

Get Started With Functional Programming

Goran Jovic

This book is for sale at http://leanpub.com/learning-functional-programming-from-scratch

This version was published on 2023-08-06

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and
many iterations to get reader feedback, pivot until you have the right book and build traction once
you do.

© 2017 - 2023 Goran Jovic

http://leanpub.com/learning-functional-programming-from-scratch
https://leanpub.com/
https://leanpub.com/manifesto

Contents

Introduction . 1
About the book . 1
Who is this book for? . 1
Who is this book NOT for? . 1

Programming paradigms . 2
Imperative programming . 3
Declarative programming . 11
Functional programming . 14

Theory . 18
Pure functions . 22
Well-behaved imperative procedures . 27
Inherent impurities . 30
Intentional impurities . 36

Introduction
About the book

The purpose of this book is to explain the main concepts in functional programming as simply as
possible in a language agnostic manner. That is not to say that we will not use actual code - rather
that the focus is not on implementation details of a specific language, compiler or platform, but on
the concepts themselves.

The examples are provided as:

• drawings and diagrams
• pseudocode
• JavaScript - most of the time as simple as pseudocode, but you can actually run it!
• various other languages showcasing a specific point, e.g. HTML, CSS, SQL, Clojure and others.

Who is this book for?

Anyone who wishes to learn more about functional programming! Some working knowledge about
programming basics may be helpful, but ultimately it’s not a show stopper - just another thing to
learn.

If you just started learning functional programming, my own personal recommendation is that you
go through this book first, then master at least one concrete language and then go through it again
as a refresher.

Who is this book NOT for?

Anyone who wishes to learn a specific technology. You will not learn Clojure or JavaScript or any
other programming language. You will not learn a MapReduce framework or a BigData pipeline
platform. You will learn the basic building blocks behind all those technologies, but that’s just about
it.

Anyone who wishes to use it as a reference index, academic source or anything similar. Whenever I
had to choose between clarity and simplicity of explanations on one side and formal correctness on
the other, I chose simplicity. So, while you can quote the examples to your friends and colleagues
and get some geek cred for it, you’re not getting a PhD for it (and neither am I!)

Programming paradigms
The popular wisdom says that programming is like giving directions to a very dumb person. It is
a rather handy analogy and you can use to explain to your grandparents what you do for a living.
However, it doesn’t quite hit the mark.

I mean, even the dumbest person you could possibly imagine is still orders and orders of magnitude
more complex than all your computers put together. So, it is not really like that. It’s not even like
teaching a monkey to ride a bicycle. That cool online app that recognizes people’s expressions does
not have hardware worth millions of years of evolution between its ears. All it has is ones and zeroes
- that and a whole lot of layers of abstraction.

But you already know all that! If you didn’t, you wouldn’t be here reading a book about
programming paradigms. Still, it makes a fine ice breaker, so here it is - I said it.

So, what’s the point with all the paradigms, you might ask? Well, with all those layers of complexity
our modern software has we need to be able to:

1. Develop it successfully or at all.
2. Maintain it, preferably in a way where it does not collapse like a house of cards.
3. If anyhow possible, keep our own sanity while we do so.

Using the right way to mold and shape our programs moves us one step closer to these noble goals,
and we do that by choosing the most appropriate paradigm.

There are lots of paradigms, but these three are the most important for us at the moment:

• Imperative programming - programs consist of ordered lists of statements that get executed
sequentially, changing the computer’s state while doing so. This has been the most common
programming style for a very long time and conceptually it is closest to how computers actually
work. The list of example languages is very long, but some of them are: C/C++, Java, JavaScript,
and so on.

• Declarative programming - programs are actually accurate specifications of the desired
outcomes, rather than lists of instruction how to achieve them. The most common examples
are HTML, CSS and SQL.

• Functional programming - mathematical functions are the main building blocks and pro-
grams rely on their evaluation given certain parameters. Functions are supposed to be pure
- their outcome may only depend on the input parameters and they may not have any side
effects. This property makes functional programming very close to the declarative paradigm.
Some of the examples are Haskell, Clojure (and other Lisps), Erlang and so on.

Programming paradigms 3

Imperative programming

Let’s say we need a cup of coffee. What we have at our disposal are one water kettler, one mini mixer,
an empty cup and a teaspoon. We also have some coffee granules, sugar, water and milk. What we
want as the outcome of the exercise is a cup of coffee and this is one way we can get it:

1 Make coffee

2

3 1. Put a teaspoon of sugar into the cup

4 2. Put a teaspoon of granules into the cup

5 3. Boil water in the kettler

6 5. Pour water to fill half the cup

7 6. Mix the contents of the cup

8 7. Add milk to fill the rest of the cup

9 8. Mix again

10 9. Serve

And there it is - a piece of pseudocode with an imperative program that explains how to make a cup
of coffee. Yes, recipes are programs, all right!

What are some initial observations we can make:

• Order of the steps matters a lot - if you execute steps 5 and 7 before any other steps, you’ll mix
an empty cup twice and end up with unmixed sludge.

• The reason why order matters is because every step modifies the state of our cup and the next
steps depend on that modification in order to work properly. Step one changes the cups state
from empty to contains sugar. Step two changes it from contains sugar to contains sugar

and granules and so on.
• Therefore, mutable state makes order of execution important.

What else can we see:

• Not only does our program modify the state of our cup, it also modifies the state of the outside
world - certain quantities of all the ingredients are consumed, our electricity bill increased just
a little bit and finally, in step 9, we got our cup of coffee and our energy level just jumped. We’ll
refer to all of these as side-effects.

