz
	Challenge

	CRUD part 1: Create
	Saving JSON-encoded data in a file
	Adding a tour
	Form validation
	Showing the submitted data in the form
	Listing tours
	Summary
	Quiz
	Challenge

	CRUD part 2: The rest
	Introducing some reusable elements
	Editing tour data
	Deleting tours
	Summary
	Quiz
	Challenge

	File uploads
	Adding a details page
	Uploading a file
	Processing the file upload
	Showing the uploaded picture
	Replacing the existing image
	Form validation for file uploads
	Summary
	Quiz

	Error handling
	Producing an error
	Using different configuration settings in production
	PHP errors
	Summary
	Quiz

	Automated testing
	Using Composer to install testing tools
	A first test
	Creating our first browser test
	A test for the pictures page
	Starting with a clean slate
	Troubleshooting and suggestions
	Summary
	Quiz
	Challenge

	Conclusion
	Object-oriented programming
	Frameworks
	Testing
	Parting words

	Appendix A: Installing PHP on Windows
	Appendix B: Answers to the quiz questions
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12

	End of the sample file

