A N\ ,
G “‘H\glv.l.i 2 ““n”.. & W
- .,...l QA.V' S ,
7 AT
= v ar
1 L N |

\ ; \f\.\...‘ =T ! y A

.I“
A\
%

Learning CFEngine

Automated System Administration for Sites of Any Size

Diego Zamboni
This book is for sale at http://leanpub.com/learning-cfengine

This version was published on 2018-11-02

)

Leanpub

This is a Leanpub book. Leanpub empowers authors and publishers with the
Lean Publishing process. Lean Publishing is the act of publishing an

in-progress ebook using lightweight tools and many iterations to get reader
feedback, pivot until you have the right book and build traction once you do.

© 2018 Diego Zamboni

http://leanpub.com/learning-cfengine
http://leanpub.com/
http://leanpub.com/manifesto

Also By Diego Zamboni

Learning Hammerspoon

http://leanpub.com/u/zzamboni
http://leanpub.com/learning-hammerspoon

Para Susi, Kari, Fabi y Nube

Contents

1. Getting Started with CFEngine 1
Installing CFEngine e 1
Finishing the Installation and Bootstrapping 9
Auxiliary Files e 11
Your First CFEngine Policy 11

2. CFEngine Basics e 20
Basic Principles 20
CFEngine Components 25
AFirst Example 28
The CFEngine Policy Language 31
Clients and Servers i i i 67

CFEngine Information Resources 77

1. Getting Started with CFEngine

The first step toward using CFEngine is getting it installed on at least one
machine so that you can start playing with it. CFEngine Community (the open
source version) is available from many package management repositories, and
you can also easily build it from source yourself. You can also install CFEngine
Enterprise, which is free for use on up to 25 hosts. In this chapter we will go
through the process of installing CFEngine on your machine, setting it up, and
writing and running your first policy. Don’t worry if you do not understand at
first glance what all the different pieces mean—the idea of this chapteris to get
you going. We will step back in CFEngine Basics to examine all the different
CFEngine components.

I will mention one concept that you need to understand before we start. Your
first CFEngine host will act as the policy hub, which is a server from where
other CFEngine clients fetch their policy files. If you are just going to start
playing with CFEngine, most likely you will be using it on a single host at
the beginning, so the hub and the client can be on the same machine. As
you grow your CFEngine installation, other machines will connect to the hub
as well. Most CFEngine installations use a “star” configuration, with a single
hub serving multiple machines. However, this is not a requirement—CFEngine
allows you to connect its components in any architecture you desire’.

Installing CFEngine

Remember that CFEngine exists in two versions: community edition and com-
mercial edition. Therefore, I will describe the following options for installing
CFEngine:

* Commercial edition (free for up to 25 nodes), installed from a binary
package or on a pre-built virtual machine image using Vagrant.

* Community edition (free), installed from a binary package or from a
package repository.

* Community edition (free), installed from source code.

'In fact, with CFEngine Community there is no difference at all in the software installed on a
hub and on a client, just in their configuration. It is easy to convert a client into a hub (and vice
versa) by bootstrapping it again with the correct options, as described in Finishing the Installation
and Bootstrapping.

Getting Started with CFEngine 2

Which Version of CFEngine?

You should always install the latest released version of CFEngine. Some
operating systems include in their repositories older versions of CFEngine, but
each new release includes new features, bug fixes and other improvements that
make it worth staying up to date. All examples in this book have been tested
with CFEngine 3.12 LTS, the latest release at the time of writing.

cycle for major releases. Every 18 months, the new release is labeled
as LTS (Long-Term Support), which means that it will be supported for
a full three years after release. You can read the details about this re-
lease schedule at https://cfengine.com/product/supported-versions/.

0 Since version 3.7, CFEngine has adopted a regular 6-month release

Testing CFEngine Enterprise using a Vagrant VM

The easiest way to give CFEngine a quick try is to use the CFEngine Enter-
prise binary packages, using the pre-made Vagrant configuration provided by
CFEngine AS.

method of installation is highly recommended, as you can experiment
with both the Community and the Enterprise features. Of course, if
you are installing directly on some of the machines you manage, you
need to choose the appropriate edition depending on whether you plan
to purchase Enterprise licenses.

o For the purposes of learning CFEngine while you read this book, this

Vagrant allows us to quickly set up one or more VMs with a repeatable,
consistent configuration. Using Vagrant, the CFEngine Enterprise Vagrant
Environment quickly sets up a CFEngine Enterprise Hub and one client running
on your own machine, both running the latest version of CFEngine Enterprise.
You can find the full instructions at the CFEngine documentation page?, but in
short these are the steps you need to follow, applicable to Windows, Linux or
macOS:

1. Download and install VirtualBox for your platform from https://www.
virtualbox.org/

2 https://docs.cfengine.com/docs/3.12/guide-installation-and-configuration-general-
installation-installation-enterprise-vagrant.html

https://cfengine.com/product/supported-versions/
https://www.vagrantup.com/
https://docs.cfengine.com/docs/3.12/guide-installation-and-configuration-general-installation-installation-enterprise-vagrant.html
https://www.virtualbox.org/
https://www.virtualbox.org/
https://docs.cfengine.com/docs/3.12/guide-installation-and-configuration-general-installation-installation-enterprise-vagrant.html
https://docs.cfengine.com/docs/3.12/guide-installation-and-configuration-general-installation-installation-enterprise-vagrant.html

Getting Started with CFEngine 3

2. Download and install Vagrant for your platform from https://www.vagrantup.
com/

3. Download and unpack the CFEngine Vagrant Environment tar file’. When
you unpack this file, it will create a directory named CFEngine Enter-
prise vagrant quickstart-3.12.0-1 (or similar, depending on the current
release).

4. Change into the directory created and request the status of the VMs using
the vagrant status command:

$ vagrant status
Current machine states:

hub not created (virtualbox)
host001 not created (virtualbox)

This environment represents multiple VMs. The VMs are all listed
above with their current state. For more information about a specific
VM, run “vagrant status NAME".

5. Create and start the VMs using vagrant up. This may take a few minutes
and you will need to be connected to the Internet, since Vagrant will need
to download some VM images the first time. Vagrant will set up the VMs,
install and configure CFEngine Enterprise on them

$ vagrant up

Bringing machine 'hub' up with 'virtualbox' provider...

Bringing machine 'host001' up with 'virtualbox' provider...

==> hub: Importing base box 'centos-6.5-x86 64-cfengine enterprise-
vagrant-201501201245'...

==> host001l: Thank you for downloading the
Getting Started with CFEngine Enterprise
==> host001: Vagrant Virtualbox environment
==> host001: Please log into the mission portal:
==> host001: https://localhost:9002
==> host001: username: admin
==> host001: password: admin

3https://cfengine-package-repos.sS.amazonaws.com/enterprise/Enterprise- 3.12.0/misc/
CFEngine Enterprise vagrant quickstart-3.12.0-1.tar.gz

https://www.vagrantup.com/
https://www.vagrantup.com/
https://cfengine-package-repos.s3.amazonaws.com/enterprise/Enterprise-3.12.0/misc/CFEngine_Enterprise_vagrant_quickstart-3.12.0-1.tar.gz
https://cfengine-package-repos.s3.amazonaws.com/enterprise/Enterprise-3.12.0/misc/CFEngine_Enterprise_vagrant_quickstart-3.12.0-1.tar.gz
https://cfengine-package-repos.s3.amazonaws.com/enterprise/Enterprise-3.12.0/misc/CFEngine_Enterprise_vagrant_quickstart-3.12.0-1.tar.gz

Getting Started with CFEngine 4

6. After a few minutes, you will have a new shiny CFEngine Enterprise setup
consisting of one hub and one client:

$ vagrant status
Current machine states:

hub running (virtualbox)
host001 running (virtualbox)

This environment represents multiple VMs. The VMs are all listed
above with their current state. For more information about a specific
VM, run ‘vagrant status NAME".

You can explore the CFEngine Enterprise console using the URL and creden-
tials printed. You can also login to any of the VMs using the vagrant ssh
command. You can run most of our examples in the client VM, to which you
can login like this:

$ vagrant ssh host001
Last login: Tue Jan 20 19:18:45 2015 from 10.0.2.2
[vagrant@host001l ~]$

mounted on the VMs under /vagrant. This can be very useful to share
files between your host machine and the CFEngine VMs. For example,
you can use your favorite local editor to type the examples and save
them in that directory, and they will be available to the VMs as well
So you can run them.

P The directory in which the Vagrant configuration is unpacked is

Getting Started with CFEngine o)

By default the Vagrant configuration file will create only one client VM,
but you can request more by setting the HOSTS environment variable:

$ export HOSTS=3
$ vagrant status
Current machine states:

hub running (virtualbox)
host001 running (virtualbox)
host002 not created (virtualbox)
host003 not created (virtualbox)

$ vagrant up

$ vagrant status
Current machine states:

hub running (virtualbox)
host001 running (virtualbox)
host002 running (virtualbox)
host003 running (virtualbox)

In this way, you can experiment with a multi-node setup, all within your local
machine. Be mindful of starting many VMs, lest you overload your machine.

Installing the Community Edition from Binary Packages

CFEngine Community can also be installed from binary packages that are
built for most popular Linux distributions. The easiest way to do this is by
using the quick-start script provided by CFEngine AS. The script automatically
downloads and installs the appropriate package according to your distribution.
You can use it like this (make sure to type the whole command in a single line):

curl http://cfengine.package-repos.s3.amazonaws.com/quickinstall/
quick-install-cfengine-community.sh | bash

Alternatively, you can download the individual package files for different
Linux distributions from https://cfengine.com/product/community/. Once you
download the appropriate package, install it using the corresponding tool for
your operating system (for example, rpm or dpkg).

https://cfengine.com/product/community/

Getting Started with CFEngine 6

Installing the Community Edition using your system’s package repositories

Many Linux distributions and macOS package managers include CFEngine in
their default package repositories. In these cases, it’s usually fine to install
CFEngine from there. Be aware that in some cases, the packages available are
for very old versions of CFEngine, so before you install it, make sure it is a
recent version (preferably the latest) to have access to all the features we will
discuss.

Installing the Community Edition from Source

You can download the CFEngine source code in a compressed tar file from
https://cfengine.com/source-code. You can also fetch the very latest code from
the CFEngine git repository by issuing the following command:

$ git clone git://github.com/cfengine/core.git

CFEngine requires the following packages (with their development-related
content, such as header files):

* OpenSSL (installed by default in most Linux and Unix systems)
* One of: LMDB, QDBM or Tokyo Cabinet

* PCRE, the Perl-Compatible Regular Expressions Library (http://www.pcre.
org/)

In addition, the following libraries are supported for enabling optional features.
If they are installed, the CFEngine configure script will automatically enable
the corresponding features.

* libxml2 for the ability to edit XML files.

* libacl for the ability to manipulate POSIX ACLs.

* MySQL client library for the ability to manage MySQL databases.

* PostgreSQL client library for the ability to manage PostgreSQL databases.

Once the required packages are installed, compiling and installing CFEngine is
as easy as running the following commands in the CFEngine source directory:

https://cfengine.com/source-code
http://openssl.org/
https://symas.com/lmdb/
http://fallabs.com/qdbm/
http://fallabs.com/tokyocabinet/
http://www.pcre.org/
http://www.pcre.org/
http://xmlsoft.org/
http://savannah.nongnu.org/projects/acl/
http://mysql.com/
http://postgresql.org/

Getting Started with CFEngine 7

$./configure
$ make
$ sudo make install

P If you checked out the source code from the git repository, use
the following sequence (autogen.sh understands the same options as
configure, in case you want to provide any):

$./autogen.sh
$ make
$ sudo make install

This will compile CFEngine and install all its binaries and support files under
/var/cfengine/. The binaries will all be located in /var/cfengine/bin/, so you
should add this directory to your PATH environment variable to be able to invoke
the binaries conveniently.