• Since we do consume those resources, the next time we repeat the same program we may find
that we ran out of milk. Or that it smells funny! Or the kettler just died, only a few days after
warranty expiration to make things worse. So, not only does our program change the state of
the outside world, it also depends on global state as well.

We can expand our definition and say that imperative programs consist of an ordered sequence of
statements or commands that depend on current state of the world and cause changes to it in the
process.

Programming paradigms 4

Structured programming

Let’s expand our example a little bit. Not everyone likes their coffee the way I do, so let’s take that
into account and make the number of teaspoons of sugar variable. While we’re at it, let’s also make
milk optional - if it is not wanted, we’ll just put water instead.

1 Make coffee

2 milk : yes | no

3 sugar : number of teaspoons

4

5 1. Count the number of teaspoons of sugar added - starting at 0

6 2. Put a teaspoon of sugar into the cup

7 3. Increase the count by 1

8 4. If we counted less than the desired amount jump back to 2

9 5. Put a teaspoon of granules into the cup

10 6. Boil water in the kettler

11 7. Pour water to fill half of the cup

12 8. Mix the contents of the cup

13 9. If milk is wanted jump to 10, otherwise jump to 11

14 10. Add milk to fill the rest of the cup

15 11. Add water to fill the rest of the cup

16 12. Mix again

17 13. Serve

This program is technically correct - go on, step through it a few times and check it yourself. However,
it is well… really ugly and not the easiest thing to read and let alone maintain. The main culprits
are the parts where we jump to arbitrary steps as we go along - the infamous goto statement.

This issue was the reason for the first real upgrade imperative programming got - a variation of the
paradigm called structured programming.

By now, we may as well ditch pseudocode and continue with JavaScript:

1 let cup = {sugar : 0, coffee: 0, milk : 0, water : 0, done : false};

2

3 let sugar = 2;

4 let milk = true;

5

6 for(let counter = 0; counter < sugar; counter++){

7 cup.sugar += 1;

8 }

9 cup.coffee += 1;

10 console.log('boiling water...');

11 cup.water += 0.5;

Programming paradigms 5

12 console.log('mixing...');

13 if(milk){

14 cup.milk += 0.5;

15 }else{

16 cup.water += 0.5;

17 }

18 console.log('mixing...');

19 cup.done = true;

20

21 console.log(cup);

Now this is an example you can actually run! Just copy paste it into your favorite JavaScript console.

Just like in our pseudocode example, we start with an empty cup. Here it is represented with a
JavaScript object with a field for each ingredient and one additional flag field that marks a “done”
cup of coffee.

Then we have two variables that hold our coffee preferences. In this case it is a cup of coffee with
milk and two teaspoons of sugar.

What follows is the main improvement that structural programming brought us - for loop and if

conditional statement. These operations are called control flow statements since they do exactly
that - control the flow of the program. There are two kinds of control flow statements: conditional
statements and loops.

We only need to take a look back at our previous example to see that conditionals correspond to goto
jumps forward, skipping some statements that do not meet the criteria. Likewise, loops correspond
to jumping backwards, so that the same statements are executed more than once.

Procedural programming

Let’s expand our example even further. So far we assummed that the cup is initially empty and clean.
Of course, that’s not how the world works and a lot of the time our coffee preparation starts with
dish washing. So, let’s add some code that simulates this:

1 cup.water = 0;

2 cup.milk = 0;

3 cup.done = false;

We will need to run these few statements every time we want to make a new cup of coffee, right
before all the other statements. But we also may want to clean the cup as a separate task, even if
we don’t want need the coffee immediately. So, these statements need to be used in two different
situations.

What do we do? Do we copy-paste them and end up with two identical chunks of code in our
program? There is a much better way to reuse this code - procedural programming.

Programming paradigms 6

Basically, the main innovation in procedural programming was introduction of named reusable
pieces of code that capture some common functionality that needs to be invoked from different
parts of the program. These modules were usually referred to as subroutines and there are two
types of them:

• functions - accept zero or more parameters and return a result value. Note: this is not
necessarily the same as mathematical functions or the ones from functional programming.

• procedures - accept zero or more parameters, change the global state and do not return a result
value.

Since we need to change the state of a cup, we will need to write procedures. JavaScript only allows
us to define functions, but that is not a big deal, we can just ignore the return value - if you omit a
return statement, the result will just be a special undefined value. So, here we go:

1 let cup = {sugar : 0, coffee: 0, milk : 0, water : 0, done : false};

2

3 function cleanCup(){

4 cup.water = 0;

5 cup.milk = 0;

6 cup.done = false;

7 }

8

9 function prepareCoffee(sugar, milk){

10

11 cleanCup();

12

13 for(let counter = 0; counter < sugar; counter++){

14 cup.sugar += 1;

15 }

16 cup.coffee += 1;

17 console.log('boiling water...');

18 cup.water += 0.5;

19 console.log('mixing...');

20 if(milk){

21 cup.milk += 0.5;

22 }else{

23 cup.water += 0.5;

24 }

25 console.log('mixing...');

26 cup.done = true;

27

28 console.log(cup);

Programming paradigms 7

29

30 }

31

32 prepareCoffee(2, true);

We start with the empty cup initialized. Then we have two function definitions. The second one
has two parameters - one for each coffee making option. Finally, we have a function call to
prepareCoffee with two teaspoons of sugar and milk.

What happens next is that the the very first line in our coffee making function is a call to another
function cleanCup. That’s how we ensure that the following code will always start with a clean cup.

And that’s how you re-use a cup. Also code!

