i1

Learning Hammerspoon

Unleash the power of automation on your Mac

Diego Zamboni
This book is for sale at http://leanpub.com/learning-hammerspoon

This version was published on 2020-08-10

)

Leanpub

This is a Leanpub book. Leanpub empowers authors and publishers
with the Lean Publishing process. Lean Publishing is the act of
publishing an in-progress ebook using lightweight tools and many
iterations to get reader feedback, pivot until you have the right book
and build traction once you do.

© 2018 - 2020 Diego Zamboni

http://leanpub.com/learning-hammerspoon
http://leanpub.com/
http://leanpub.com/manifesto

Tweet This Book!

Please help Diego Zamboni by spreading the word about this book on
Twitter!

The suggested hashtag for this book is #learning-hammerspoon.

Find out what other people are saying about the book by clicking on
this link to search for this hashtag on Twitter:

#learning-hammerspoon

http://twitter.com
https://twitter.com/search?q=%23learning-hammerspoon
https://twitter.com/search?q=%23learning-hammerspoon

Also By Diego Zamboni

Learning CFEngine
Utilerias de Unix
Literate Configuration

Publishing with Emacs, Org-mode and Leanpub

http://leanpub.com/u/zzamboni
http://leanpub.com/learning-cfengine
http://leanpub.com/utilerias-unix
http://leanpub.com/lit-config
http://leanpub.com/emacs-org-leanpub

Para Susi, Kari, Fabi y Nube

Contents

1. Preface to the booksample. 1
Preface to the earlyrelease i
Releasenotes i i
Introduction iii
Mac automation L iii
What willyoulearn? iii
Conventions Used in ThisBook iii
Getting started with Hammerspoon iv
What is Hammerspoon? it iv
How does Hammerspoon work? v
Installing Hammerspoon Vi
Your first Hammerspoon configuration vii
The Hyperkey viii
Keeping private information separate xi
Debugging tools and the Hammerspoon console xii
Using Spoons in Hammerspoon XV
Using a Spoon to locate your mouse XV
Automated Spoon installation and configuration XX
Just enough Lua to be productive with Hammerspoon xxiv
Flowcontrol XXiv
Dot-vs-colon method accessinlLua. XXiv
Functions e Xxiv
Tables e XXiv
Tables asnamespaces XXV

Patterns e XXV

CONTENTS

String manipulation o Lo L XXV
Learningmore Lua, XXV
DRAFT Exploring the Hammerspoon API XXVi
Events and Hotkeys XXVi
Window, Menus and Screen Manipulation xxVvii
On-screen Drawing, Images and Alerts xxvii
Application and Process Manipulation xXxXVii
Soundand Music xxviii
Networkingand Web xxviii
System and Device Manipulation xxviii
Data Processing and Utilities xxviii
Hammerspoonitself xxviii
DRAFT Hammerspoon cookbook, tips and tricks xxix
Tip: be mindful of garbage collection XXix
Show Homebrew packageinfo XXix
Tip: using asynchronous methods XXix
Transform URLs before openingthem XXix
Other resources and configuration examples XXX
Writing your own extensions and Spoons xxxi
Writinganew Spoon e xxxi
Writing a Hammerspoon extensioninLua XxXXii
Using and extending Seal xxxiii
Using Seal xxxiii
Writing your own Seal plugins xxxiii

Colophon XXxiv

1. Preface to the book sample

Thank you for downloading this book sample! In it you get to key
chapters of the book which will help you get started with Hammerspoon
and the use of Spoons to make life on your Mac easier.

I hope you will find it useful, and encourage you to get the full book
to learn a lot more about advanced uses of Hammerspoon, including
how to write your own Hammerspoon configuration in Lua, and how to
develop your own Spoons.

In addition to this book sample, please take a look at ther Hammerspoon-
related articles in my blog at https://zzamboni.org/tags/hammerspoon/,
and at my “Hammerspoon” channel in YouTube, where you will find
short videos that explain in a hands-on way some of the concepts that
you find in this book: https://www.youtube.com/playlist?list=PLTZ6fO4RcbeOCZC

If you have any feedback or questions about this book, please visit the
“Email the Author” page at https://leanpub.com/learning-hammerspoon/
email author/new.

Follow me on Twitter at https://twitter.com/zzamboni for more updates.

https://zzamboni.org/tags/hammerspoon/
https://www.youtube.com/playlist?list=PLTZ6fO4RcbeOCZQ8OPTfq6KmUYDIC0OFL
https://leanpub.com/learning-hammerspoon/email_author/new
https://leanpub.com/learning-hammerspoon/email_author/new
https://twitter.com/zzamboni

Preface to the early release

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/learning-hammerspoon.

Release notes

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/learning-hammerspoon.

August 2020

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/learning-hammerspoon.

December 2019

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/learning-hammerspoon.

November 2019

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/learning-hammerspoon.