The configure script prints, near the end of its execution, a summary
of all the CFEngine features that have been enabled, according to the
optional libraries that were found. You can use this to verify that all
the features you want are there, before compiling. For example, you
can see here that XML support is disabled, which is most likely an
indication that the libxml2 library is not installed:

Summary of options...

> Required libraries

-> OpenSSL: default path

-> PCRE: default path

-> DB: Tokyo Cabinet: default path
> Optional libraries

-> MySQL connector: default path
-> PostgreSQL connector: default path
-> libvirt: default path

-> libacl: default path

-> libxml2: disabled

-> Workdir: /var/cfengine

You can run ./configure --help to get a list of all the valid options, and find the

Getting Started with CFEngine 8

detailed, latest compilation instructions at https://github.com/cfengine/core/
blob/master/INSTALL.

Installing CFEngine Enterprise

If you have purchased the commercial edition of CFEngine, you will get access
to the binary packages of CFEngine Enterprise for all the supported operating
systems, including a native Windows installer. You will also need to register
your CFEngine policy server to get a license key for it.

an excellent opportunity to learn and explore the commercial features

P You can use CFEngine Enterprise for free for up to 25 nodes. This is
of CFEngine before committing to purchasing it.

The policy language in the commercial edition of CFEngine is a strict superset
of the Community Edition, so you can start by practicing with the Community
Edition, and move to the commercial edition as you gain more experience and
need more advanced features, knowing that your existing policies will work just
as before.

CFEngine Enterprise comes in two package files, called cfengine-nova and
cfengine-nova-hub. The first one should be installed on CFEngine client ma-
chines, and the second one on the policy hub, the central host from where
clients will fetch their policies, and where the CFEngine graphical console
available with Enterprise is installed. The hub software must be installed on
a 64-bit machine, so the hub packages are only available in 64-bit versions.

CFEngine Enterprise was originally called “CFEngine Nova”, which is
why you will find many references to this name, including the package
filenames.

Similarly to the Community edition, the easiest way to install Enterprise is by
using the existing quick-install script, which you can download as follows (type
the command in a single line):

$ wget http://s3.amazonaws.com/cfengine.packages/
quick-install-cfengine-enterprise.sh

You then need to run the script with the argument hub or agent, depending on
the type of host you want to install:

https://github.com/cfengine/core/blob/master/INSTALL
https://github.com/cfengine/core/blob/master/INSTALL

Getting Started with CFEngine 9

$ sudo bash ./quick-install-cfengine-enterprise.sh hub # on the hub
$ sudo bash ./quick-install-cfengine-enterprise.sh agent # on other hosts

You can also download the packages individually from https://cfengine.com/
product/cfengine-enterprise-free-25/, and install them on your hosts using their
corresponding installation mechanism.

If you have a commercial license (this is, you have purchased a license to
use Enterprise on more than 25 hosts), you need to install the license key
license.dat that you get from CFEngine by running the following command:

cf-key --install-license ./license.dat

After this, you can continue with the bootstrap process as described next.

Finishing the Installation and Bootstrapping

After installation, there may be a few finishing steps left to perform, depending
on your installation method. If you are using the CFEngine Enterprise Vagrant
setup as described in Testing CFEngine Enterprise using a Vagrant VM, then
all VMs are already correctly bootstrapped, and you can skip this section.
Otherwise, follow these steps:

1. Run the command /var/cfengine/bin/cf-key. This will generate a private-
and public-key pair for the current host.

/var/cfengine/bin/cf-key

Making a key pair for cfengine, please wait, this could take a minute...

These keys are necessary when operating in a distributed CFEngine
environment. This command also sets up under /var/cfengine/ the basic
directory structure used by CFEngine. The generated keys will be stored
in /var/cfengine/ppkeys/.

If the keys already exist (CFEngine-provided binary packages run this
command automatically during the installation) you will see the following
message:

/var/cfengine/bin/cf-key
A key file already exists at /var/cfengine/ppkeys/localhost.pub

https://cfengine.com/product/cfengine-enterprise-free-25/
https://cfengine.com/product/cfengine-enterprise-free-25/

Getting Started with CFEngine 10

2. CFEngine installs its binaries by default in /var/cfengine/bin/. Some
binary packages may also copy them to /usr/local/sbin/ to have them
in the same directory as other system utilities. You may want to add the
correct directory to the PATH environment variable in your shell setup.

3. On the policy hub, CFEngine expects to find its “master files” under
/var/cfengine/masterfiles/. This is meant to be the master copy of
its policy files, from where they will be copied to the work directory
(/var/cfengine/inputs/ by default). If the /var/cfengine/masterfiles/ di-
rectory is empty or nonexistent (this will be the case if you installed
from source), you need to populate it with the sample masterfiles di-
rectory from the CFEngine distribution, which normally gets installed in
/var/cfengine/share/CoreBase/:

1s /var/cfengine/masterfiles

cp -Rp /var/cfengine/share/CoreBase/* /var/cfengine/masterfiles/
1s -F /var/cfengine/masterfiles/

cf-sketch-runfile.cf controls/ def.cf libraries/
promises.cf services/ update.cf

We will examine these files in detail later on.

4. Finally, CFEngine needs to be “bootstrapped” to a CFEngine policy server.
This registers the client with the server, copies the masterfiles to their final
working location in /var/cfengine/inputs/ and starts the base cf-execd
daemon. The policy server also needs to be bootstrapped to itself.

The cf-execd daemon controls the periodic execution of cf-agent, which
is the one that actually executes the promises in the provided policies
(we will look in more detail at the different components in CFEngine
Components).

To bootstrap a client, first find the IP address of your policy server,
using the ifconfig command (ipconfig under Windows). Let’s assume it
is 10.0.2.15. Run the cf-agent command with the --bootstrap option. For
example, if you run the command on the policy server itself, you will see
the following:

https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=cf-execd
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=cf-execd
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=cf-agent
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=cf-agent

Getting Started with CFEngine 11

/var/cfengine/bin/cf-agent --bootstrap "10.0.2.15"

2013-07-03T06:12:34 notice: Q: "...f-serverd"":

2013-07-03T06:12:34 notice: Server is starting...

2013-07-03T06:12:34 notice: R: This host assumes the role of policy server
2013-07-03T06:12:34 notice: R: Updated local policy from policy server
2013-07-03T06:12:34 notice: R: Started the server

2013-07-03T06:12:34 notice: R: Started the scheduler

2013-07-03T06:12:35 notice: Bootstrap to '10.0.2.15' completed successfully!

The cf-agent command recognizes you are using the machine’s own IP
address to bootstrap, and configures it as a policy server. You can verify
the success of this command by looking at the process list. You should
see at least the cf-execd process, and maybe some others that are started
automatically by it:

ps ax | grep cf
84284 7?7 0:00.22 /var/cfengine/bin/cf-execd
84287 ?7 0:00.15 /var/cfengine/bin/cf-serverd

The policy server should be the first host you bootstrap. Once you have
it running, you can boostrap CFEngine on other hosts by providing the
server’s IP address to the cf-agent --bootstrap command.

Auxiliary Files

The CFEngine distribution includes not only the binaries, but also a large
library of documentation and examples. The examples normally get installed
in /var/cfengine/share/doc/ (in previous versions they were installed un-
der /usr/local/share/cfengine/ or /usr/local/share/doc/cfengine/, and can
be of big help for getting started. These directories include examples of
CFEngine configurations for different tasks and demonstrate the use of dif-
ferent CFEngine constructs. The examples directory contains a large number of
mostly-self-contained files that demonstrate and exercise different CFEngine
abilities.

Your First CFEngine Policy

Now that you have CFEngine installed and running, let us start by writing a
first simple policy. If you have finished the bootstrapping process described in

https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=cf-execd

Getting Started with CFEngine 12

Finishing the Installation and Bootstrapping, you can be sure that CFEngine is
properly installed. You can also check this by running the following command:

cf-agent --version
CFEngine Core 3.12.2
CFEngine Enterprise 3.12.2

For our first policy, let us tackle a task that is simple to explain, yet can be
useful in real systems. We will add a line to the /etc/motd file to indicate that
CFEngine is running on this machine. And to keep with tradition, we will also
print out a “Hello world!” message to the console when the policy is run.

I recommend you type the code as you read through the example, and save it in
a file named edit motd.cf so you can run it from CFEngine when we are done.

If you are using the Vagrant quick-start setup, you can save this file
under the same directory, and it will be available in the VMs under the
{{{file(/vagrant)}}} directory.

CFEngine instructions (called “promises”) are contained in units called “bun-
dles”. In our case, we will define a bundle called edit motd. Here is the bundle
code:

bundle agent edit motd

{
vars:
"motd" string => "/etc/motd";
files:
||$(mo.td) n
create => "true",
edit_line => addmessage;
reports:
"Hello world!";
}

This is the part of the policy that tells CFEngine what to do. Here is how it
works:

Getting Started with CFEngine 13

* In CFEngine, a bundle of type agent (identified by its declaration bundle
agent, followed by an arbitrary identifier, in this case edit motd) could
be considered the equivalent of a subroutine, and contains promises that
CFEngine evaluates and acts on, if needed. It is split into sections that
correspond to different types of promises, which are the lines that start
with a word and end with a single colon. In this bundle, we have three
sections: vars:, files:, and reports:.

* The vars: section is used to declare variables. CFEngine has several
variable types, including strings, lists, arrays, and numbers (both integers
and floating-point numbers are supported). Here we are declaring a single
string value named motd, which contains the path of the file we want to edit.
If you are testing this on a system where you don’t have root privilege, you
should change this path to some file you can edit, for example /tmp/motd.

In a CFEngine policy, everything is expressed as promises, even variable
declarations. In this case, motd promises to be a string variable containing
the value "/etc/motd". We will reference this variable later in the policy.
Scalar variable references are indicated by a dollar sign followed by the
variable name enclosed in either parentheses or braces. Both ${motd} and
$(motd) refer to the same variable.

* In the files: section we indicate the file-related operations we want
to perform. In this case, the promiser is "$(motd)" which expands the
motd variable into its value, so the promiser becomes "/etc/motd", telling
CFEngine which file to edit.

The rest of the promise, up until the semicolon, is called the body of the
promise, and is formed by attribute => value pairs, separated by commas.
In this case we have two attribute specifications: create => "true" and
edit line => addmessage. The former simply indicates that the file needs
to be created if it doesn’t exist yet. The latter means that lines in /etc/motd
will be edited according to the specification given by a bundle named
addmessage (which we haven’t seen yet).

Casting this into CFEngine terminology: All promisers in the files:
section are interpreted by CFEngine as files (or directories) on the system,
so the promise in our sample policy means that the /etc/motd file promises
to be edited according to the instructions given by the body of the promise.
The value of the edit line parameter is the name of an edit line bundle.
This means that it’s not a single value, but rather the name of a named
collection of attributes that specifies the behavior of edit 1line. Here is its
definition:

https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=vars:
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=files:
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=reports:
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=vars:
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=files:
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=files:
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=edit_line
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=edit_line
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=edit_line

Getting Started with CFEngine 14

bundle edit_line addmessage {
insert_lines:
"This system is managed by CFEngine 3";

}

A bundle is also a container of promises, and is also divided in sections.
The type of each bundle is given by the second word in its declaration
(in this case, edit_line). You can see that the edit motd bundle had agent
as its type, which means it is an “execution” bundle that can be called
directly (in this case, from the bundlesequence declaration, although there
are other means for executing agent bundles that we will cover later).
Thus, the first line assigns the type edit line to the addmessage bundle,
meaning that it can be used only as the value of an edit line attribute.
Additionally, the type of a bundle defines what sections are valid in it, and
how the promises in it are interpreted. An edit line bundle must contain
promises that perform edits on a file. In this case, it contains an insert_-
lines: section, so promises are interpreted as lines that must be present
in the file. The only promise in this bundle is a string that contains the
message we want to insert in the file. The string itself is the promiser and
no additional attributes are given, which means the line will always be
inserted into the file, unless it is there already (this is CFEngine’s way of
ensuring convergent behavior: if it always inserted a line, the file would
never converge to a stable state).

In summary, what this means is that the given line will be inserted into
/etc/motd if it’s not there already:.