Feel free to play with this example in the console, e.g. try preparing coffee a few times, then try
cleaning the cup and check the value of the cup variable and so on.

Object-oriented programming

We started with a simple example, then added some more complexity to it. We found ways to keep
the structure of the program well organized and even had some level of code re-use.

Obviously, there is still something wrong with the current version, otherwise we wouldn’t be
introducing a new paradigm. Well, for starters, there is nothing to prevent anyone from running
a statement like this:

1 cup.spit += 0.1;

The cup variable is completely exposed to whoever wishes to tamper with it. Ideally, we only want
the cup to be changed using our procedures and not in any other way. We want to prevent anyone
from spitting in our coffee. We will do that using the hallmark principle of object-oriented design -
encapsulation.

What we need to do is bundle the data structure that holds the current state of the cup with the
operations that change it. Then we need to restrict any access to it to those operations alone.

Programming paradigms 8

1 let Cup = function(){

2

3 let sugar = 0;

4 let coffee = 0;

5 let milk = 0;

6 let water = 0;

7 let done = false;

8

9 this.cleanCup = function(){

10 sugar = 0;

11 coffee = 0;

12 milk = 0;

13 water = 0;

14 done = false;

15 };

16

17 this.serve = function(){

18 console.log({sugar : sugar,

19 coffee : coffee,

20 milk : milk,

21 water : water,

22 done : done});

23 };

24

25 this.prepareCoffee = function(neededSugar,

26 neededMilk){

27 this.cleanCup();

28

29 for(let i = 0; i < neededSugar; i++){

30 sugar += 1;

31 }

32 coffee += 1;

33 console.log('boiling water...');

34 water += 0.5;

35 console.log('mixing...');

36 if(neededMilk){

37 milk += 0.5;

38 }else{

39 water += 0.5;

40 }

41 console.log('mixing...');

42 done = true;

43

Programming paradigms 9

44 };

45

46 }

We created another function Cup whose purpose is to create and initialize an empty cup and we
bundled our previous functions within it. We had to rename a few things here and there, e.g.
prepareCoffee parameters are now called neededSugar and neededMilk to avoid the naming conflict
and also to emphasize that they refer to the expressed coffee preferences not the current amount of
sugar or milk in the cup. Just to make things clearer we also created a new function serve to well…
serve the cup as it is at the moment.

The main units of object-oriented programming are objects - data structures that consist of:

• fields - variables that contain the current state of the object - in our example variables sugar,
coffee, milk, water, and done.

• methods - functions that access or manipulate fields of its own object - cleanCup, serve and
prepareCoffee.

• constructors - special functions that create and initialize the object - Cup function.
• destructors - special functions that destroy the object and free up any taken resources. Since
JavaScript is a garbage collected language, we don’t have this in our example.

Both fields and methods alike are referred to as members.

To achieve the encapsulationwe need tomake sure that somemembers are accessible from anywhere
in the program, while others are only accessible from the object itself, specifically from its methods.
Some other languages like Java or C# have explicit member access modifiers like public and private.
In JavaScript we get the functionality of private members by defining the local variables with var

within the constructor and the ones we assign with this are treated as public.

Please note that both fields and methods may be either public or private. It usually makes more sense
to keep the fields private and methods public, but it is perfectly possible to have a private method
or a public field.

We have a definition of an object, now let’s use it:

1 let cup = new Cup(); //create a new cup

2 cup.prepareCoffee(2, true); //prepare the coffee

3 cup.serve(); //serving the cup

4 //=> {sugar: 2, coffee: 1, milk: 0.5,

5 //=> water: 0.5, done: true}

6 cup.cleanCup(); //cleaning

7 cup.serve(); //now it's empty

8 //=> {sugar: 0, coffee: 0, milk: 0,

9 //=> water: 0, done: false}

What if we wanted a few more cups?

Programming paradigms 10

1 let cup = new Cup(); //create a new cup

2 cup.prepareCoffee(2, true); //sweet and creamy

3 cup.serve();

4 //=> {sugar: 2, coffee: 1, milk: 0.5,

5 //=> water: 0.5, done: true}

6

7 let another = new Cup(); //create another cup

8 another.prepareCoffee(0, false);

9 another.serve();

10 //=> {sugar: 0, coffee: 1, milk: 0,

11 //=> water: 1, done: true}

We just need to create another cup, prepare the coffee in it and serve. Note that if we were to just
call prepareCoffee on the same object twice we’d get one coffee, then spill it, clean the cup and
prepare the other one.

Let’s test the encapsulation too. We shouldn’t be able to see or modify the private variables directly:

1 cup.milk;

2 //=> undefined

3

4 cup.coffee;

5 //=> undefined

6

7 //the only way we can get this info

8 //is by calling serve

9

10 cup.serve();

11 //=> {sugar: 2, coffee: 1, milk: 0.5,

12 //=> water: 0.5, done: true}

13

14 //let's try modifying some of the values

15 //e.g. we can try messing up the amount of sugar

16

17 cup.sugar = 7;

18 cup.serve();

19 //=> {sugar: 2, coffee: 1, milk: 0.5,

20 //=> water: 0.5, done: true}

21

22 //still the same - it works!

23 //but see what happens if you thy this now:

24

25 cup.sugar

Programming paradigms 11

26 //=> 7

27

28 //a new "public" field with the same name as

29 //the "private" field was created automatically,

30 //but the private one was not affected

31 //It's a JavaScript gotcha

32 //you can ignore it for the time being.