August 2019

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/learning-hammerspoon.

http://leanpub.com/learning-hammerspoon
http://leanpub.com/learning-hammerspoon
http://leanpub.com/learning-hammerspoon
http://leanpub.com/learning-hammerspoon
http://leanpub.com/learning-hammerspoon
http://leanpub.com/learning-hammerspoon

Preface to the early release ii

April 8th, 2019

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/learning-hammerspoon.

October 2018

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/learning-hammerspoon.

http://leanpub.com/learning-hammerspoon
http://leanpub.com/learning-hammerspoon

Introduction

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/learning-hammerspoon.

Mac automation

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/learning-hammerspoon.

What will you learn?

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/learning-hammerspoon.

Conventions Used in This Book

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/learning-hammerspoon.

http://leanpub.com/learning-hammerspoon
http://leanpub.com/learning-hammerspoon
http://leanpub.com/learning-hammerspoon
http://leanpub.com/learning-hammerspoon

Getting started with
Hammerspoon

What is Hammerspoon?

Hammerspoon is a Mac application that allows you to achieve an
unprecedented level of control over your Mac. Hammerspoon enables
interaction with the system at multiple layers-from low-level file system
or network access, mouse or keyboard event capture and generation,
all the way to manipulating applications or windows, processing URLSs
and drawing on the screen. It also allows interfacing with AppleScript,
Unix commands and scripts, and other applications. Hammerspoon
configuration is written in Lua, a popular embedded programming
language.

Using Hammerspoon, you can replace many stand-alone Mac utilities
for controlling or customizing specific aspects of your Mac (the kind that
tends to overcrowd the menubar). For example, the following are doable
using Hammerspoon (these are all things I do with it on my machine -
you can see the configuration for these in my own Hammerspoon config
file):

* Add missing or more convenient keyboard shortcuts to applica-
tions, even for complex multi-step actions. For example: automated
tagging and filing in Evernote, mail/note archival in Mail, Outlook
and Evernote, filing items from multiple applications to OmniFocus
using consistent keyboard shortcuts, or muting/unmuting a conver-
sation in Skype.

* Open URLs in different browsers based on regular expression pat-
terns. When combined with Site-specific Browsers (I use Epichrome),
this allows for highly flexible management of bookmarks, plugins
and search configurations.

http://www.hammerspoon.org/
https://www.macosxautomation.com/applescript/
https://www.lua.org/about.html
https://github.com/zzamboni/dot-hammerspoon/blob/master/init.org
https://github.com/zzamboni/dot-hammerspoon/blob/master/init.org
https://github.com/dmarmor/epichrome

Getting started with Hammerspoon v

* Replace Spotlight, Lacona and other launchers with a fully config-
urable, extensible launcher, which allows not only to open applica-
tions, files and bookmarks, but to trigger arbitrary Lua functions.

* Manipulate windows using keyboard shortcuts to resize, move and
arrange them.

* Set up actions to happen automatically when switching between
WiFi networks-for example for reconfiguring proxies in some ap-
plications.

* Keyboard-triggered translation of selected text between arbitrary
human languages.

* Keep a configurable and persistent clipboard history.

* Automatically pause audio playback when headphones are un-
plugged.

Hammerspoon is the most powerful Mac automation utility I have ever
used. If you are a programmer, it can make using your Mac vastly more
fun and productive.

How does Hammerspoon work?

Hammerspoon acts as a thin layer between the operating system and a
Lua-based configuration language. It includes extensions for querying
and controlling many aspects of the system. Some of the lower-level
extensions are written in Objective-C, but all of them expose a Lua API,
and it is trivial to write your own extensions or modules to extend its
functionality.

From the Hammerspoon configuration you can also execute external
commands, run AppleScript or JavaScript code using the OSA script-
ing framework, establish network connections and even run network
servers; you can capture and generate keyboard events, detect network
changes, USB or audio devices being plugged in or out, changes in
screen or keyboard language configuration; you can draw directly on
the screen to display whatever you want; and many other things. Take
a quick look at the Hammerspoon API index page to get a feeling of its

http://www.hammerspoon.org/docs/index.html

Getting started with Hammerspoon Vi

extensive capabilities. And that is only the libraries that are built into
Hammerspoon. There is an extensive and growing collection of Spoons,
modules written in pure Lua that provide additional functionality and
integration. And of course, the configuration is simply Lua code, so you
can write your own code to do whatever you want.

Interested? Let’s get started!

Installing Hammerspoon

Hammerspoon is a regular Mac application. To install it by hand,
you just need to download it from https://github.com/Hammerspoon/
hammerspoon/releases/latest, unzip the downloaded file and drag it to
your /Applications folder (or anywhere else you want).

If you are automation-minded like me, you probably use Homebrew and
its plugin Cask to manage your applications. In this case, you can use
Cask to install Hammerspoon:

brew cask install hammerspoon

When you run Hammerspoon for the first time, you will see its icon
appear in the menubar, and a notification telling you that it couldn’t
find a configuration file. Let’s fix that!