* Finally, the edit motd bundle has a reports: section, which is meant to
produce output during the execution of the policy. Promises in a reports:
section indicate messages and how they will be handled. By default, the
promised message will be printed to the console. In our case, we will print
the message Hello world! to the console every single time the promise is
executed.

This completes our first policy, so let us look at it in one piece:

https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=agent
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=bundlesequence
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=edit_line
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=edit_line
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=edit_line
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=insert_lines:
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=insert_lines:
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=reports:
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=reports:

Getting Started with CFEngine 15

bundle agent edit motd

{
vars:
"motd" string => "/etc/motd";
files:
||$(mo.td) n
create => "true",
edit line => addmessage;
reports:
"Hello world!";
}

bundle edit line addmessage
{
insert_lines:
"This system is managed by CFEngine 3";

}

Type this in and save it to a file, for example edit motd.cf. You can then execute
it with the following command:

cf-agent --no-lock --inform --bundlesequence edit motd --file ./edit motd.cf
info: Using command line specified bundlesequence
info: Edit file '/etc/motd’

R: Hello world!

These are the options we used:

* --no-lock (can be abbreviated as -K) means “Ignore locking constraints
during execution,” which in practice means “always execute all promises.”
Normally, CFEngine obeys certain time periods between successive eval-
uations of the same promise, to avoid overloading the systems. The
--no-lock option disables those constraints, and so is useful for testing
policies that you may run several times in quick succession.

e --inform (short -I) means “Print basic information about changes made to
the system,” essentially telling CFEngine to show you the actions that it is
taking. If not specified, CFEngine’s output is quite terse, so again, this is
useful when you are testing policies to get more information about what
CFEngine is doing.

Getting Started with CFEngine 16

* --bundlesequence (short -b) tells CFEngine which bundle to execute within
the file (the bundle sequence can also be specified within the policy file,
but specifying it in the command line will make it easier to integrate with
the rest of the system policy).

* --file (short -f) tells CFEngine to use the specified file as its input.
Otherwise it will try to read /var/cfengine/inputs/promises.cf You can
also omit the -f and simply give the filename as the last argument to the
command.

Now examine the /etc/motd file, and you will see that the following line has
been added to it:

This system is managed by CFEngine 3
If you run the command again, the output changes:

cf-agent -K -I -b edit motd -f ./edit motd.cf
info: Using command line specified bundlesequence
R: Hello world!

The /etc/motd file already contains the message, so it is not edited again. Now
try editing it by hand and removing or modifying the existing line. If you run
cf-agent again, the message will reappear.

Congratulations! You have written and executed your first CFEngine policy.
This is a very basic operation, but its structure is very similar to that of any
other CFEngine policy, and allows enough flexibility and expressibility to tackle
the most complex configuration tasks.

https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=cf-agent

Getting Started with CFEngine 17

In Unix machines, you can use “shebang” notation to make your policy
files executable, just like any other script in a Unix system. To do this,
make sure the first line of your policy file contains the following, and
that the script itself has execute permissions:

#!/var/cfengine/bin/cf-agent -bedit motd
Then you can run the policy as a standalone script:

./edit motd.cf
R: Hello world!

Usually, your policies should all be integrated into a cohesive exe-
cution controlled by cf-execd (see Integrating Your New Policy Into
Periodic CFEngine Execution), but this technique can be useful when
you have some specific policies that you want to be able to execute
separately or on demand.

Most of the examples in this book are shown running as the root user, since that
is the normal conditions under which CFEngine should be executed to have the
privileges necessary to exercise changes to the system. However, during devel-
opment and testing it is perfectly possible to run CFEngine as a regular user.
When you run it like this, CFEngine does not look under /var/cfengine/ for its
input files, rather it looks under $HOME/.cfagent, so if you run cf-agent without
specifying an input file, it will try to read $HOME/.cfagent/inputs/promises.cf.

For this to work, all the CFEngine executables and files (including its key files)
need also to exist under $HOME/.cfagent/. So you need to run the following
commands before you start:

$ cf-key # cf-key creates all the necessary directories
Making a key pair for CFEngine, please wait, this could take a minute...
$ In -s /var/cfengine/bin/* ~/.cfagent/bin/

Integrating Your New Policy Into Periodic CFEngine Execution

In the example we just saw, you were running the policy file by hand using
cf-agent. But CFEngine is meant to save you from running things by hand!
For development and testing it is fine to run your policies this way, but once
they are done, you need to integrate them into the main CFEngine execution
loop so that they are evaluated continuously and automatically. This is done

Getting Started with CFEngine 18

by integrating them into the policies executed by promises.cf, which is the file
that CFEngine loads and executes by default.

The easiest way to do this integration is to make use of the built-in capabilities
in the default CFEngine masterfiles policies to automatically load and execute
certain bundles. In short, this is what we need to do:

* Enable the “autorun” feature in the policy (it comes disabled by default).

* Tag our edit _motd bundle with the autorun tag so that it is automatically
executed.

* Copy our edit motd.cf policy file to the services/autorun directory inside
the policy directory, so that it is automatically loaded.

More specifically, these are the steps we need to follow to automatically load
and execute the edit motd bundle:

1. Edit the edit motd bundle to add the following lines at the beginning,
which specify some metadata for the bundle, including the autorun tag:

meta:
"tags" slist => { "autorun" };

2. Copy the modified edit motd.cfto /var/cfengine/masterfiles/services/autorun/
in the policy server. This directory is special because all policy files in it
will be automatically loaded.

3. Create file /var/cfengine/masterfiles/def.json with the following con-
tents, to enable the autorun feature:

{

"classes":

{

"services autorun": ["any"]
}’
}

If you want to trigger the changes right away, run the following commands to
force an immediate update of the policies, and then to execute them:

Getting Started with CFEngine 19

cf-agent -f /var/cfengine/inputs/update.cf -I
info: Updated '/var/cfengine/inputs/services/autorun/edit motd.cf'
from source '/var/cfengine/masterfiles/services/autorun/edit motd.cf'
on 'localhost!
cf-agent
R: Hello world!

(you may want to remove the reports: promise that prints the message once
you have this integrated)

That’s it! Now your edit motd bundle will be run automatically as part of the
regular CFEngine execution every five minutes, ensuring that the /etc/motd file
is constantly kept correctly configured.

2. CFEngine Basics

In this chapter we will take a more detailed look at the basic concepts behind
CFEngine, including its theoretical foundation, the syntax and constructs of its
policy language, and some unique aspects of its behavior. I will also point you
to some of the many online resources available for learning and improving your
CFEngine skills.

Basic Principles

One of CFEngine’s unique characteristics is that it is built upon predefined,
solid theoretical and behavioral principles. These principles guide the design
and implementation of all the CFEngine components and of its policy language,
and ensure that the behavior of those components remains consistent. These
principles are: desired-state configuration, a minimum base set of native
operations, promise theory, and convergent configuration. Let us look at them
in more detail.

Desired-State Configuration

CFEngine is different from many other automation mechanisms in that you do
not need to tell it what to do. Instead, you specify the state in which you wish
the system to be, and CFEngine will automatically decide the actions to take to
reach the desired state, or as close to it as possible. In programming language
terms, we say that the CFEngine policy language is declarative, as opposed to
imperative.

These are some examples of the things that you can express to CFEngine as
desired states:

» “Make sure file /etc/ssh/sshd config contains the line UseDNS no”
e “Make sure user mysql exists/does not exist”

* “Make sure process httpd is (not) running”

At a higher level of abstraction, you can encapsulate CFEngine operations and
express high-level desired states:

CFEngine Basics 21

* “Make sure all web servers have Apache installed”

* “Make sure all root accounts have the same, centrally-designated pass-
word”

* “Make sure parameters UseDNS and PermitRootLogin are disabled on all
sshd configurations, except on servers dbsrv01 and dbsrv02, where PermitRootLogin
should be enabled”

And at an even higher level, you can express top-level desired states like these:

* “Configure host dbsrv01 as a database server”
e “Create a new cluster of VMs to use as web servers”

* “Give me a new datacenter in EC2 region ap-northeast-1”

Of course, at some point, CFEngine needs to know what specific changes to
make to the system, and how to make them. To this effect, CFEngine knows
how to perform a number of native operations on the system.

Basic CFEngine Operations

These are some of the basic operations that CFEngine natively knows how to
perform:

* Extract information from the system itself about its current state and
configuration.

* Inspect and modify the contents of text, XML or JSON files.
* Check for and manipulate file permissions and ownerships.
* Check for existence of processes running in the system.

* Check for existence of users in the system.

* Run programs and check their exit status.

* Check and manipulate packages installed on the system.

* Check and manipulate services on Unix systems.

* Query and manipulate databases and their contents (as of this writing,
MySQL, PostgreSQL and SQLite are supported).

* Examine and manipulate POSIX Access Control Lists (ACLs).

CFEngine Basics 22

features implemented by major promise types in CFEngine. There are
many other operations implemented by functions or by CFEngine’s
monitoring components that allow both querying and modifying the
system. Plus CFEngine is constantly evolving, so by the time you read
this, new features may have appeared.

o This is by necessity an incomplete list—it reflects only the major

The commercial version of CFEngine has some additional capabilities, includ-
ing the following:

* Check and manipulate the Windows registry, event logs, and services.
* Query and manipulate LDAP (and, by extension, Active Directory) databases.

¢ Examine and manipulate Windows Access Control Lists (ACLs).

These operations are sufficient to perform most configuration tasks on a sys-
tem. At the lowest possible level, CFEngine contains functional specifications of
how to make changes to the system. At the highest level, however, you declare
what you want as shown in Desired-State Configuration, and leave the details
to CFEngine.

CFEngine ships with some built-in libraries that perform more advanced
operations using these basic capabilities, and you can also build your own or
use existing libraries to perform custom checks and activities.

Promise Theory

CFEngine 3 works on top of a theoretical model called Promise Theory. This
theory models the behavior of autonomous agents in an environment without
central authority, based only on promises of behavior made by each agent, and
shows that even without central control, the system can converge to a stable
state.

Promise Theory underlays one of the basic tenets of CFEngine: voluntary co-
operation. In CFEngine, each system participates voluntarily, makes promises
only about its own behavior (if you think about it, it makes no sense for
a system to make promises about someone else’s behavior), and cannot be
forced to accept commands or information from any external entities. This
gives CFEngine very strong security properties, since it means that CFEngine
running on a host cannot be coerced into modifying its behavior according to
some external influence. It may choose to do so (for example, by getting policies
from a central server), but unlike many other configuration management

http://markburgess.org/promises.html

CFEngine Basics 23

systems, CFEngine does not require you to open a command channel through
which each host can be given instructions (all you can do is “ping” clients so
that they run their policies before their scheduled time, or to query them for
information, but never to perform arbitrary actions or commands).

eration is more than a theoretical nicety in terms of security: in its
entire 25-year history (spanning versions 1 through 3), CFEngine has
had only seven published vulnerabilities, only three of which were
remotely exploitable. The last one of those was published in 2005,
still in CFEngine 2. CFEngine 3 has the impressive record of zero
published vulnerabilities since its release in 2009.

o It’s worth mentioning that CFEngine’s principle of voluntary coop-

A promise is simply a declaration of intent, a model of the desired state of
the promiser. A promise does not imply that the desired state will be reached
in the next iteration (or ever), but implies a capability for verifying whether
the promise has been satisfied. Through this seemingly simple characteristic,
promise theory allows CFEngine to deal with a crucial aspect of systems
management: operational uncertainty. Systems are under constant change,
both intentional (changing requirements, changing software, changing user
behavior, security attacks) and accidental (disconnected network links, dis-
appearing resources, software crashes) and have to react to it, often with
incomplete information. Promise theory allows CFEngine to deal with these
conditions in a resilient fashion.

Promise Theory was developed initially as the foundation for CFEngine’s
behavior (in fact, the policy language in CFEngine 3 was redesigned to reflect
this theory), but it has found more general applications in Computer Science
and in other disciplines such as Economics and Organization.