33

34 //Let's try spitting in coffee:

35

36 cup.spit = 0.1;

37 cup.serve();

38 //=> {sugar: 2, coffee: 1, milk: 0.5,

39 //=> water: 0.5, done: true}

40

41 //The coffee is untainted. Mission accomplished!

We’ve seen all three major evolution steps of imperative programming so far: structured, procedural
and object-oriented. That and made a lot of coffee following step-by-step instructions. It is time to
move on and try out some other ways we can write programs.

Declarative programming

Again, let’s say we need a cup of coffee. But, this time we just walk into the nearest coffee shop and
say:

1 One coffee with 1 teaspoon of sugar and milk, please!

And there’s your coffee - no fuss over anything. You just declare the desired outcome and let the
baristas take care of it.

The main benefit of this approach is a very high level of abstraction. Practically all the details we
were so careful about in imperative programming are of no consequence anymore.

Benefits:

• There is no dependence on mutable state. Notice how we never even mention the cup - the
coffee shop will take care of it and all its intermediate states. We only get the coffee cup when
it’s done.

• Without the mutable state, we no longer care about the order of statements in our program.
Is it one with milk and sugar and one without milk or sugar, or is it the other way round? It
does not matter!

Programming paradigms 12

• We don’t care about the global state either - we cannot spend all the milk in the coffee shop
and do not depend on its availability. The shop takes care of that in a way which is transparent
to us. Our own kitchens don’t work that way.

But it can’t be all nice and cool, there have to be some drawbacks, too. Otherwise, we’d never do
any imperative programming at all.

Drawbacks:

• We need a coffee shop to be able to get away with this, or at the very least someone willing to
prepare the coffee. Try saying One coffee with 1 teaspoon of sugar and milk, please! out loud
in your kitchen. If you do, you’ll just look ridiculous and most importantly won’t be getting
any coffee. Incidentally, whoever gets to actually make the coffee will do so by following an
imperative program.

• We are constrained by the variety of coffee shop’s offer. There may be a selection of several
kinds of coffee and a few different sizes, but that’s it. Want coconut milk instead of the regular
one? At home you can add it yourself - in a cafe it’s possible only if they have it on their menu.

• We can’t affect the performance in any way. There is a good chance that the baristas will be
faster than you, but if they are not, you can’t do anything about it. Simply, you don’t get to
tinker with the imperative program they use - it’s completely hidden away from you.

• Different cafés all serve coffee, but in every one of them the flavor, quantity and the general
experience are slightly different.

• 5$ for a cup!

Now that we went through what declarative programming is, let’s see some real world uses. The
most commonly mentioned example is HyperText Markup Language, aka HTML.

1 <html>

2 <head>

3 <title>A cool page</title>

4 </head>

5 <body>

6 <div id="main">

7 <p>Hello bright and sunny world!</p>

8 </div>

9 </body>

10 </html>

Here we have one HTML snippet that defines a very simple web page. All it contains is a title and
one paragraph. These two texts are enclosed within a structure marked with HTML tags. That’s all
there is to HTML - we only write the content and declare what’s what.

If we want to affect the style, we’ll use another declarative language Cascading Style Sheets or CSS.

Programming paradigms 13

1 #main{

2 width: 70%;

3 margin-left: 15%;

4 margin-right: 15%;

5 }

6

7 p{

8 color: blue;

9 }

In this example, we say that width of the element with id main is 70% of its parent width. Parent is
the element within which our element is enclosed, so in this case it is page body. We also said that
the remaining 30% of the whole page width will be evenly distributed between the left and right
margin, i.e. 15% each. Then, we also declared that text in all paragraph elements (denoted by p tags)
will be blue.

Again, the difference is that in an imperative program we would instruct the computer how to draw
the page and format it. With HTML and CSS we only specify the desired outcome and wait for the
results. Just like in the coffee example, for this to work we need to have software that’s going to
actually do all the heavy lifting and draw the page - a web browser.

Another commonly cited declarative language is SQL. Let’s see one example query:

1 SELECT name FROM countries

2 WHERE population > 10000000 AND continent = 'Europe';

We just say that we want the names of all the countries in Europe with population above 10 million.
Do we loop through all the records in the database and check the continent and population one by
one? Do we use a database index to speed up the search? Is the underlying structure of the index
a B-tree or something else? Do we check the population first and then continent or the other way
round? Short answer to all the questions above is - we don’t care! All those issues andmanymore are
relatively transparently handled by databases’ very own coffee shops - RDMS (Relational Database
Management Systems).

Youmust have noticed that all the major examples of declarative programming are focused on rather
narrow domains. HTML, CSS and SQL are all what we call domain specific languages or DSLs. Not
all DSLs are declarative, although most widely known declarative languages are domain specific.

So, how do we build our own declarative language?

One traditional way is to define a syntax to express the desired outcome, then use imperative
programming to build a program to interpret the input and produce results. That’s exactly how
web pages are processed - there is a well-defined syntax (HTML and CSS) and there are programs
developed using imperative style of development that process it, i.e. browsers.

Another common way is to define a syntax, then build an engine that transforms the input in that
syntax into a sequence of instructions to be executed, i.e. an imperative program. This is more or less

Programming paradigms 14

how database management systemswork. You give them your SQL, they transform it into something
called execution plan, then the plan gets executed and you get results. We can even choose to only
get the plan without executing it - to see this in action just prepend EXPLAIN to your query and run
it in your database system of choice.

But can we do better than that? Can we have the goodness and ease of mind that declarative
programming offers in general purpose software development or are we condemned to the perils
of imperative programming as soon as we venture beyond the well-defined borders of specific
domains?