Hammerspoon
No config file found Close
Click here for the Getting Started Guide

If you click on the initial notification, your web browser will
open to the excellent Getting Started with Hammerspoon page,
which I highly recommend you read for more examples.

http://www.hammerspoon.org/Spoons/
https://github.com/Hammerspoon/hammerspoon/releases/latest
https://github.com/Hammerspoon/hammerspoon/releases/latest
https://brew.sh/
https://caskroom.github.io/
http://www.hammerspoon.org/go/

Getting started with Hammerspoon vii

Your first Hammerspoon configuration

Let us start with a few simple examples. As tradition mandates, we will
start with a “Hello World” example. Open $HOME/ .hammerspoon/init.lua
(Hammerspoon will create the directory upon first startup, but you need
to create the file) in your favorite editor, and type the following:

hs.hotkey.bindSpec({ { "ctrl", "cmd", "alt" }, "h" },
function()
hs.notify.show("Hello World!", "Welcome to Hammerspoon", "")
end

)

Save the file, and from the Hammerspoon icon in the menubar, select
“Reload config”. Apparently nothing will happen, but if you then press
Ctrl-Alt-#-honyour keyboard, you will see a notification on your screen
welcoming you to the world of Hammerspoon.

Hello World!
& Close
Welcome to Hammerspoon

Although it should be fairly self-explanatory, let us dissect this example
to give you a clearer understanding of its components:

* All Hammerspoon built-in extensions start with hs. In this case,
hs.hotkey is the extension that handles keyboard bindings. It allows
us to easily define which functions will be called in response to dif-
ferent keyboard combinations. You can even differentiate between
the keys being pressed, released or held down if you need to. The
other extension used in this example is hs.notify, which allows us
to interact with the macOS Notification Center to display, react and
interact with notifications.

https://www.hammerspoon.org/docs/hs.hotkey
https://www.hammerspoon.org/docs/hs.notify

Getting started with Hammerspoon viii

* Within hs.hotkey, the hs.hotkey.bindSpec function allows you to
bind a function to a pressed key. Its first argument is a key
specification which consists of a list (Lua lists and table literals are
represented using curly braces) with two elements: a list of the key
modifiers, and the key itself. In this example, { { "ctrl", "cmd",
"alt" }, "h" } represents pressing Ctrl-Alt--h.

* The second argument to bindSpec is the function to call when the
key is pressed. Here we are defining an inline anonymous function
using function() ... end.

* The callback function uses hs.notify.show to display the message.
Take a quick look at the hs.notify documentation to get an idea of
its extensive capabilities, including configuration of all aspects of
a notification’s appearance and buttons, and the functions to call
upon different user actions.

Try changing the configuration to display a different message or use a
different key. After every change, you need to instruct Hammerspoon
to reload its configuration, which you can do through its menubar item
(although we will learn how to automate it below).

The Hyper key

You will notice through this book that we use the Ctrl1-Alt-% combination
very frequently in our keybindings. The idea behind this is to use a
modifier key combination which is never used by other applications, so
that we can setup global Hammerspoon keybindings without worrying
about conflicts with application-specific key bindings.

To avoid having to type {"ctrl","alt","cmd"} every time in the config-
uration file, we can define them as variable. For example, I have the
following at the top of my init.lua:

hyper = { "ctrl", "alt", "cmd" }
shift_hyper = { "shift", "ctrl", "alt", "cmd" }

Then we can simply use hyper or shift hyper in our key binding
declarations. The example above becomes:

https://www.hammerspoon.org/docs/hs.hotkey#bindSpec
https://www.hammerspoon.org/docs/hs.notify#show
https://www.hammerspoon.org/docs/hs.notify

Getting started with Hammerspoon ix

hs.hotkey.bindSpec({ hyper, "h" },
function()
hs.notify.show("Hello World!", "Welcome to Hammerspoon", "")
end

I find Ctrl-Alt-% handy because the three keys are next to each other
in a row right next to the spacebar in my keyboard, so I can easily hit
them as a chord. You are of course free to use a different combination
depending on your preferences and your keyboard layout.

All the keybinding examples in this book will assume you have
defined the hyper variable to represent the modifier key combi-
nation you want to use for most of your global keybindings.

Mapping a single key as Hyper using Karabiner
Elements

If you have a real, physical key to spare in your keyboard, you may want
to map it as Hyper. For example, some people like to use the Caps Lock
key as Hyper (I remap my Caps Lock key as a second Ctrl key, which
I find more useful). To achieve this, you can use another free utility
called Karabiner Elements, which allows you to do low-level keyboard
remapping with use. You first need to install Karabiner:

brew cask install karabiner-elements

Karabiner needs to install a kernel extension to do its work, and recent
versions of macOS will block it by default. You will get a dialog notifying
you about this, and asking you to use the Security Preferences Pane
to allow it if you want. Once you click “Allow” in this pane, Karabiner
should be ready to use:

https://pqrs.org/osx/karabiner/

Getting started with Hammerspoon X

o < HiE Security & Privacy kel

m FilevVault ~ Firewall Privacy

A login password has been set for this user Change Password...