According to Promise Theory, everything in CFEngine 3 is a promise, with
specifications of what to do if the promise is already satisfied, if the promise
was not satisfied but could be fixed, if the promise was not satisfied and could
not be fixed, etc. The following table shows some examples of promises you
could find in a CFEngine policy, and of the possible actions CFEngine could
take automatically if the promise is not kept.

https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=cfengine

CFEngine Basics

24

Examples of objects (promisers), promises, and repair actions in CFEngine.

Promiser Promises to... If not currently kept,
CFEngine will...

A variable ...hold a certain value of a ...store the appropriate
certain type. value in the variable.

A file ...have certain ...set the desired
characteristics properties on the file.
(permissions, ownership,
ACLs, etc.).

A file ...exist and to have ...create the file if needed,

A user account

A process

A shell command

A directory on the policy

hub

An output message

certain content.

...exist and have certain
characteristics (home
directory, group, etc.)
...be running on the
system.

...have been executed.

...provide access to its
content to certain clients.

...be generated when
certain conditions arise,
with a certain frequency
and in a certain format.

modify its content (add,
remove or edit lines) to

match the desired state.
...create the user account

with the desired
characteristics.

...run the appropriate
command to create the

process.
...execute the command

and collect its output and

exit status.
...reconfigure its access

rules to permit or block

the access as desired.
...produce the appropriate

message.

When a promise is not already satisfied (e.g., a file does not exist as it should),
CFEngine will take the necessary actions to fix it, according to both its built-in
rules and any additional promises declared in the policy.

Depending on the current state of the system with respect to a given promise,
on the actions that CFEngine took when evaluating a promise, and on the result
of those actions, CFEngine defines the following promise states:

* Promise kept: The state of the system was already as described by the
promise, so no action had to be taken.

* Promise repaired: The state of the system was not as required by the
promise, so CFEngine took the appropriate actions, and repaired the
system state to match the requirements of the promise.

* Repair failed: Repair actions were attempted by CFEngine, but they
failed for some reason (for example, lack of permissions to edit a file).

CFEngine Basics 25

Depending on why the repair action failed, one of the following states may
also be set:

- Repair denied: Repair actions were attempted by CFEngine, but they
failed due to lack of access to some resource.

- Repair timeout: Repair actions were attempted by CFEngine but
took too long to execute, and CFEngine cancelled the operation.

A CFEngine policy is constructed out of individual promises that get executed
in certain order, and that can interact with other promises. After a promise is
evaluated (executed), you can determine its state and act based on it, triggering
further actions such as reporting, command execution, or evaluation of other
promises.

Convergent Configuration

One of CFEngine’s basic principles is that of convergent configuration. This
means that you don’t have to leave the system in the desired state on the first
pass. Instead, you make changes incrementally, getting closer to the objective
every time, independently of the starting state of the system. A CFEngine policy
may not leave the system completely configured on the first pass, but at least
it will make some changes. On subsequent passes, it will continue to make
changes, eventually bringing it as close as possible to the desired state.

One advantage of convergent configuration, and of the declarative nature of
CFEngine, is that you do not need to know the current state of the system in
order to correct it. If the system is already in the desired state, a correctly
written CFEngine policy will do nothing. If it’s not, CFEngine will iteratively
make discrete changes to bring it closer to the ideal, taking only the necessary
actions to correct the existing deviations.

In order to carry out convergent configuration, CFEngine performs three
passes over its policy. During each pass, all the promises in the policy are
evaluated. There may be some promises that cannot be evaluated until the
second or third pass due to dependencies between different components of
the policy, so the multiple passes help CFEngine bring things to a convergent
state as soon as possible.

CFEngine Components

A CFEngine installation contains multiple components that perform different,
specific functions, as shown in the following figure. Dotted lines represent

CFEngine Basics 26

components that execute others, solid lines represent communication among
components, and bold lines indicate data flow.

Let’s look in more detail at the functionality and role of each one of these
components.

Server

cf-serverd |« - A
Cli i Connects | Policies,
ient {Executes to files
H and data

g Cf-agent f-key
— v
cf-runagent R . B

[t v v v
cf-hub :: cf-serverd cf-monitord | | cf-promises

CFEngine components and their relationships

» cf-agent: This process is the “instigator of change,” the program that
evaluates policies and acts on them, making any necessary changes to the
system. cf-agent is normally started directly by the user (for example, we
have been running it manually from the command line to test the policies
in this book), or by one of cf-execd (as a mechanism for starting it at
regular intervals) or cf-serverd (in response to the cf-runagent command
executed from a different host). Note that depending on its policies,
cf-agent can in turn be responsible for restarting cf-execd, cf-serverd or
cf-monitord if they have stopped for any reason (in addition, cf-promises
is used by cf-agent to validate its policies before attempting to run them).

By default, cf-agent will attempt to run /var/cfengine/inputs/promises.cf
(more precisely, the file found by expanding the string $(sys.workdir)/inputs/promise
when invoked, unless a different file is specified using the -f command-
line option. If the filename executed produces an error, cf-agent will
try to run /var/cfengine/inputs/failsafe.cf. The idea is for failsafe.cf
to be a barebones policy that does little more than try to restore the
CFEngine policies to a working state. Normally failsafe.cf will attempt
to update the local policies from the policy hub, and it may also try
to start cf-execd and cf-monitord to have at least a minimal CFEngine
infrastructure running. If the failsafe.cf file is not found, cf-agent will
generate it from a built-in template.

» cf-execd: This process executes cf-agent in a periodic basis, collecting

https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=cf-agent
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=cf-agent
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=cf-execd
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=cf-serverd
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=cf-runagent
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=cf-agent
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=cf-execd
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=cf-serverd
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=cf-monitord
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=cf-promises
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=cf-agent
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=cf-agent
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=cf-agent
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=cf-execd
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=cf-monitord
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=cf-agent
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=cf-execd
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=cf-agent

CFEngine Basics 27

its output, and potentially emailing it somewhere. By default, cf-execd
runs cf-agent every five minutes, but you can modify its behavior using
an executor control body. For example:

body executor control

{
any::

splaytime => "10";
mailto => "cfengine@example.org";
mailfrom => "cfengine@$(sys.host).example.org";
smtpserver => "mail.example.org";
schedule => { "Min00_ 05", "Min30_ 35" };

}

In this case, the schedule attribute tells cf-execd to only run cf-agent every
30 minutes (more precisely, whenever either the Min00 05 or Min30 35
classes are enabled, which would be the case between 00-05 and 30-
35 minutes of every hour). The splaytime parameter tells cf-execd that
the execution could be delayed up to 10 minutes (this is useful in large
installations to prevent all the clients from connecting to the server at
once). The mailto, mailfromand smtpserver attributes determine how email
reports will be sent.

It is common for cf-execd to be the one process started by the operating
system (for example, through a cron job or an init script) when the
system starts. cf-execd then runs cf-agent, which makes sure through
the appropriate policies that cf-execd, cf-monitord, and cf-serverd are
running in the background, if needed.

* cf-serverd: This component implements server functionality in CFEngine—
the ability to listen for connections from clients and serve files to them.
cf-serverd also has the ability to listen for connections from the cf-runagent
process in other hosts, and according to its configuration, respond by
executing cf-agent locally (this is the one reason why you may want to
run cf-serverd on CFEngine clients: if you want the policy hub to be able
to remotely instruct clients to run cf-agent). We will look in more detail
at the cf-serverd configuration in Clients and Servers. cf-serverd listens
on port TCP/5308, and this is the only port that needs to be open for the
clients to be able to communicate with the server.

* cf-runagent: Invokes cf-agent on remote hosts so that they evaluate their
policies. This is the only form of control a remote machine may exercise

https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=cf-execd
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=cf-agent
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=schedule
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=cf-execd
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=cf-agent
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=splaytime
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=cf-execd
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=mailto
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=mailfrom
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=smtpserver
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=cf-execd
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=cf-execd
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=cf-agent
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=cf-execd
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=cf-monitord
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=cf-serverd
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=cf-serverd
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=cf-serverd
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=cf-runagent
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=cf-agent
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=cf-serverd
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=cf-agent
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=cf-serverd
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=cf-serverd
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=cf-runagent
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=cf-agent

CFEngine Basics 28

over another in CFEngine. We will talk more about this in CFEngine
Remote Execution Using cf-runagent.

* cf-key: This is one of the first commands you run when installing CFEngine
on a new host. It creates a cryptographic key pair for the current host,
which is used for authentication when communicating with the policy hub
or any other CFEngine server.

» cf-monitord: This process is intended to run continuously in the back-
ground. It collects statistical information about different aspects of the
system and makes it available to cf-agent through the specialmon variable
context. Some examples of the information collected by cf-monitord are
the numbers of users with active processes in the system (mon.value -
users), free space in the root disk partition (mon.value diskfree), and
kernel load average (mon.value loadavg). For most values cf-monitord
also keeps a running average and the standard deviation (for example,
mon.av_loadvg and mon.dev_loadavg).

» cf-hub: This process exists only in CFEngine Enterprise, and is responsible
for collecting from all the clients information about their current status,
reports and monitoring information, for analysis and reporting purposes.
cf-hub periodically connects to the cf-serverd process on all the clients it
knows about (this is, all the clients that have bootstrapped to it) to collect
this information. If it cannot connect to a client, this information is also
reported in the Enterprise console.

A First Example

Let’s consider the simple case of modifying the configuration of an ssh server.
At the top level, we need to make sure the sshd service is up and running. With
CFEngine, we can simply write the following:

services:
"SSh";

This will by default enable and make sure the service is running, on any
operating system. If we wanted to make sure the service is not running, we
would simply need to write:

services:
"ssh" service policy => "stop";

https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=cf-key
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=cf-monitord
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=cf-agent
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=cf-monitord
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=cf-monitord
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=cf-hub
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=cf-hub
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=cf-serverd

CFEngine Basics 29

Now, let’s go down a level and change the configuration of the ssh daemon.
Traditionally, we would do this sort of task with a shell script. The following
snippet from a shell script is intended to add a line to /etc/ssh/sshd _config to
prevent root logins:

echo "PermitRootLogin no" >> /etc/ssh/sshd config

As is, this code will add a new line to the file every time it runs. It assumes that
the file does not contain the line already. Of course, you can add checks for this,
but the code quickly becomes unreadable:

(grep -iq 'PermitRootLogin' /etc/ssh/sshd config ||
echo "PermitRootLogin no" >> /etc/ssh/sshd config) &&
sed -1 's/”.*PermitRootLogin.*$/PermitRootLogin no/;' /etc/ssh/sshd config

This snippet uses the grep command to determine if the file alredady contains
the PermitRootLogin string, and based on the result either adds the correspond-
ing line or uses the sed command to edit the existing line.

Compare this with the equivalent CFEngine declaration:

files:
"/etc/ssh/sshd config"
comment => "Disallow direct root login",
edit_line => replace or add(".*PermitRootLogin.*", "PermitRootLogin no");

The CFEngine policy will add the line only if it is not there already. Additionally,
you can see that CFEngine rules allow comments as rule attributes. These com-
ments can be made available as the policy executes, allowing administrators to
better understand and debug the actions taken by CFEngine.

Rules in CFEngine can be as detailed or as high-level as you wish. For example,
you could generalize the SSH configuration file mechanism and express it like
this (and we will look into the details of how to do this in Editing /etc/sshd_-
config):

CFEngine Basics 30

bundle agent main {
vars:
SSHD configuration to set
"sshd" data => parsejson('{
"Protocol": "2",
"X11lForwarding": "yes",

"UseDNS": "no",
"PermitRootLogin": "no"
)
files:
"/etc/ssh/sshd _config"
handle => "sshd config",
comment => "Set sshd configuration",
edit_line => set config values("sshd"),
classes => if repaired("restart sshd");
commands:

restart_sshd::
"/etc/init.d/sshd reload"
handle => "sshd restart",
comment => "Restart sshd if the config file was modified";

}

This CFEngine policy allows you to define arbitrary configuration parameters
in the sshd array defined at the top (in the vars: section), which will be applied
by the files: section by modifying or adding only those parameters that need to
be fixed. Finally, sshd will be restarted only if any changes were made. In other
words, the promise of having the right parameters in the file could be satisfied
just by checking that they’re set properly already (the “Promise kept” state
described earlier), so the restart will take place only in the “Promise repaired”
state.