These are the questions we will attempt to answer with functional programming!

Functional programming

Liked the taste of declarative programming? Want to generalize it and write arbitrary code in a
declarative fashion, not just HTML pages, database queries and overpriced coffee?

Let’s see what we can learn from all the important concepts employed by declarative programming
and the evolution of imperative styles.

• Dependence on global state is bad.
• We should avoid affecting the global state as much as possible.
• If we don’t have any mutable state, the order of our code won’t matter.

So, how do we get from here to there?

1. We’ll start with our friends functions from procedural programming. They represent isolated,
well-defined and reusable units of work - that’s good.

2. Sincewewant to limit the dependence on global state, we’ll only allow the functionparameters
to affect the behaviour of the code, not any variables in the rest of the program.

3. Since we want to limit the effects our code has on the outside world, we’ll only output the
results as the function return value. Other than that, any side effects are prohibited.

4. Instead of mutating variables we will produce new immutable values based on the old values.

The easiest way we can visualize a function like that is a pipe. It receives all its inputs on one side,
does some work internally, then produces all the results on the other side.

Programming paradigms 15

function

Our coffee example would involve one coffee producing pipe that receives information on what
kind of coffee you want on one side and outputs a hot and ready cup on the other. Kind of like an
espresso machine, actually.

makeEspresso function

We will simulate this with a JavaScript function that takes the desired sugar and milk options as the
input and produces a cup of coffee.

1 function makeEspresso(sugar, milk){

2 if(milk){

3 return {sugar: sugar, coffee : 1,

4 milk : 0.5, water : 0.5};

5 }

6 return {sugar: sugar, coffee : 1,

7 milk : 0, water : 1};

8 }

Let’s compare this function against our checklist:

• Does not depend on any variable outside its scope - the only things that affect its behavior are
the parameters. Check!

• The only way the function affects the outside world is by returning a value. Check!
• While JavaScript objects are mutable by default, see that we never actually mutated the objects
that represent the cup - we always created new objects. Check!

• Since we didn’t mutate any state, the order of our code does not matter as much. Instead of
checking if milk is wanted, we could have checked the opposite. The following code is just as
good:

Programming paradigms 16

1 function makeEspresso2(sugar, milk){

2 if(!milk){

3 return {sugar: sugar, coffee : 1,

4 milk : 0, water : 1};

5 }

6 return {sugar: sugar, coffee : 1,

7 milk : 0.5, water : 0.5};

8 }

One unsaid requirement for all this to work is unlimited supply of empty cups, sugar, coffee, water
and milk. Also let’s not forget the electricity the machine needs to run. We will simply hand wave
all those details and smugly declare that low level resource management is not a functional way of
doing things!

Anyway, let’s make a few espressos:

1 makeEspresso(2, false);

2 //=> {sugar: 2, coffee : 1, milk : 0, water : 1}

3

4 makeEspresso(0, true);

5 //=> {sugar: 0, coffee: 1, milk: 0.5, water: 0.5}

6

7 makeEspresso(1, true);

8 //=> {sugar: 1, coffee: 1, milk: 0.5, water: 0.5}

9

10 //just for fun try the other one too

11 makeEspresso2(1, true);

12 //=> {sugar: 1, coffee: 1, milk: 0.5, water: 0.5}

Notice how we always get a brand new cup? Instead of reusing it, we have to dispose of it. That’s
not very green! Seriously, it’s not a coincidence that garbage collectionwas first used in a functional
programming environment.

We lost a lot of low level control over resources, but what we gained is a piece of declarative code
that we can actually run. Just look at it, this snippet:

1 makeEspresso(1, true);

It’s nothing other than our declarative pseudocode thinly disguised as JavaScript:

1 One espresso with 1 teaspoon of sugar and milk, please!

Programming paradigms 17

You declare what you want, not how you get it.

So, we ventured from an imperative program to a declarative one and thanks to functional
programming we didn’t even need to build a coffee shop to do so. We managed all that because we
adhered to the principles enumerated at the start of this chapter. We will explore those principles
and functional programming in general throughout the rest of the book.

So, stay with us - the good stuff has just started!

Theory
The very central concept in functional programming is expression.

Expression is a piece of code that can be evaluated, which is to say that it can be used to produce a
value. In functional programming, everything is an expression and everything produces or returns
a value.

There are two types of expressions:

• plain values
• function calls

Plain values are the elementary expressions, e.g. in JavaScript.

1 2

2 true

3 "hello"

4 {sugar: 2, coffee: 1, water: 0.5, milk: 0.5}

Function calls are complex expressions that receive other expressions as parameters, produce a
result based on them and then return it as another value.

1 makeEspresso(2, true);

2 //=> {sugar: 2, coffee: 1, water: 0.5, milk: 0.5}

In this example we supply the function with two values as parameters that specify coffee options
and the function gets evaluated to the value that represents the coffee cup.

We can represent the relationship between elementary values and functions with an obligatory UML
class diagram.

Theory 19

See the recursive link from function back to expression - that’s because function parameters may be
either plain values or nested function calls. Basically, an expression has a tree structure, so let’s also
draw it as a tree.

Theory 20

Expressions are practically trees, where children are parameters to the sub-expressions (i.e. func-
tions) and plain values are leaves.