' Require password { after sleep or screen saver begins

v

Allow your Apple Watch to unlock your Mac

Allow apps downloaded from:

System software from developer “Fumihiko Takayama” was blocked Allow
from loading. k

[E5 Click the lock to make changes. ?

Once you run the Karabiner-Elements app, you can remap the Caps Lock
key to any other key. Within the “Simple Modifications” tab you could,
for example, remap Caps Lock to a nonexisting function key such as F20:

Getting started with Hammerspoon Xi

[) (] Karabiner-Elements Preferences
W Function Keys ~ Complex Modifications Devices Virtual Keyboard Profiles Misc Log
Target Device: For all devices u

From key To key

caps_lock a 20 a @ Remove

© Add item

You need to map the hyper and shift hyper variables in your Hammer-
spoon configuration according to the key you used. For example:

hyper = { "f20" }
shift_hyper = { "shift", "f20" }

Afterwards, you can use hyper and shift hyper in your keybindings as
shown before.

Keeping private information separate

It makes sense to keep your configuration files (as you should most other
files) under control of a version control system like Git or Mercurial. This
allows you to keep track of changes you make to your files, and it also
makes it easy to share your configuration with others, for example by
keeping them in Github or BitBucket.

However, it is also common to have in your configuration pieces of infor-
mation that you do not want to share publicly: passwords, authentication

Getting started with Hammerspoon xii

tokens, or simply experimental code that you are not ready to share
yet. In theses cases, you can keep some configuration in separate files
that are not committed to your shared files. In Lua, you can read an
external file as code using the dofile() function. You can have a “local-
only” configuration file which is read from your main init.lua file:

local localfile = hs.configdir .. "/init-local.lua"

if hs.fs.attributes(localfile) then
dofile(localfile)

end

A couple of noteworthy points about this code:

* We use the hs.configdir variable instead of hardcoding the path.
This ensures that the code will execute properly even if (for some
reason) the configuration directory is stored somewhere else.

* The dofile() function throws an error if the file contains a syntax
error which we want, but also if the file does not exist, which we do
not want. For this reason we enclose the call to dofile in a check
for existence of the file. Lua does not have a function to explicitly
check for file existence, but we can use hs.fs.attributes, which
returns nil if the file cannot be found.

Debugging tools and the Hammerspoon
console

As you start modifying your configuration, errors will happen, as they
always do when coding. To help in development and debugging, Ham-
merspoon offers a console window where you can see any errors and
messages printed by your Lua code as it executes, and also type
code to be evaluated. It is a very useful tool while developing your
Hammerspoon configuration.

To invoke the console, you normally choose “Console...” from the Ham-
merspoon menubar item. However, this is such a common operation,
that you might find it useful to also set a key combination for showing the

https://www.lua.org/manual/5.3/manual.html#pdf-dofile
https://www.lua.org/manual/5.3/manual.html#pdf-dofile
https://www.hammerspoon.org/docs/hs.fs#attributes

Getting started with Hammerspoon xiii

console. Most of Hammerspoon’s internal functionality is also accessible
through its API. In this case, looking at the documentation for the main
hs module reveals that there is an hs.toggleConsole function. Using the
knowledge you have acquired so far, you can easily configure a hotkey
for opening and hiding the console:

hs.hotkey.bindSpec({ hyper, "y" }, hs.toggleConsole)

Once you reload your configuration, you should be able to use Ctrl-
Alt-#-y to open and close the console. Any Lua code you type in the
Console will be evaluated in the main Hammerspoon context, so you
can add to your configuration directly from there. This is a good way to
incrementally develop your code before committing it to the init.lua
file.

You may have noticed by now another common operation while de-
veloping Hammerspoon code: reloading the configuration, which you
normally have to do from the Hammerspoon menu. So why not set up a
hotkey to do that as well? Again, the hs module comes to our help with
the hs.reload method:

hs.hotkey.bindSpec({ hyper, "r" }, hs.reload)

Another useful development tool is the hs command, which you can run
from your terminal to get a Hammerspoon console. To install it, you
can use the hs.ipc.cliInstall function, which you can just add to your
init.luafile to check and install the command every time Hammerspoon
runs.

/usr/local/ to the hs command and its manual page file,
located inside the Hammerspoon application bundle. Under
some circumstances (particularly if you build Hammerspoon
from source, or if you install different versions of it), you may
end up with broken symlinks. If the hs command stops working
and hs.ipc.cliInstall() doesn’t fix it, look for broken symlinks
left behind from old versions of Hammerspoon. Remove them
and things should work again.

g The hs.ipc.cliInstall function creates symlinks under

https://www.hammerspoon.org/docs/hs
https://www.hammerspoon.org/docs/hs
https://www.hammerspoon.org/docs/hs#toggleConsole
https://www.hammerspoon.org/docs/hs
https://www.hammerspoon.org/docs/hs#reload
https://www.hammerspoon.org/docs/hs.ipc#cliInstall
https://www.hammerspoon.org/docs/hs.ipc#cliInstall

Getting started with Hammerspoon Xiv

Now you have all the tools for developing your Hammerspoon configu-
ration.