Let’s go back to our description of promises, to start figuring out what is hap-
pening in this policy. The vars: section is simply variable declarations—in this
case, an array indexed by configuration parameter names, and containing the
values of each parameter. In the files: section, the /etc/ssh/sshd config file
promises to have its content edited according to the specifications contained
in the set config values() bundle (a named collection of CFEngine promises),
and to set the restart sshd class if the file needed to be repaired (i.e. modified
to satisfy the promise). Finally, in the commands: section, the /etc/init.d/sshd
reload command promises to run only if the restart sshd class is set (if this

https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=vars:
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=files:
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=vars:
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=files:
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=commands:

CFEngine Basics 31

class is set, it means that the file was modified, so the daemon needs to be
restarted for the changes to take effect).

Not shown in this example is the set config values() bundle. This bundle
is part of the CFEngine Standard Library (described in CFEngine Standard
Library), and which takes care of the actual editing of the file to set the
desired parameters, using the built-in file-editing primitives in CFEngine. We
will examine this bundle in detail in Editing /etc/sshd config.

CFEngine allows you to express configuration policies at the level of abstraction
you wish, leaving lower-level details out of sight but available when you need
them. Now, let’s take a more detailed look at the syntax of a CFEngine policy.

The CFEngine Policy Language

The syntax of the CFEngine 3 configuration files is very uniform, since every-
thing is a promise. In general, every element in a CFEngine policy has the
following structure:

promise_type:
class_expression::
"promiser" -> { "promiseel", "promiseeX" }
attributel => valuel,
attributeX => valueX;

The values that promise type can have depend on the type of container in which
the promise is stored (and we will look at them in detail in Bundles, Bodies,
and Namespaces). The value of promise type determines how the "promiser"
is interpreted, which attributes are valid and how their corresponding values
are used. The attribute values can be either constant values, variables of the
types described in Data Types and Variables in CFEngine, or container names
as described in Bundles, Bodies, and Namespaces. The type of allowed values
is fixed for each attribute.

The promisees are optional and, if specified, contain references to other
promises that depend on the current one, and are used for documentation. In
this way, we can specify which promises affect others or who might care about
a particular promise. CFEngine has the ability to produce reports that include
this information. Note that specifying promisees has no effect on the execution
order of the policy, they are merely for informational purposes. Promisees can
be arbitrary strings.

CFEngine Basics 32

The class _expression, if specified, allows the promise to be conditionally
executed depending on the value of the expression. If omitted it defaults to
any, which is always defined (you can also use the class expression line any::
to make this explicit). We will look at them in detail in Classes and Decision
Making.

Depending on the type of promise, almost all elements of this syntax, except for
the promise type and the promiser, are optional. For example, to unconditionally
execute a command, we would simply state it like this:

commands :
"/bin/ls /";

In this case commands: is the promise type, and specifies that the promisers
in the following section are to be interpreted as commands to execute. The
promiser, "/bin/ls /" indicates the command to run. Since no attributes are
specified, the command will always be executed and its output reported by
CFEngine.

You can find some guidance on the style and form of policy writing in
the CFEngine Policy Style Guide.

Data Types and Variables in CFEngine
CFEngine supports different data types:

» Scalars can be strings, integers or floating-point numbers;
* Lists contain an ordered set of scalars
* Arrays contain sets of key/value pairs.

* Data containers can hold arbitrary data structures, including lists and
associative arrays.

favor of data containers, which are much more flexible and robust.
You should use them whenever possible. Most functions which take
the native types are also able to handle data containers.

P Please note that “native” CFEngine arrays are being deprecated in

https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=commands:
https://docs.cfengine.com/docs/3.12/guide-writing-and-serving-policy-policy-style.html

CFEngine Basics 33

Variable declarations

Variables in CFEngine are declared in the vars: section (they are promises
of type vars:) of a bundle. vars: is one of the common promise types (along
with classes: and reports:) that can be included in any type of bundle. vars:
promises adhere to the common structure described in The CFEngine Policy
Language, which in this case is interpreted as follows:

vars:
"variable"
type => value;

The promiser is the name of the variable in quotes. The type of the variable is
given as an attribute, and its value indicates the value to store in the variable.
For short values, we normally write the whole declaration in a single line for
brevity:

vars:
"name" string => "Diego";
"year" int => "2011";
"colors_rgb" slist => { "red", "green", "blue" };
"colors_cmyk" data => '["cyan", "magenta", "yellow", "black"]';
"user" data => '{
"name": "Diego Zamboni",
"username": "zzamboni",
"id": 501
j

Let us now look at the details of the different data types available in CFEngine.
Strings

Strings in CFEngine are declared using the string type. String values must
always be enclosed by single or double quotes (there is no difference in their
behavior). If you need to include a double quote in a double-quoted string,
you need to precede it with a backslash (and similarly for single quotes inside
single-quoted strings). You can create multiline strings simply by splitting them
across multiple lines. To reference a string variable (and any scalar variable),
you need to enclose the variable name in parentheses or curly braces, and
precede them with a dollar sign.

You can interpolate variables into a string simply by referencing them inside
the string. The following example shows some examples of strings:

https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=vars:
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=vars:
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=vars:
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=classes:
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=reports:
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=vars:

CFEngine Basics 34

body common control

{

bundlesequence => { "test" };

bundle agent test
{
vars:
"s1" string => "one";
"s2" string => 'this
is a
multine string';
"s3" string => 'with "quotes"';

reports:

cfengine::
"s1l = \"$(s1)\"";
"s2 = $(s2)";
"s3 = $(s3)";

If you save this short policy into a file and run it, you will get the following
output:

cf-agent --no-lock -f ./ch0@3 4.cf

R: s1 = "one"
R: s2 = this
is a

multine string
R: s3 = with "quotes"

Note that the strings in the reports: section adhere to the same rules, and
contain the interpolated values of the declared variables.

Numbers

CFEngine supports both integers and floating-point numbers, denoted by the
int and real types. Note that numeric values are also given as strings in
CFEngine, but they are checked for validity before they are stored in the
variable. For integers, CFEngine supports the suffixes k, m, and g to represent

https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=reports:

CFEngine Basics 35

powers of 10 (that is, 1000, etc.), and the suffixes K, M, and G to represent
powers of 2 (that is, 1024, etc.). Real numbers can be specified in decimal or
exponential notation. For example:

body common control

{
bundlesequence => { "test" };
}
bundle agent test
{
vars:
"il" int => "25";
"i2" int => "10k";
"i3" int => "10K";
“r1" real => "1.2";
"r2" real => "10e-5";
reports:
cfengine: :
"il = $(il)";
"i2 = $(i2)";
"i3 = $(i3)";
"rl = $(rl1)";
"r2 = $(r2)";
}

Produces the following output:

cf-agent --no-lock -f ./ch@3 5.cf

R: i1l = 25

R: i2 = 10000

R: i3 = 10240

R: rl = 1.200000
R: r2 = 0.000100
Lists

CFEngine supports ordered lists of any of the scalar types: lists of strings (slist),
lists of integers (ilist) and lists of reals (rlist). In all cases, the values have to

CFEngine Basics 36

be specified as strings, but they are interpreted and validated according to the
declared type. You can assign and store lists across variables of different types,
as long as the values can be converted. This means you can always assign an
ilist or an rlist into an slist, but you can assign an slist into an ilist or rlist only
if it contains valid values according to the type of the destination variable.

You can refer to list variables by using an at-sign (@) before the variable name.
By doing this you can pass the whole list to a function that expects a list
argument. You can also specify a list as part of another list value, and it will be
expanded in place. The following example illustrates these points:

body common control

{
bundlesequence => { "test" };
}
bundle agent test
{
vars:
"11" ilist => { "1", "2", "3" };
"12" rlist == { "1.0", "2.0", "3.0" };
"13" slist == { "one", "two", "three", @(11), @(12) };
reports:
cfengine: :
"13 = $(13)";
}

When you run it you get the following output:

cf-agent --no-lock -f ./ch03 6.cf

R: 13 = one
R: 13 = two
R: 13 = three
R: 13 =1
R: 13 =2

R: 13 =3

R: 13 =1.0
R: 13 = 2.0
R: 13 = 3.0

CFEngine Basics 37

Both @(11) and @(12) are being expanded inside @(13), so that its final value is
this:

{ ||0ne||’ "tWOII, "three", ||1||, ||2||’ ||3||, ||1.0||’ ||2.0||’ ||3.0|| }

In this example we are also using CFEngine implicit looping by referring to the
@(13) array as a scalar $(13). See Looping in CFEngine for a full explanation of
how this works.

Data Containers

Object of type data can contain arbitrary data structures, including lists or
hashes (associative arrays). Such objects can commonly be represented in
JSON or YAML formats. CFEngine provides functions to read both of those
formats, either from files or from strings.

The basic functions that return data container objects are parsejson() and
parseyaml() (for parsing strings), readjson() and readyaml() (for parsing files).
For declaring fixed values, CFEngine allows specifying the data structure as a
string which can contain either JSON or YAML.

bundle agent main

{

vars:
Parse JSON explicitly

"animals json" data => parsejson('{ "animals": ["dog", "cat", "crow"] }');

Parse YAML explicitly - no header needed
"animals yaml" data => parseyaml("animals:

- dog

- cat

- crow");
Parsed as JSON
"colors json" data => '["red", "green", "blue"]';
Parsed as YAML thanks to the "---" header
"colors_yaml" data => '---

- red

- green

- blue';

Serialize the objects to their string representation
"al" string => format("%S", "animals json");

CFEngine Basics 38

"a2" string => format("%S", "animals yaml");

"cl" string => format("%S", "colors json");

"c2" string => format("%S", "colors yaml");
reports:

"animals_json $(animals_json[animals])";
"animals_yaml $(animals_yaml[animals])";
"colors json = $(colors_json)";
"colors yaml = $(colors_yaml)";

nal - $(a1)n;
"a2 = $(a2)";
ncl = $(c1)n;
"c2 = $(c2)";

Running this code produces the output you might expect. Note that regardless
of the original format, the JSON and YAML specifications parse to identical
objects.

animals_json = dog
animals json = cat
animals json = crow
animals_yaml = dog
animals_yaml = cat
animals yaml = crow
colors _json = red
colors_json = green
colors_json = blue
colors_yaml = red
colors_yaml = green
colors_yaml = blue
al = {"animals":["dog", "cat","crow"]}

el s R s B s B s B s Bl s B s B s B s B s Bl s B s B s B s B e

a2 = {"animals":["dog","cat","crow"]}
Cl — ["FEd","green","bIUE"]
c2 = [II red”,”green”,”blue"]

A couple of notes about data containers:

* They are immutable once created. However, you can combine them into
new objects using the mergedata() function.

CFEngine Basics 39

* In many respects, data objects behave in the same way as “traditional”
CFEngine lists and arrays, but they are not subject to many of their
limitations in size and behavior.

* Data containers are returned by several different functions, including
the JSON or YAML parsing functions mentioned above, but also data -
regextract(), data_readstringarray(), data_expand() and others.

* In my experience, parsing of YAML strings works better when the string
is specified in multiple lines as shown above instead of using embedded
newline characters (\n) as shown in the documentation.

Data containers are undoubtedly the most powerful data type in CFEngine, and
you will see them used extensively through this book.