Note that in many languages you can build complex expressions not only with functions, but also
with operators. JavaScript is one of those languages, e.g. if you wanted to get a sum of two numbers
you’d do this:

1 5 + 4

2 //=> 9

You supply two numerical values, put the + operator between them and the whole expression
gets evaluated to the sum of those numbers. Although operator expressions are not necessarilly
implemented in the same technical way as actual functions are, logically they serve the same purpose.
The main difference is in notation. JavaScript functions use prefix notation - function name goes
first, then parameters. Operators, on the other hand use infix notation - parameter, operator, then
the other parameter.

Some languages, like Clojure and other Lisps, make no such distinction and exclusively use prefix
notation, even where other languages would have used infix operators:

Theory 21

1 ;clojure

2

3 (+ 5 4)

4 ;=> 9

In other languages, like Haskell, operators are just functions with two parameters whose names
consist of symbols rather than alphanumeric characters, and may be used in either infix or prefix
notation.

1 --haskell

2

3 --infix operators

4 4 + 5

5 --=> 9

6

7 --prefix operators

8 (+) 4 5

9 --=> 9

Likewise, Haskell functions with alphanumeric names are usually called with prefix notation, but
can also be called infix-style using a special syntax:

1 --haskell

2

3 --prefix functions

4 mod 3 2

5 --=> 1

6

7 -- infix function

8 3 `mod` 2

9 --=> 1

We can also use the value of an evaluated expression as the input parameter of another expression,
e.g. another JavaScript infix operator expression or a function:

1 10 - (5 + 4)

2 //=> 1

3

4 makeEspresso(10 - (5 + 4), true)

5 //=> {sugar: 1, coffee: 1, water: 0.5, milk: 0.5}

We’ve got a handle of the two central concepts of functional programming. However, it does not
end there - there are also some constraints required for all the magic to happen. We’ll show that,
whenever possible, functions have to be pure and values have to be immutable. So, let’s demystify
that!

Theory 22

Pure functions

We’ll start with the most commonly used definition of a pure function, then we’ll provide a few
examples of pure and impure functions, with different causes of impurity. Then, we will try to
illustrate function purity from a few different angles. Anyway, let’s start with the definition.

Pure function is a function where the return value is:

1. only determined by its input values,
2. without observable side effects.

If we continue with the pipe analogy, this means that if anything was to enter the pipe must do so
at the entrance, as a parameter, and the only thing that leaves does so at the other end, as the return
value.

For example addition is a pure function:

1 function sum(a, b){

2 return a + b;

3 }

4

5 sum(3, 5);

6 //=> 9

7 //we get the result value and nothing else happens

8

9 //we call the function with same parameters

10 sum(3, 5);

11 //=> 9

12 //and get the same result

sum function

So is our espresso loving example:

Theory 23

1 function makeEspresso2(sugar, milk){

2 if(!milk){

3 return {sugar: sugar, coffee : 1,

4 milk : 0, water : 1};

5 }

6 return {sugar: sugar, coffee : 1,

7 milk : 0.5, water : 0.5};

8 }

9

10 makeEspresso(2, false);

11 //=> {sugar: 2, coffee : 1, milk : 0, water : 1}

makeEspresso function

The only thing these functions depend on are their received parameters and the only effect they
produce are their return values - there are no side effects. The pipes have no leaks, in the case of
espresso machine quite literally.

Now, what’s the easiest way to violate the first condition for purity? The offending function would
need depend on something other than its input parameters. The effect would be that it would return
different values with the same inputs.

1 function now(){

2 return new Date();

3 }

4

5 //we call it once

6 now();

7 //=> Wed Jun 14 2017 19:53:19 GMT+0200 (CEST)

8

9 //then again five minutes later...

10 now();

11 //=> Wed Jun 14 2017 19:58:19 GMT+0200 (CEST)

You’d expect a function with no parameters to always return the same value. Practically it should
be equivalent to a constant.

Theory 24

What happens here is that our function depends on something other than its non-existent parameters
- the system clock:

now function

And how would we violate the second condition? Our function will need to somehow change the
state of the world around it in a way other than by returning the value. E.g. it can save something
to the disk, delete a row from the database, send an email or a text message, make the phone vibrate,
etc. Since we want our example to be easily runnable in an average JavaScript shell we’ll settle with
a more modest choice - logging to the console:

1 function printSum(a, b){

2 let sum = a + b;

3 console.log('Hey there, the result is: ' + sum);

4 return sum;

5 }

6

7 printSum(4, 5)

8 //=> Hey there, the result is: 9

9 //=> 9

10

11 //We do get the return value, but we also get a console message!

printSum function

Theory 25

To summarize, functions sum and makeEspresso are pure because they satisfy both purity conditions.
On the other hand, functions now and printSum are not pure since each of them fails to satisfy one
of the conditions.

Of course, the function will be just as impure if it violates both conditions, e.g:

1 function printNow(){

2 let now = new Date();

3 console.log(now);

4 return now;

5 }

6

7 printNow();

8 //=> Wed Jun 14 2017 19:49:53 GMT+0200 (CEST)

9 //=> Wed Jun 14 2017 19:49:53 GMT+0200 (CEST)

printNow function

Another way to explain function purity is with some help of an equivalent concept - referential
transparency. A function is said to be referentially transparent if any of its invocations can be
replaced with the result value without any change to the program.

For example, we can call the sum function:

1 sum(3, 1);

Or we can just type in the result:

1 4

In the end, it’s a four either way. The two expressions are equivalent.

We can do the same thing with our other pure function - either call it:

Theory 26

1 makeEspresso(2, false);

Or just type in the result:

1 {sugar: 2, coffee : 1, milk : 0, water : 1}

Again, the expressions are equivalent.