Using Spoons in
Hammerspoon

Spoons are modules written in Lua which can be easily installed and
loaded into Hammerspoon to provide ready-to-use functionality. Spoons
provide a predefined API to configure and use them. They are also a
good way to share your own work with other users.

Using a Spoon to locate your mouse

As a first example, we will use the MouseCircle spoon, which allows us
to set up a hotkey that displays a color circle around the current location
of the mouse pointer for a few seconds, to help you locate it.

To install the spoon, download its zip file from https://www.hammerspoon.
org/Spoons/MouseCircle.html, unpack it, and double-click on the result-
ing MouseCircle.spoon file. Hammerspoon will install the Spoon under
~/ .hammerspoon/Spoons/.

Once a Spoon is installed, you need to use the hs.loadSpoon() function
to load it. Type the following in the Hammerspoon console, or add it to
your init.lua file and reload the configuration:

hs.loadSpoon("MouseCircle")

After a spoon is loaded, and depending on what it does, you may need
to configure it, assign hotkeys, and start it. A spoon’s API is available
through the spoon.<SpoonName> namespace. To learn the API you need to
look at the spoon documentation page. In the case of MouseCircle, a look
at http://www.hammerspoon.org/Spoons/MouseCircle.html reveals that
it has two methods (bindHotkeys() and show()) and one configuration
variable (color) available under spoon.MouseCircle.

http://www.hammerspoon.org/Spoons/MouseCircle.html
https://www.hammerspoon.org/Spoons/MouseCircle.html
https://www.hammerspoon.org/Spoons/MouseCircle.html
http://www.hammerspoon.org/Spoons/MouseCircle.html

Using Spoons in Hammerspoon XVi

The first API call is spoon.MouseCircle:bindHotkeys (), which allows us to
set up a hotkey that shows the mouse locator circle around the location
of the mouse pointer. Let’s say we wanted to bind the mouse circle to
Ctrl-Alt-%-d. According to the MouseCircle documentation, the name
for this action is show, so we can do the following:

spoon.MouseCircle:bindHotkeys ({
show = { hyper, "d" }
1)

See The “Hyper” key for instructions on how to set up the hyper
variable, if you have not done so yet.

Once you do this, press the hotkey and you should see a red circle appear
around the mouse cursor, and fade away after 3 seconds.

All spoons which offer the possibility of binding hotkeys have to
expose it through the same API:

spoon.SpoonName:bindHotkeys({ actionl = keySpecl,
action2 = keySpec2, ... })

Each actionX is a name defined by the spoon, which refers to
something that can be bound to a hotkey, and each keySpecX is
a table with two elements: a list of modifiers and the key itself,
such as { { "ctrl", "cmd", "alt" }, "d" } (or equivalently, {
hyper, "d"})

The second API call in the MouseCircle spoon is show(), which triggers
the functionality of showing the locator circle directly. Let’s try it! Type
the following in the console:

spoon.MouseCircle:show()

Most spoons are structured like this: you can set up hotkeys to trigger
the main functionality, but you can also trigger it via method calls.

Using Spoons in Hammerspoon xvii

Normally you won’t use these methods, but their availability makes it
possible for you to use spoon functionality from our own configuration,
or from other spoons, to create further automation.

spoon.MouseCircle.color is a public configuration variable exposed by
the spoon, which specifies the color that will be used to draw the
circle. Colors are defined according to the documentation for the
hs.drawing.color module. Several color collections are supported, in-
cluding the OS X system collections and a few defined by Hammerspoon
itself. Color definitions are stored in Lua tables indexed by their name.
For example, you can view the hs.drawing.color.hammerspoon table,
including the color definitions, by using the convenient hs.inspect
method on the console:

> hs.inspect(hs.drawing.color.hammerspoon)

{
black = {

+

osx red = {
alpha = 1,
blue = 0.302,
green = 0.329,
red = 0.996

+

osx_green = {

https://www.hammerspoon.org/docs/hs.drawing.color
https://www.hammerspoon.org/docs/hs.drawing.color#hammerspoon
https://www.hammerspoon.org/docs/hs.inspect

Using Spoons in Hammerspoon xviii

Lua does not include a function to easily get the keys of a
table so you have to use the pairs() function to loop over
the key/value pairs of the table. The hs.inspect function is
convenient, but to get just the list of tables and the color
names, without the color definitions themselves, you can use
the following code (if you type this in the console you have to
type it all in a single line - and beware, the output is a long list):

for listname,colors in pairs(hs.drawing.color.lists()) do

print(listname)
for color,def in pairs(colors) do
print(" " .. color)
end
end

If we wanted to make the circle green, we can assign the configuration
value like this:

spoon.MouseCircle.color = hs.drawing.color.hammerspoon.green

The next time you invoke the show() method, either directly or through
the hotkey, you will see the circle in the new color.