Arrays

Arrays are sets of values indexed by a string (they are commonly called hashes
in other programming languages). Array elements can contain scalars, lists or
other arrays, even within the same array.

replaced by Data Containers, which are much more powerful and
flexible. Whenever possible you should use containers instead of
arrays. We describe them here since you will still find them in many
CFEngine policies.

g The Array data type in CFEngine is in the process of being fully

In CFEngine, arrays are declared element by element, as if they were regular
variables, except their name contains the index surrounded by brackets. There
is no shortcut for declaring the whole array in a single step. There are certain
functions that operate on arrays, such as getindices() and getvalues(), and
they receive as argument the name of the array as a string. For example, we
could use an array to store user account information:

https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=getindices()
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=getvalues()

CFEngine Basics 40

body common control

{
bundlesequence => { "test" };

}

bundle agent test

{

vars:
"user[namel" string => "zamboni";
"user[fullname] [first]" string => "Diego";
"user[fullname][last]" string => "Zamboni";
"user[dirs]" slist => { "/home/zamboni",

"/tmp/zamboni",
"/export/home/zamboni" };
"fields" slist => getindices("user");
"userfields" slist => getindices("user[fullname]");
reports:
cfengine::

"user fields = $(fields)";
"account name = $(user[name])";
"$(userfields) name = $(user[fullname][$(userfields)])";
"user dir = $(user[dirs])";

}

This example is intentionally contrived to show how you can store different
data types in an array. Note how @(fields) is being automatically populated by
getindices() based on the indices declared for the user array. In other words,
the statement:

“fields" slist => getindices("user");

creates a variable named fields that refers to a list of three strings taken from
the indices: name, fullname, and dirs. The list can then be used to loop through
the user array, like before. Additionally, @(userfields) is being populated with
the indices of the array stored in user[fullname]:

"userfields" slist => getindices("user[fullname]");

https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=getindices()

CFEngine Basics 41

Finally, observe that user[dirs] contains a list of strings, and we are looping
over that list as we would over a regular list variable (such as @(fields) or
@(userfields) in this example) by referencing it as a scalar:

"user dir = $(user[dirs])";
Here is its output:

cf-agent --no-lock -f ./ch03 7.cf
R: user fields = dirs

R: user fields = fullname

R: user fields = name

R: account name = zamboni

R: first name = Diego

R: last name = Zamboni

R: user dir = /home/zamboni

R: user dir = /tmp/zamboni

R: user dir = /export/home/zamboni

Classes and Decision Making

Classes are the key to controlling flow and making decisions in a CFEngine
policy. In CFEngine, classes are named boolean values that can be either true
(the class is defined) or false (the class is undefined). Classes can represent
any characteristic of the system, information that is known (true) or unknown
(false), or any condition that you want to indicate in the policy. They can
be volatile (they stop existing as soon as the current CFEngine run is over)
or persistent for a period of time you define. While many important classes
are predefined by CFEngine (hard classes), you can define others for your
particular needs (soft classes).

Hard classes

These are defined automatically by CFEngine when it runs, and represent
mainly information about the system or the current environment that is
discovered by CFEngine. Examples of hard classes include:

* Host information (e.g., class doomsday would be defined if the hostname
of the machine where cf-agent is running is “doomsday” and class ipv4_-
192 168 1 2 would be defined if the host’s IP address is 192.168.1.2).

https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=cf-agent

CFEngine Basics 42

* Time information (e.g., class Hr5 would be set if CFEngine is running
between 5 and 6 AM, class Min15 20 is defined if it is currently between
minutes 15 and 20 of the hour, and class Mon would be set if it’s Monday).

* Operating system information (e.g., linux would be set on any Linux
system, and suse 9 would be set if the Linux distribution is SuSE 9).

To see the full list of hard classes defined on a particular system, run the
following command (partial example output from a macOS machine at 15:31
GMT on a Tuesday):

cf-promises --show-classes | grep hardclass

127 0.0 1 inventory,attribute name=none, source=agent,hardclass
192 168 1 107 inventory,attribute name=none, source=agent,hardclass
64 bit source=agent,hardclass

8 cpus source=agent,derived-from=sys.cpus,hardclass
Afternoon time based,...,source=agent,hardclass

Day?2 time based,...,source=agent,hardclass

GMT_Afternoon time based,...,source=agent,hardclass

GMT Day?2 time based,...,source=agent,hardclass

GMT Hri15 time based,...,source=agent,hardclass

GMT January time based,...,source=agent,hardclass

GMT Lcycle 2 time based,...,source=agent,hardclass

GMT _Min30 35 time based,...,source=agent,hardclass

GMT Min31 time based,...,source=agent,hardclass

GMT Tuesday time based,...,source=agent,hardclass

GMT Yr2018 time based,...,source=agent,hardclass

Hrl6 time based,...,source=agent,hardclass

January time based,...,source=agent,hardclass

Lcycle 2 time based,...,source=agent,hardclass

Min30 35 time based,...,source=agent,hardclass

Min31 time based,...,source=agent,hardclass

Q3 time based,...,source=agent,hardclass

Tuesday time based,...,source=agent,hardclass

Yr2018 time based,...,source=agent,hardclass

any source=agent,hardclass

cfengine inventory,attribute name=none, source=agent,hardclass

cfengine 3 inventory,attribute name=none, source=agent,hardclass

CFEngine Basics 43

Soft classes

These are defined by the policy during its execution. For example, a class could
be defined in the following cases:

* Depending on whether a certain file exists. In this example, we set the
devel host classif the /var/sitedata/devel host. flag file exists, using the
built-in fileexists() function to perform the check:

classes:
"devel host" expression =>
fileexists("/var/sitedata/devel host.flag");

Setting a class like this might be useful, for example, to establish whether
certain executable programs or other capabilities are present on a system
before invoking them, or to apply different configurations to the system.

* As a Boolean expression of other classes. In this example, test host will
be defined if any of testhostl, testhost2, or testhost3 classes is defined.
These might be the hostnames of the machines in which you want the
test host class to be defined:

classes:
"test host" or => { "testhostl", "testhost2", "testhost3"};

Setting a class like this might be useful to run certain operations on certain
systems—tests in this case.

* As an indication of the status of a particular promise. In this example,
if any changes are made to the /etc/ssh/sshd_config file by the edit_line
attribute, CFEngine would consider the promise as repaired, in which case
the restart_sshd class will be defined:

files:
"/etc/ssh/sshd config"
edit_line => set config values("sshd"),
classes => 1f repaired("restart sshd");

Setting a class like this might be useful to keep track of the state of the
system, and make sure that CFEngine follows up on an operation during
its next pass.

https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=fileexists()
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=edit_line

CFEngine Basics 44

Note that classes can be explicitly defined in a classes: section, but as you
can see in the third example, they can also be defined by the common classes
attribute, which you can use in all promises to set or unset classes based on the
result of the promise. Several classes bodies are predefined in the CFEngine
standard library, including if repaired, if ok, if notkept, if else, always and
classes generic.

names depending on the outcome of a promise. If you specify, for

P The classes generic body provides a useful way to set consistent class
example:

classes => classes generic("foo");

Then, depending on the state of the promise, you will get one of
foo_repaired, foo failed, foo denied, foo timeout or foo kept defined.
This body also defines a few other class name patterns, including
foo_reached, which gets defined regardless of the promise outcome
and can be used to determine if a promise has been evaluated at all.

You may see “classes” described sometimes as “contexts”. This term expresses
the idea of a particular context (be it time or date, operating system, architec-
ture, etc.) in which a host is at the moment. The CFEngine team has decided
to keep using class in all official documentation to avoid confusion, but context
might still be used in some explanations when it makes things clearer.

Apart from defining classes, you need a way to act on them. This is what
the class_expression shown in The CFEngine Policy Language is for. A class
expression in CFEngine is a boolean expression constructed with class names
and the boolean operators AND (&or .), OR (]) and NOT (!). Parenthesis can be
used to group parts of the expression. When a line ends with a double colon, it is
evaluted as a class expression. Only if the class expression is true are the lines
that follow evaluated. The following are examples of valid class expressions:

True if the linux class is defined

linux::

True if both reboot needed and linux are defined

reboot_needed.linux::

True if reboot needed is defined and neither linux nor windows are defined
reboot_needed. ! (linux|windows): :

The any class is always defined, so whatever follows will always be evaluated
any::

https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=classes:
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=classes
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=classes

CFEngine Basics 45

Additionally, you can use the ifvarclass attribute in most promise types to
condition the evaluation of one promise to the result of the included class
expression. For example, the following two promises are equivalent:

commands :
First command is conditioned by the ifvarclass attribute
"/usr/sbin/shutdown -r now"
ifvarclass => "linux";

Second command 1is conditioned by the class expression before it
linux::
"/usr/sbin/shutdown -r now";

The ifvarclass attribute allows you to place a condition around a single
promise. It has the advantage of specifying the class expression as a string,
which means you can use variables in the class expression, and they will be
expanded before evaluating the expression. This allows a lot of flexibility in
the types of conditions that you can use. For example, you can construct class
names on the fly using variables:

body common control

{
bundlesequence => { "test" };
}
bundle agent test
{
vars:
"words" slist => { "chair", "darwin", "table", "linux" };
reports:
cfengine::
"Class $(words) is defined"
ifvarclass => "$(words)";
"Class $(words) is not defined"
ifvarclass => "!$(words)";
}

In this example, the reports: section is looping through all the strings in
the @(words) list (see Looping in CFEngine), and the corresponding message
is printed depending on whether the class named after the current value is

https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=ifvarclass
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=ifvarclass
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=reports:

CFEngine Basics 46

defined. Note how the class expression for the second report (“not defined”)
includes the NOT character at the beginning. Here is its output on a Mac (whose
base operating system is Darwin, so the darwin class is defined):

cf-agent --no-lock -f ./ch03 8.cf
R: Class darwin is defined

R: Class chair is not defined

R: Class table is not defined

R: Class linux is not defined

Class expressions can also be used to define other classes using the expression
attribute in a classes: promise. For example, the test host class shown above
could also be defined like this:

classes:
"test host" expression =\> "testhostl|testhost2|testhost3";

Finally, classes can be made persistent, even across invocations of cf-agent, by
using the persistence attribute in the class declaration. Its value should be the
length of time, in minutes, for which the class should retain its value after being
evaluated. This can be useful if the class value is the result of a time-consuming
or otherwise expensive operation, to avoid recomputation every time cf-agent
runs.

Note that setting a class as persistent does not mean it will not be reevaluated
every time cf-agent runs, only that its previous value will be available during
the persistence period. To avoid unnecessary reevaluation, the usual practice
is to use a “flag class” with the same persistence period. For example:

bundle agent test

{
classes:
Icache _is active::
"line exists" expression => regline(".*foo.*", "/tmp/test data.txt"),

persistence => "1";
"cache is active" expression => "any",
persistence => "1";
reports:
line_exists::
"Line exists in file";
Iline_exists::

https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=expression
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=classes:
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=cf-agent
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=persistence
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=cf-agent

CFEngine Basics 47

"Line does not exist in file";

In this case, we are using cache _is active as the “flag class” to indicate whether
we should recompute the value of line exists, which would arguably be a very
costly class to compute. In this case we are using regline() to look for a line
containing “foo” in the file /tmp/test data.txt). In the classes: section, we
evaluate the classes only when cache _is active is not defined. In this case, we
set cache is active unconditionally (using the special expression "any"), and
set line _exists depending on the result of the function, both with the same
persistence period. This means that within one minute, no matter how many
times cf-agent executes, the classes will not be reevaluated and their cached
values will be reported. You can test this behavior in the previous example by
running it, then editing the file, and observing that the changes are not detected
until a minute has passed since the last execution. In deployment, this can be
extremely useful to limit reevaluation of complex or costly class expressions
whose values change slowly or infrequently.

Bundles, Bodies, and Namespaces

CFEngine policies can grow quite complex, so it would not be very scalable
simply to list promises back to back. For this reason, and to promote reusability,
CFEngine groups its syntax elements into two types of structures: bundles and
bodies, and they in turn can be grouped into namespaces.

Bundles

Bundles are the most general and powerful grouping mechanism. They are the
only elements that can contain promises. A bundle can contain many promises,
possibly separated into sections. The structure described at the beginning of
The CFEngine Policy Language can be contained only inside a bundle. Bundles
are defined as follows:

bundle type name(arguments)
{
promise_type:
class_expression::
promise

https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=regline()
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=classes:
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=cf-agent

CFEngine Basics 48

The name of the bundle is an arbitrary string that you can use to identify it.
The type of the bundle has to be one of the CFEngine-recognized types, and
it defines the semantics of the bundle (that is, how are the promises in it
interpreted), as well as the promise type sections it can contain. All bundles
can receive an arbitrary number of arguments. If no arguments are needed,
the parenthesis are optional.