But, what if we tried the same thing with our impure functions? Let’s try it out with now function:

1 now();

Can we replace it with a Date object literal, e.g. this one:

1 new Date('2017-06-14T21:06:05')

We can’t or else the time in our application would appear frozen, like a broken clock.

Likewise, we can try the same thing with printSum:

1 printSum(3, 2);

Can we replace the function call with its result:

1 5

We sure can, but the outcome won’t be the same. The literal number 5 does have the same value, but
does not print out Hey there, the result is: 5 on the console. If we carry out the replacement,
we’ll miss out any side effect that the impure function would have caused.

It is clear from the given examples that if a function is referentially transparent it is also pure.

However, we can generalize the idea of replacing function calls with its result even further. We can
replace entire functions with combinations of inputs and their respective outputs.

For example, given enough memory our function sum could be entirely replaced by a lookup table
like this:

Theory 27

a b sum
… … …
0 0 0
0 1 1
1 0 1
1 1 2
1 2 3
2 1 3
2 2 4
2 3 5
… … …

And then, instead of actually calculating the sum, we’d only need to look up the result in the table.

Obviously, it would be both memory intensive and impractical to do so in this particular example,
as there are way too many combinations there. However, in the cases where the input parameter
types are such that the number of possible values is reasonably small, it may make sense to use a
lookup table.

One particularly interesting example is the case of pure functions without parameters. As mentioned
already, these functions are logically equivalent to constants.

1 //e.g. this function

2 function numberOfSecondsInDay(){

3 return 24*60*60;

4 }

5

6 //is equivalent to

7 function numberOfSecondsInDay(){

8 return 86400;

9 }

10

11 //and the whole function can be replaced with a constant

12 let numberOfSecondsInDay = 86400;

Well-behaved imperative procedures

Now that we’ve mastered the concept of pure functions, we’re going to deconstruct it and show how
function purity is just an illusion, strictly speaking. However, one that does provide a very useful
abstraction that helps us write cleaner and more manageable code.

Let’s use a very simple pure function.

Theory 28

1 function add(a, b){

2 return a + b;

3 }

As we’ve seen in the previous chapter, this JavaScript function is pure - its behavior depends only
on its parameters and there are no side effects. Its only line of code returns the value of an operator
expression a + b that also happens to be pure. Or does it?

In order to be executed on a computer, any piece of code must be either compiled to a machine-
readable set of instructions or interpreted by another program that’s already machine-readable. So,
if we zoom in through a couple of layers we’ll eventually get to see what the computer actually gets
to run - something like these CPU instructions:

1 LOAD 12

2 ADD 14

3 STORE 17

This example could read as:

1. Load the value from a memory location 12 (e.g. parameter a) into CPU register.
2. Load the value from location 14 (or b) and add it to the value in the register.
3. Store the value from register into a memory location 17.

And that’s it. All the way down our purest and cleanest function actually works like a typical
imperative program:

• It depends on a shared global state - the contents of your RAM at the time.
• It modifies the shared global state - the result is written back to the memory.

Note that on this level of abstraction there are no such things as parameters or return values. CPU
just does stuff with data it gets from RAM and sends back any results.

All the way down all functions are just imperative procedures.

However, it would not be particularly constructive to just say:Hey none of this stuff is actually pure,
let’s just get back to good old imperative programming, it’s the same thing anyway.

Well, that would be a bit trollish and also a tad incorrect. On one hand, the fact is that even pure
functions are imperative procedures on the lowest level of abstraction. On the other hand, we really
do have all the benefits we sought when we analyzed declarative programming.

For example, let’s consider this function:

Theory 29

1 function arraySum(array){

2 let result = 0;

3 for(let i = 0; i < array.length; i++){

4 result += array[i];

5 }

6 return result;

7 }

For the sake of simplicity let’s assume that parameter array is always an array of numbers. We can
see that the function code is clearly imperative - local variables result and i are being mutated and
code flow is determined by a for loop.

Yet, is this function pure?

1 arraySum([1, 2, 3]);

2 //=> 6

3

4 //and again

5 arraySum([1, 2, 3]);

6 //=> 6

Try it out as many times as you want, it will always be a six. The outcome depends only on the input
parameters and as we can see that there aren’t any side effects. So, it is pure - even though it relies
on plain old imperative code.

What we can learn from this is that what we call pure functions are in fact nothing other than
exceptionally well-behaved imperative procedures that have the decency to take all its inputs in
one clearly marked designated place and to return all its results in just as orderly manner. They have
a clear boundary between what they do not mess with, but are also very protective about their own
inner workings and will never be indiscreet enough to reveal their internal state and allow other
programs to mess with their own variables.

Now notice that we can’t really tell any of that just from looking at the function call. The imperative
stuff is conveniently abstracted away and if we only observe the function as a black box we are
blissfully oblivious of its inner workings.

Theory 30

Still, it is useful to just be aware of all this. Function purity is an abstract concept. It only exists in
the world of ideas along with a point that has no dimensions and other mathematical abstractions.
Programs run on actual computers, which are physical devices and as such they are subjected to
physical constraints.

Hold onto that thought, we’ll expand on it in the next chapter, where we explore some typical
inherent impurities we can never really get away from.

Inherent impurities

No matter how hard we try, some impurities will always exist. We can abstract them away, ignore
them or make sure that they won’t affect normal program usage, but we can’t ever get rid of them.

The two main sources of such impurities are:

• Hardware - because all programs run on actual devices.
• Time - because everything happens is trapped in the one-directional flow of time.

Hardware caused impurities are caused by physical constraints of the devices on which we run
our programs. Some such devices are:

• CPU
• Memory
• Power supply or battery
• etc.