https://www.lua.org/manual/5.3/manual.html#pdf-pairs
https://www.hammerspoon.org/docs/hs.inspect

Using Spoons in Hammerspoon

You may have noticed that we accessed the configuration vari-
able with a dot (spoon.MouseCircle.color), and we also used it
for some function calls (e.g. hs.notify.show, whereas for show()
we used a colon (spoon.MouseCircle:show()). The latter is Lua’s
object-method-call notation, and its effect is to implicitly pass
the object as an implicit first argument called self. This is
simply a syntactic shortcut, i.e. the following two are equivalent:

spoon.MouseCircle:show()
spoon.MouseCircle.show(spoon.MouseCircle)

Normally you would use colon notation, but the alternative can
be useful when constructing function pointers. For example, if
you wanted to bind a second key to show the mouse circle, you
might initially try the following:

hs.hotkey.bindSpec({ hyper, "p" },
spoon.MouseCircle:show)

But this results in an error. The correct way is to wrap the call
in an anonymous function:

hs.hotkey.bindSpec({ hyper, "p" 1},
function() spoon.MouseCircle:show() end)

Alternatively, you can use the hs.fnutils.partial function to
construct a function pointer that includes the correct first
argument:

hs.hotkey.bindSpec({ hyper, "p" },
hs.fnutils.partial(spoon.MouseCircle.show,
spoon.MouseCircle))

Lua supports using functions as first-class values, and the
hs.fnutils extension includes a number of functions that make
it easy to use them.

Xix

By now you know enough to use spoons with Hammerspoon’s native
capabilities: look for the ones you want, download and install them by
hand, and configure them in your init.lua using their configuration

https://www.hammerspoon.org/docs/hs.notify#show
https://www.hammerspoon.org/docs/hs.fnutils#partial
https://www.hammerspoon.org/docs/hs.fnutils
http://www.hammerspoon.org/Spoons/

Using Spoons in Hammerspoon XX

variables and API. In the next section we will explore how to install and
configure spoons in a more automated way.

Automated Spoon installation and
configuration

Once you develop a complex Hammerspoon configuration using spoons,
you may start wondering if there is an easy way to manage them.
There are no built-in mechanisms for automatically installing spoons,
but you can use a spoon called Spoonlnstall that implements this
functionality. You can download it from http://www.hammerspoon.org/
Spoons/Spoonlinstall.html. Once installed, you can use it to declaratively
install, configure and run spoons. For example, with SpoonInstall you
can use the MouseCircle spoon as follows:

hs.loadSpoon("SpoonInstall")
spoon.SpoonInstall:andUse("MouseCircle", {
config = {
color = hs.drawing.color.osx_ red,

b
hotkeys = {

show = { hyper, "d" }
139

If the MouseCircle spoon is not yet installed, spoon.SpoonInstall:andUse()
will automatically download and install it, and set its configuration
variables and hotkeys according to the declaration.

If there is nothing to configure in the spoon, spoon.SpoonInstall:and-
Use("SomeSpoon") does exactly the same as hs.loadSpoon("SomeSpoon").
But if you want to set configuration variables, hotkey bindings or other
parameters, the following keys are recognized in the map provided as a
second parameter:

* config is a Lua table containing keys corresponding to configu-
ration variables in the spoon. In the example above, config = {

http://www.hammerspoon.org/Spoons/SpoonInstall.html
http://www.hammerspoon.org/Spoons/SpoonInstall.html
http://www.hammerspoon.org/Spoons/SpoonInstall.html

Using Spoons in Hammerspoon XXi

color = hs.drawing.color.osx red } has the same effect as setting
spoon.MouseCircle.color = hs.drawing.color.osx red

* hotkeys is a Lua table with the same structure as the mapping
parameter passed to the bindHotkeys method of the spoon. In
our example above, hotkeys = { show = { hyper, "d" } }automat-
ically triggers a call to spoon.MouseCircle:bindHotkeys({ show = {
hyper, "d" } }).

* loglevel sets the log level of the logger attribute within the spoon,
if it exists. The valid values for this attribute are ‘nothing’, ‘error’,
‘warning’, ‘info’, ‘debug’, or ‘verbose’.

* start is a boolean value which indicates whether to call the Spoon’s
start() method (if it has one) after configuring everything else.

» fn specifies a function which will be called with the freshly-loaded
Spoon object as its first argument. This can be used to execute other
startup or configuration actions that are not covered by the other
attributes. For example, if you use the Seal spoon (a configurable
launcher), you need to call its loadPlugins() method to specify
which Seal plugins to use. You can achieve this with something like
this:

spoon.SpoonInstall:andUse("Seal",
{ hotkeys = { show = { {"cmd"}, "space" } },
fn = function(s)
s:loadPlugins({"apps", "calc", "safari bookmarks"})
end,
start = true,

}

* repo indicates the repository from where the Spoon should be
installed if needed. Defaults to "default", which indicates the
official Spoon repository at http://www.hammerspoon.org/Spoons/.
I keep a repository of unofficial Spoons at http://zzamboni.github.
io/zzSpoons/, and others may be available by the time you read this.