The bundle types defined by CFEngine are:

* agent: Bundles of type agent are “executable” bundles that can be called
from the main bundlesequence declaration, or as method calls in the
methods: section of another agent bundle. In this respect they could be
compared to subroutines in other programming languages. They are the
most extensive and powerful type of bundle, and the ones that actually
implement any changes that we want to make in the system. These bundles
can contain the following promise types:

- commands: to specify commands to be executed

- files: to edit and manipulate files

- methods: to call other agent bundles

- packages: to query and manipulate software packages in the system
- processes: to query and manipulate running processes

- storage: to query and configure file systems

- services: to configure system services in Unix-like systems (CFEngine
Enterprise also supports Windows system services)

- databases: to manipulate and configure databases

- guest environments: to manipulate and configure virtual environ-
ments

* common: Bundles of this type are just like agent bundles, but are special in
two ways:

- The variables and classes defined in them are automatically available
to every other bundle in your policy.

- They are evaluated by all the CFEngine components (cf-agent, cf-serverd,
cf-monitord, etc.)

For these reasons, they are a good place to define globally useful variables
and classes. For example:

https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=agent
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=agent
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=bundlesequence
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=methods:
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=commands:
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=files:
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=methods:
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=packages:
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=processes:
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=storage:
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=services:
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=databases:
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=guest_environments:
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=common
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=agent
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=cf-agent
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=cf-serverd
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=cf-monitord

CFEngine Basics 49

bundle common g

{
vars:
"localdir" string => "/usr/local";
"confdir" string => "/etc";
classes:
"testhost" or => { "testhostl", "testhost2" };
}

This example defines two variables with strings that will be useful in other
parts of the policy, and which we can reference as $(g.localdir) and
$(g.confdir) (in general, any variable can be accessed from anywhere
else by prefixing it with the name of the bundle where it was defined).
Also defined is a class based on whether either of the classes testhostl or
testhost2 is defined (this would be the case if the current host has any of
those names, and is a common way of defining a class for a certain group
of hosts—more on this in Defining Classes for Groups of Hosts). This class
is automatically made global, which means it can be used in any other
bundle.

All variables in CFEngine are local to the bundle in which they are defined.
However, they can be accessed from any other bundle by prefixing them
with the bundle name in which they are defined, separated by a dot, as in
$(g.localdir).

Most classes in CFEngine are local to the bundle in which they are defined,
and they cannot be accessed from anywhere else (there is no mechanism
for specifying the bundle of a class). The exceptions are:

- Classes defined in a common bundle are automatically global.

- Classes defined by the classes attribute in a promise (as a result of its
status) are automatically global. This is useful because these classes
are commonly used as a signaling mechanism across promises and
bundles.

- Since CFEngine 3.5.0, both classes: promises and classes bodies can
specify a scope attribute, which can take the values “bundle” (the
default for classes: promises) and “namespace” (the default for classes
bodies)

Note that common bundles are not necessarily evaluated before regular

A agent bundles, although this is a common misconception. You can (and
should) put them in bundlesequence to ensure they are evaluated at the
correct moment (normally, you would put them at the beginning of the
execution sequence, to ensure the values defined in them are properly
available to all other bundles).

https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=common
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=classes
http://cfengine.com/docs/3.12/reference-promise-types-classes.html
http://cfengine.com/docs/3.12/reference-promise-types.html#classes
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=common
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=agent
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=bundlesequence

CFEngine Basics 50

i

* edit_line: Bundles of type edit line can be used to change a file, one of
the most common and most complex operations performed by CFEngine.
These bundles must be specified as the value of the edit line attribute in
a file-editing promise (this is, a promise of type files:). edit line bundles
themselves can be quite complex and contain their own set of allowable
promise types, which include:

- insert lines: to add lines to a file

- delete lines: to remove lines from a file

- field edits: to make field-oriented changes in a file

- replace patterns: to make regular expression substitutions in a file

* server: Bundles of type server control the behavior of the cf-serverd
process, which has the task of serving files to other CFEngine machines
that request them (cf-serverd normally runs on the CFEngine policy hub).
This type of bundle can contain two promise types:

- access: to define access permissions to different resources on the
server.

- roles: to define which users can indicate classes (and which classes
they can define) in the server process, to alter the behavior of the
cf-serverd daemon. One of CFEngine’s strong security features is that
remote machines can never execute arbitrary commands. Instead,
they can execute certain bundles. Some users, as defined by roles:
promises, may have the ability to set custom classes when invoking
those remote promises, thus allowing them to modify the promises’
behavior, but only as allowed by the remote bundle and its handling
of the defined classes.

* monitor: Bundles of this type are supported only in commercial editions
of CFEngine. They define custom parameters that CFEngine can moni-
tor automatically, and specify how to react to changes in their values.
CFEngine natively knows how to monitor a large set of system values,
such as CPU and memory utilization. This type of bundle supports only
one section called measurements:, which contains promises defining what
and how to monitor it, and how to react to changes.

Certain generic promise types are allowed in all bundle types:

e vars: to define variables
e classes: to define classes
* reports: to define produced output

* meta: to define metadata about a bundle.

https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=edit_line
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=edit_line
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=edit_line
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=files:
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=edit_line
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=insert_lines:
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=delete_lines:
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=field_edits:
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=replace_patterns:
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=server
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=server
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=cf-serverd
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=cf-serverd
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=access:
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=roles:
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=cf-serverd
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=roles:
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=monitor
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=measurements:
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=vars:
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=classes:
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=reports:
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=meta:

CFEngine Basics 51

Bodies

Bodies are collections of attributes and values that can be used as values to
other attributes. Bodies cannot contain promises nor sections, although they
can receive arguments, and can contain class expressions to specify different
values for some of the attributes. Bodies, just like bundles, have a type, which
indicates the attribute to which they can be passed, as well as the attributes
they can contain. The generic structure of a body is:

body type name(arguments)
{
attributel => valuel;
attribute2 => value2;

[class_expression::]
attributeN => valueN;

}

Some common bodies you will use include:

* control bodies are special structures that are not referenced in any
promises, but that control the behavior of different aspects of CFEngine
itself. There are different types of control bodies, depending on the
component whose behavior they control. The one you are bound to use
is the common control body. Among other things, it is in this body that
you specify which bundles will be executed in your policy and in which
order, using the bundlesequence attribute, and which additional files to
read, using the inputs attribute:

body common control

{
inputs => { "tests.cf" };
bundlesequence => { "test" };

}

This block tells CFEngine to load the file tests.cf and to execute the test
bundle. Every CFEngine policy needs to have a bundlesequence definition,
and this is most commonly done through a common control body. (You can
also specify it with the -b option to cf-agent, but I normally do this only
when testing policy components.)

As you might imagine, common control supports many other attributes
that specify global CFEngine behavior. There are also control bodies for
specific CFEngine components, including the following:

https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=control
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=bundlesequence
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=inputs
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=bundlesequence
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=common%20control
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=cf-agent
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=common%20control
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=control

CFEngine Basics 52

- agent control bodies to specify promise-evaluation behavior such as

minimum time between consecutive evaluations of the same promise
(ifelapsed), classes that tell CFEngine to abort (abortclasses), and
many others.

- server control bodies to specify server behavior, such as addresses

and users from which connections will be allowed (allowconnects,
allowusers) and the interface to which the cf-serverd process should
bind (bindtointerface).

- Others such as monitor control, runagent control, executor control,

hub control and file control.

* classes bodies specify which classes will be defined depending on the
outcome of a promise. These bodies are valid attributes for all promise
types. For example, consider the following file promise:

"/var/run/somefile"

create => "true",
classes => passfail;

- In this case, passfail is the name of a body, of type

classes, that needs to be defined somewhere else. For example:

body classes passfail

{

promise_kept => { "fileexisted" };
promise_repaired => { "filecreated" };
repair_failed = { "fileerror" };

- There are several things you should notice here. First, the type of

the body part is classes, which means it can be used only as the
value of a classes attribute in a promise. The name passfail is an
arbitrary identifier. The documentation for the classes body type
lists the attributes it can contain. In this case, if /var/run/somefile
already existed (the promise was kept), the fileexisted class will
be defined after the promise runs. If /var/run/somefile did not exist
and CFEngine was able to create it (the promise was repaired),
filecreated will be defined. And if the file cannot be created for
some reason (the repair failed), the fileerror class will be defined.
These classes can be used later on to control other promises. And
more importantly, the passfail body can be used in many different
promises, allowing for encapsulation and code reutilization.

https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=ifelapsed
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=abortclasses
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=allowconnects
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=allowusers
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=cf-serverd
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=bindtointerface
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=monitor%20control
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=executor%20control
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=file%20control
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=classes
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=classes
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=classes
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=classes
https://docs.cfengine.com/docs/3.12/reference-promise-types.html#classes

CFEngine Basics 53

An important thing to notice is that body parts can also have parameters,
which allows even further customization of their behavior. For example,
suppose we want the repaired/kept/failed classes to contain an arbitrary
identifier to help us differentiate among multiple file checks. We could
define passfail as follows:

body classes passfail(id)

{
promise_kept => { "$(id) existed" };
promise_repaired => { "$(id) created" };
repair_failed => { "$(id) error" };
}

We would then have to modify the files promises to something like this:

"/var/run/somefile"
create => "true",
classes => passfail("somefile");

Now "somefile" is being passed as an argument to the passfail body
part, and used as part of the class names to define. This means that
depending on the result of the promise, the classes somefile existed,
somefile created or somefile error will be defined, instead of the generic
names we had used before.

brary behaves much like our passfail body, but considers all pos-
sible promise outcomes, and defines several classname patterns for
each outcome. For example, if a promise is repaired and you call
classes generic("somefile”) you will get the following classes de-
fined: promise repaired somefile, somefile repaired, somefile ok and
somefile reached.

P The classes _generic body defined in the CFEngine Standard Li-

* action is another attribute that can be used in any promise, and defines
how the promise should be evaluated and fixed. Using it we can define
that promises should only be checked but not fixed, whether the actions
related to the promise should occurin the background, how often promises
should be checked, logging behavior for the promise, and other attributes.
For example, the following promise will warn if a certain line does not exist
in /etc/motd but will not fix it, and will issue the warning only every hour,
even if CFEngine checks more frequently:

https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=action

CFEngine Basics 54

bundle agent test

{
files:
"/etc/motd"
edit_lines => insert lines("Unauthorized access will be prosecuted."),
action => warn hourly;
}
body action warn hourly
{
Produce warning only, don't fix anything
action_policy => "warn";
ifelapsed => "60";
}

copy from is an attribute that can be used only in files: promises, and
indicates from where and how a file will be copied. It is an extremely
flexible attribute, since it allows us to request local or remote file copies,
how the files will be compared, whether the file will be encrypted in
transit, and many other parameters. For example, the following two bodies
are from CFEngine’s standard library:

body copy_from secure cp(from,server)

{
source => "¢$(from)";
servers => { "$(server)" };
compare => "digest";
encrypt => "true";
verify => "true";

}

body copy_from remote cp(from,server)

{
servers = { "$(server)" };
source => "$(from)";
compare => "mtime";

}

Both handle copying files from a remote server, and take both a server
address and a source file as arguments. The first one specifies that the
connection will be encrypted (using an internal CFEngine mechanism),

https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=copy_from
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=files:

CFEngine Basics 55

that the files will be verified after copying them, and that files will be com-
pared by computing a cryptographic hash of their contents. The second
one is simpler, indicating no need for encryption or verification, and the
comparison will be made using simply the time of last modification (mtime)
of both files. The former, more expensive verification mechanism allows us
to reliably detect changes in the files in cases when their modification date
might not be a reliable indicator. In both cases, the comparison mechanism
allows CFEngine to skip the expensive copy operation if the files already
match.