Let’s illustrate this on another example - we’ll write a function that receives a non-negative number
and returns an array of all the numbers from 0 to that number, but not the number itself. If it receives
a negative number, the function should just return an empty array.

Theory 31

1 function range(n){

2 let array = [];

3 for(let i = 0; i < n; i++){

4 array.push(i);

5 }

6 return array;

7 }

8

9 range(-5);

10 //=> []

11

12 range(0);

13 //=> []

14

15 range(1);

16 //=> [0]

17

18 range(6);

19 //=> [0, 1, 2, 3, 4, 5]

So far, so good. But what if we give it a huge number?

1 range(1000000000);

In Google Chrome console instead of the result I get this error message:

Google Chrome Memory Error

When I try the same thing in a MongoDB shell (another handy JavaScript console), I get a somewhat
different error message, that basically says the same thing - we ran out of memory!

Theory 32

1 tcmalloc: large alloc 1192198144 bytes == 0x7d768000 @

2 tcmalloc: large alloc 1490247680 bytes == 0x3dd2000 @

3 tcmalloc: large alloc 1862811648 bytes == 0x5cb08000 @

4 tcmalloc: large alloc 2328518656 bytes == 0x1338e4000 @

5 2017-06-15T15:26:02.484+0200 E QUERY [thread1] Unknown Failure from JSInterpreter

Obviously, things will be different on a different machine. That itself gives us a hint that there is an
impurity. The function evaluation depends on something other than its parameters, in this case the
size of the available memory.

Interestingly, this example also demonstrates side-effects. Whenever one process reserves a piece
of memory, the same memory cannot be used for other programs at the same time. So, by being
memory intensive, our function may actually prevent other programs from running properly or at
all. Most of the time operating systems are pretty good at policing the resource allocation, but this
still remains a possibility.

On the off chance that you have more memory available in your environment and the example
actually runs fine for you, just add a few zeroes and try again. If it still works, keep adding those
zeroes and you’ll run into the limit eventually. You have to, it’s not infinite.

Another obvious hardware dependency is power supply. A computer cannot work without
electricity. If someone pulls the plug or the battery runs out during a function evaluation, it will
be interrupted. This is also an example of a side-effect as functions with a higher strain on resources
will drain the battery faster.

Theory 33

Let’s see another example with side effects. We’ll write a function that counts to n and then returns
the count.

1 function count(n){

2 let sum = 0;

3 for(let i = 0; i < n; i++){

4 sum += 1;

5 }

6 return sum;

7 }

Yes, I could have just said return n, but I needed an example that would intentionally put a strain
on the CPU. Again, let’s try it out:

1 count(0);

2 //=> 0

3

4 count(4);

5 //=> 4

6

7 count(10);

8 //=> 10

So far, so good. It’s a pure function, supposedly doesn’t have side effects and unlike the previous one
it doesn’t really need much memory - there are just three variables involved: n, i and sum.

Theory 34

Then what would happen if we were to call it with a very large number?

1 count(1000000000000);

2 //=> 1000000000000

It actually did get the result, but when I ran it on my laptop it did something else, too. The CPU
temperature jumped for a moment and the fan speed increased. That, in turn, slightly increased the
temperature of my room.

If your code warms up the room in which its computer is, it is safe to claim that it produces a side
effect.

Time based impurities are caused by basic laws of nature. Things simply take time to happen and
nothing less than time-travel can change that.

Let’s try running count with an even larger parameter. Be warned, you may have to kill the
JavaScript console after the next example.

Theory 35

1 count(1000000000000000000);

2

3 //So, where is the result?

4 //still waiting...

5

6 //after some time...

7 //still waiting...

8

9 //a minute goes by...

10 //yep, still waiting...

11

12 //in the mean time, you remember that lame knock-knock Java joke

13

14 //but, we're still waiting...

While you could actually wait for the result, I recommend killing the console. It’s not like we do not
know the result and the point was already made - the passage of time while the function is being
evaluated is a side effect in its own right.

How did this side effect manifest? Well, we can count at least two ways:

• We got bored while we waited for it to finish.
• We stopped the function from further evaluation. It is a user action, but one that has been
directly caused by the long evaluation time.

So, these are the necessary evils we have to live with. Functional programming allows us to write
clean and elegant code, but it is by no means magic. Fundamentally, we still have to conform with
the same physical constraints as if we were doing imperative programming.

Theory 36

Intentional impurities

Ok, we get it - pure functions are good, side effects and mutable state are not. If we all only ever
write pure code we’ll easily develop top quality code and live long and prosper.

Well, actually… there’s a catch. We actually need both side effects and the global state. You know,
like, to get stuff done!

This is just a brief list of some impure things a typical software system needs to do:

• Get the user’s inputs from the UI.
• Show the outputs on the UI.
• Store some data in the database, retrieve it and maybe update later.
• Tell the current time and date.
• Do something random, e.g. generate a session token.
• Send an email, notification, SMS or another kind of message.
• Talk to a different system, e.g. post a tweet via Twitter API.

If we stick to pure functions alone, we’ll never do any of this. So, while purity is good, we actually
need impure functions as well.

In the last chapter, we will explore some ways we can reconcile the parts of our code that involve
only pure functions with the parts that contain inevitable side effects.

	Table of Contents
	Introduction
	About the book
	Who is this book for?
	Who is this book NOT for?

	Programming paradigms
	Imperative programming
	Declarative programming
	Functional programming

	Theory
	Pure functions
	Well-behaved imperative procedures
	Inherent impurities
	Intentional impurities