* disable can be set to true to disable the Spoon (easier than
commenting it out when you want to temporarily disable a spoon)
in your configuration.

http://www.hammerspoon.org/Spoons/Seal
http://www.hammerspoon.org/Spoons/
http://zzamboni.github.io/zzSpoons/
http://zzamboni.github.io/zzSpoons/

Using Spoons in Hammerspoon xxii

You can assign functions and modules to variables to improve
readability of your code. For example, in my init. lua file I make
the following assignment:

Install=spoon.SpoonInstall

Which allows me to write Install:andUse("MouseCircle",...),
which is shorter and easier to read.

Managing repositories and spoons using Spooninstall

Apart from the andUse() “all-in-one” method, SpoonlInstall has methods
for specific repository- and spoon-maintenance operations. As of this
writing, there are two Spoon repositories: the official one at http://www.
hammerspoon.org/Spoons/, and my own at http://zzamboni.github.io/
zzSpoons/, where I host some unofficial and in-progress Spoons.

The configuration variable used to specify repositories is SpoonIn-
stall.repos. Its default value is the following, which configures the
official repository identified as “default”:

{
default = {
url = "https://github.com/Hammerspoon/Spoons",
desc = "Main Hammerspoon Spoon repository",
}
}

To configure a new repository, you can define an extra entry in this
variable. The following code creates an entry named “zzspoons” for my
Spoon repository:

http://www.hammerspoon.org/Spoons/
http://www.hammerspoon.org/Spoons/
http://zzamboni.github.io/zzSpoons/
http://zzamboni.github.io/zzSpoons/

Using Spoons in Hammerspoon xxiii

spoon.SpoonInstall.repos.zzspoons = {
url = "https://github.com/zzamboni/zzSpoons",
desc = "zzamboni's spoon repository",

After this, both “zzspoons” and “default” can be used as values to
the repo attribute in the andUse() method, and in any of the other
methods that take a repository identifier as a parameter. You can find
the full API documentation at http://www.hammerspoon.org/Spoons/
Spoonlnstall.html.

http://www.hammerspoon.org/Spoons/SpoonInstall.html
http://www.hammerspoon.org/Spoons/SpoonInstall.html

Just enough Lua to be
productive with Hammerspoon

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/learning-hammerspoon.

Flow control

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/learning-hammerspoon.

Dot-vs-colon method access in Lua

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/learning-hammerspoon.

Functions

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/learning-hammerspoon.

Tables

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/learning-hammerspoon.

http://leanpub.com/learning-hammerspoon
http://leanpub.com/learning-hammerspoon
http://leanpub.com/learning-hammerspoon
http://leanpub.com/learning-hammerspoon
http://leanpub.com/learning-hammerspoon

Just enough Lua to be productive with Hammerspoon XXV

Tables as namespaces

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/learning-hammerspoon.

Patterns

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/learning-hammerspoon.

String manipulation

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/learning-hammerspoon.

Learning more Lua

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/learning-hammerspoon.

http://leanpub.com/learning-hammerspoon
http://leanpub.com/learning-hammerspoon
http://leanpub.com/learning-hammerspoon
http://leanpub.com/learning-hammerspoon

DRAFT Exploring the
Hammerspoon API

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/learning-hammerspoon.

Events and Hotkeys

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/learning-hammerspoon.

hs.hotkey and hs.hotkey.modal

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/learning-hammerspoon.

hs.keycodes and hs.keycodes.map

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/learning-hammerspoon.

hs.eventtap and hs.eventtap.event

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/learning-hammerspoon.

hs.mouse

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/learning-hammerspoon.

http://leanpub.com/learning-hammerspoon
http://leanpub.com/learning-hammerspoon
http://leanpub.com/learning-hammerspoon
http://leanpub.com/learning-hammerspoon
http://leanpub.com/learning-hammerspoon
http://leanpub.com/learning-hammerspoon

DRAFT Exploring the Hammerspoon API XXVvii

Window, Menus and Screen Manipulation

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/learning-hammerspoon.

hs.screen

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/learning-hammerspoon.

hs.window and other window-manipulation libraries

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/learning-hammerspoon.

Other modules

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/learning-hammerspoon.

On-screen Drawing, Images and Alerts

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/learning-hammerspoon.

Application and Process Manipulation

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/learning-hammerspoon.

http://leanpub.com/learning-hammerspoon
http://leanpub.com/learning-hammerspoon
http://leanpub.com/learning-hammerspoon
http://leanpub.com/learning-hammerspoon
http://leanpub.com/learning-hammerspoon
http://leanpub.com/learning-hammerspoon

DRAFT Exploring the Hammerspoon API xXxXVviii

Sound and Music

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/learning-hammerspoon.

Networking and Web

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/learning-hammerspoon.

System and Device Manipulation

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/learning-hammerspoon.

Data Processing and Utilities

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/learning-hammerspoon.

Hammerspoon itself

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/learning-hammerspoon.

http://leanpub.com/learning-hammerspoon
http://leanpub.com/learning-hammerspoon
http://leanpub.com/learning-hammerspoon
http://leanpub.com/learning-hammerspoon
http://leanpub.com/learning-hammerspoon

DRAFT Hammerspoon
cookbook, tips and tricks

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/learning-hammerspoon.

Tip: be mindful of garbage collection

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/learning-hammerspoon.

Show Homebrew package info

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/learning-hammerspoon.

Tip: using asynchronous methods

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/learning-hammerspoon.

Transform URLs before opening them

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/learning-hammerspoon.

http://leanpub.com/learning-hammerspoon
http://leanpub.com/learning-hammerspoon
http://leanpub.com/learning-hammerspoon
http://leanpub.com/learning-hammerspoon
http://leanpub.com/learning-hammerspoon

DRAFT Hammerspoon cookbook, tips and tricks XXX

Other resources and configuration examples

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/learning-hammerspoon.

Spacehammer: a Spacemacs-like modal config

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/learning-hammerspoon.

http://leanpub.com/learning-hammerspoon
http://leanpub.com/learning-hammerspoon

Writing your own extensions
and Spoons

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/learning-hammerspoon.

Writing a new Spoon

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/learning-hammerspoon.

The Spoon API

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/learning-hammerspoon.

Designing a new spoon: Leanpub

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/learning-hammerspoon.

Creating the skeleton for a new spoon

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/learning-hammerspoon.

Spoon metadata and configuration

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/learning-hammerspoon.

http://leanpub.com/learning-hammerspoon
http://leanpub.com/learning-hammerspoon
http://leanpub.com/learning-hammerspoon
http://leanpub.com/learning-hammerspoon
http://leanpub.com/learning-hammerspoon
http://leanpub.com/learning-hammerspoon

Writing your own extensions and Spoons XXXii

Spoon methods

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/learning-hammerspoon.

Testing your Spoon

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/learning-hammerspoon.

Packaging and sharing the new Spoon

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/learning-hammerspoon.

What’s next?

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/learning-hammerspoon.

Writing a Hammerspoon extension in Lua

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/learning-hammerspoon.

http://leanpub.com/learning-hammerspoon
http://leanpub.com/learning-hammerspoon
http://leanpub.com/learning-hammerspoon
http://leanpub.com/learning-hammerspoon
http://leanpub.com/learning-hammerspoon

Using and extending Seal

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/learning-hammerspoon.

Using Seal

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/learning-hammerspoon.

Writing your own Seal plugins

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/learning-hammerspoon.

Seal plugin structure and API

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/learning-hammerspoon.

The myactions Seal plugin

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/learning-hammerspoon.

Adding commands to your Seal plugin

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/learning-hammerspoon.

http://leanpub.com/learning-hammerspoon
http://leanpub.com/learning-hammerspoon
http://leanpub.com/learning-hammerspoon
http://leanpub.com/learning-hammerspoon
http://leanpub.com/learning-hammerspoon
http://leanpub.com/learning-hammerspoon

Colophon

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/learning-hammerspoon.

http://leanpub.com/learning-hammerspoon

	Table of Contents
	Preface to the book sample
	Preface to the early release
	Release notes

	Introduction
	Mac automation
	What will you learn?
	Conventions Used in This Book

	Getting started with Hammerspoon
	What is Hammerspoon?
	How does Hammerspoon work?
	Installing Hammerspoon
	Your first Hammerspoon configuration
	The Hyper key
	Keeping private information separate
	Debugging tools and the Hammerspoon console

	Using Spoons in Hammerspoon
	Using a Spoon to locate your mouse
	Automated Spoon installation and configuration

	Just enough Lua to be productive with Hammerspoon
	Flow control
	Dot-vs-colon method access in Lua
	Functions
	Tables
	Tables as namespaces
	Patterns
	String manipulation
	Learning more Lua

	DRAFT Exploring the Hammerspoon API
	Events and Hotkeys
	Window, Menus and Screen Manipulation
	On-screen Drawing, Images and Alerts
	Application and Process Manipulation
	Sound and Music
	Networking and Web
	System and Device Manipulation
	Data Processing and Utilities
	Hammerspoon itself

	DRAFT Hammerspoon cookbook, tips and tricks
	Tip: be mindful of garbage collection
	Show Homebrew package info
	Tip: using asynchronous methods
	Transform URLs before opening them
	Other resources and configuration examples

	Writing your own extensions and Spoons
	Writing a new Spoon
	Writing a Hammerspoon extension in Lua

	Using and extending Seal
	Using Seal
	Writing your own Seal plugins

	Colophon