* depth_search is another attribute of files: promises that allows us to
control recursive operations. It specifies how deep to traverse, which
directories to skip, and other parameters. For example:

body depth_search recurse ignore(d,list)
{

depth => "$(d)";

exclude dirs => { @(list) };
}

This definition specifies that only directories up to $(d) levels deep will
be traversed (the special string "inf" can be used to specify infinite
recursion), and allows the caller to specify a list of directories to exclude.

Putting copy from and depth search together, we can already create a
working file-copy promise:

bundle agent update inputs

{
vars:
"server" string => "10.1.1.1";
"inputs" string => "/var/cfengine/masterfiles/inputs";
files:
"$(sys.workdir)/inputs"
copy_from => remote cp("$(server)", "$(inputs)"),
depth_search => recurse _ignore("inf", { " .*" });
}

Here we will be copying all files from the directory /var/cfengine/masterfiles/inputs
onserver 10.1.1.1 onto the local /var/cfengine/inputs directory ($(sys.workdir)

is an internal variable that CFEngine defines to be its working directory,

normally /var/cfengine). A recursive copy of infinite depth will be done,

but all directories starting with an underscore (_) will be ignored (the pat-

terns provided have to be regular expressions and not shell metacharacter

https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=depth_search
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=files:
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=copy_from
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=depth_search

CFEngine Basics 56

expressions, hence the .* instead of just *). Note that it is not possible
to use depth search in conjunction with edit line. For editing files, the
precise file to be edited needs to be specified.

* edit defaults is an attribute of files: promises that controls parameters
of the file-editing process. You can specify whether backups should be
made of the original file, the maximum size of a reasonable file for editing,
and whether the file should be emptied and recreated every time. In the
following example, timestamped copies of the file will be kept every time
the file is changed:

bundle agent editexample

{
files:
"/etc/motd"

create => "true",
edit_line => insert lines("Unauthorized use will be prosecuted")
edit_defaults => backup timestamp;

}

body edit_defaults backup timestamp

{
empty file_before_editing => "false";
edit_backup => "timestamp";
max_file_size => "300000";

}

* edit field is an attribute of field edits: promises that performs field-
based editing in a file (it must be specified as an attribute in a promise
of type field edits:, which in turn is allowable only inside edit line
bundles). It specifies what characters to use as delimiters and which
actions will be taken on which fields. For example, the following definition
from the Standard Library performs generic field-editing operations using
user-provided information:

https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=depth_search
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=edit_defaults
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=files:
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=edit_field
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=field_edits:
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=field_edits:
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=edit_line

CFEngine Basics 57

body edit_field col(split,col,newval,method)

{
field_separator => "$(split)";
select field => "$(col)";
value_separator = ",";
field_value => "$(newval)";
field_operation => "¢$(method)";
extend_fields => "true";
allow_blank_fields => "true";

}

The split argument specifies a regular expression to use as separator
(thus it gets assigned to the field separator attribute), col indicates
the column on which to operate and gets assigned to select field (by
default CFEngine starts counting from one, although this behavior can
be changed using the start fields from zero attribute in the edit field
body), newval indicates the value to insert or delete from that field (it gets
used for field value, each field can contain multiple values separated
by value separator, a comma in this case), and method indicates which
operation to perform (set, delete, append, prepend, etc.).

The col() body definition can be used to edit colon-separated files, such as
/etc/passwd in Unix systems. This set _user field() bundle is also defined
in the Standard Library:

bundle edit_line set user field(user,field,val)
{
field_edits:
"$(user):.*"
comment => "Edit a user attribute in the password file",
edit field => col(":","$(field)","$(val)","set");
}

This bundle takes three arguments: the user to edit (user), the field num-
ber to edit (field), and the value to set in that field (val). In field edits:
promises, the promiser is interpreted as a regular expression that is
matched against all the lines in the file, to select which lines to edit. In
this case, the value of the $(user) parameter is used to select the line that
starts with that string, followed by a colon and any other text (*$(user) : . *"
—the pattern is automatically anchored by CFEngine to the beginning and
end of the line, so there is no need for the ~ character to specify that the
pattern must start at the beginning of the line). Once a line is selected,
the edit field attribute uses col() to perform the actual field-change

https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=edit_field
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=delete
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=field_edits:
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=edit_field

CFEngine Basics 58

operation, The separator is specified as a colon, the field number and the
new value are passed directly from the arguments $(field) and $(val),
and the operation to perform is "set", which tells CFEngine to replace the
old value of the field with the new one.

To put this in context, note that set user field() is an edit line bundle,
which means it has to be used as the argument to the edit line attribute
of a files: promise. For example:

files:
Set the 7th field (shell) of user "nobody" to "/bin/false"
"/etc/passwd"
edit line => set user field("nobody", "7", "/bin/false");

Many other body attributes are allowed in CFEngine for different promise
types. I have shown here some of the most common ones, but you can find
the full listing and details in the CFEngine Reference documentation.

The distinction between bundles and bodies can be confusing at first. Remem-
bering these points may help:

* Bodies are named groups of attributes, whereas bundles are collections of
promises. Promises are the units that actually do something in CFEngine
(for example, run a command or add a line to a file), whereas attributes
specify characteristics of how things are done (for example, whether to
run the command in a shell, or where in the file to add the line).

* The value of an attribute can be a basic data type (string, integer, list,
container, etc.), it can be the name of a body, or it can be the name of a
bundle.

» The type of an attribute’s value is fixed, and determined by the attribute
itself (for example, the value of the depth search attribute in a files:
promise is always a body, and the value of an edit line attribute is always
a bundle).

* Bodies can inherit attributes from other bodies by using the inherit from
attribute. In this way you can modularize and better structure your body
definitions.

* For bodies and bundles, their type is always the name of the attribute to
which they correspond. For example, bodies to be used with the depth -
search attribute are always declared as body depth_search xyz, where xyz is
an arbitrary name of your choosing. The same goes for bundles: bundles to
be used with the edit line attribute are always declared as bundle edit -
line xyz.

https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=edit_line
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=edit_line
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=files:
http://cf-learn.info/ref/promise-types-and-attributes
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=depth_search
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=files:
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=edit_line
https://docs.cfengine.com/docs/3.12/reference-language-concepts-bodies.html#body-inheritance
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=depth_search
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=depth_search
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=edit_line

CFEngine Basics 59

* There are only three types of “top level” bundles that are not used as
arguments to attributes: agent, server and monitor.

* The promise types (sections) that can appear in a bundle are determined
by the bundle type. For example, commands: promises can only appear in
bundles of type agent.

Namespaces

By default, all bodies, bundles, and classes in CFEngine exist in a common
namespace. This makes it easy to call bundles and bodies from anywhere in
the policy. However, as a policy grows in size to handle a large or complex
infrastructure, and particularly if multiple people are in charge of writing
policies, the possibility for naming conflicts increases—for example, it becomes
entirely possible that a bundle named restart _service will be defined in two
different files that correspond to different services.

To avoid this problem, files can be assigned to /namespaces/. Bundles, bodies,
and global classes with the same name can coexist, as long as they are in
separate namespaces. To declare a namespace for the current file, you use a
body file control declaration, like this:

body file control
{

namespace => "namel";

}

If no namespace declaration is found, the default namespace is used. Note
that the namespace declaration is placement-sensitive: it affects everything on
the file after its appearance, and it can appear multiple times in a single file.
This means that you can in principle declare bundles and bodies belonging to
different namespaces in the same file. I strongly advise against this practice
to avoid confusion, and recommend limiting each file to a single namespace, if
any, by placing the body file control declaration at the top.

When you call a bundle or a body, CFEngine will look for it only in the current
namespace (whether it’s default or a declared one). To access things in a
different namespace, you need to prepend their names with the namespace,
separated by a colon. For example:

https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=agent
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=server
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=monitor
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=commands:
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=agent
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=/namespaces/
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=body%20file%20control
http://cf-learn.info/ref/file-control

CFEngine Basics 60

methods:
"any" usebundle => namespace:bundle("arg");

files:
"/tmp/file"
create => true,
perms => namespace:myperms;

Note that namespacing also affects global classes: they will be global only
within the namespace in which they are declared. Global classes from other
namespaces can also be used by prefixing them with the namespace, separated
by a colon.

Bundles and bodies in the CFEngine Standard Library are declared in
the default namespace. To call them from a namespaced file, you need
to explicitly prefix them with "default:".

We will not use namespaces in the examples in this book, to keep things simple.
However, namespacing is a powerful mechanism that will help you grow your
policies with a minimum of naming conflicts, so I encourage you to use them
whenever appropriate.

Normal Ordering

CFEngine does not have any flow control statements, at least not in the sense
with which you may be familiar from imperative programming languages (the
concept of implicit flow control may be familiar to you if you have done any
declarative programming before, for example in Prolog). A lot of the behavior
of CFEngine is hard-coded, and this includes the order in which things are
evaluated. This is called normal ordering, and is determined based on what
makes sense for different types of bundles and promises. For example, it makes
no sense to first create a file and then delete it, while it makes sense to first
delete it and then create it again. Normal ordering can, if needed, be overriden
by defining classes after an operation completes, and then defining other
operations based on that class (for details, see Controlling Promise Execution
Order).

Bundles of type common are a good place to define variables and classes that will
be accessible to all other bundles in the policy. Variables defined in common
bundles are accessible from other bundles (just like all variables) by prefixing
them with the bundle name, as in $(bundle.variable). For classes, the rules
slightly more complicated, but easy to understand:

https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=common

CFEngine Basics 61

* In common bundles, classes defined by classes promises are by default
namespace scoped (i.e. they can be used from any bundle in the current
namespace). They can be bundle scoped (made accessible only from the
current bundle) by using the scope attribute.

* In agent bundles classes defined by classes promises are by default bundle
scoped. They can be namespace scoped by using the scope attribute.

* In all bundles, classes defined as the result of a promise via a classes body
are by default namespace scoped. They can be bundle scoped by using the
scope attribute.

a best-effort algorithm to make sure all necessary values are available
before an expression or promise is evaluated. You can help it ensure
consistency and convergence by including bundles of type common in
the bundlesequence declaration, even though this is not strictly needed.

P CFEngine has mechanisms to detect variable/class dependencies and

CFEngine executes agent bundles three times in an attempt to achieve a
convergent state. In each iteration, the sections in the bundle will be executed
in the following order:

vars
classes

interfaces

files.

packages

guest _environments
methods

processes

© ® N gk b=

services

-
e

commands

—_
—_

. storage

-
N

. databases

[E
w

. reports

https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=common
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=bundlesequence
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=agent
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=vars
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=classes
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=interfaces
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=files
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=packages
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=guest_environments
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=methods
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=processes
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=services
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=commands
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=storage
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=databases
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=reports

CFEngine Basics 62

Within edit line bundles, the following order will be kept:

. vars
. classes

. delete lines

1

2

3

4. field edits
5. insert _lines

6. replace patterns
7

. reports

Within each section, promises will be executed in the order in which they
appear in the policy. Multiple executions of each bundle mean that you can,
for example, define a variable, then define a class based on that variable, and
then define other variables depending on that class.

Within server bundles, the normal ordering is as follows:

1. vars
2. classes
3. access
4. roles

Although syntactically correct, reports: promises that appear inside
a server bundle are not evaluated.

Within monitor bundles, the normal ordering is as follows (sections marked with
* are only available in CFEngine Enterprise):

1. vars
2. classes
3. measurements *

4. reports

https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=edit_line
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=vars
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=classes
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=delete_lines
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=field_edits
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=insert_lines
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=replace_patterns
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=reports
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=server
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=vars
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=classes
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=access
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=roles
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=reports:
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=server
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=monitor
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=vars
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=classes
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=measurements
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=reports

CFEngine Basics 63

Normal ordering provides a fairly rigid structure to the execution of CFEngine
policies. It is common when you first start writing CFEngine policies, partic-
ularly if you are familiar with imperative programming, to try to “fight” the
normal ordering to fit what you want to do. When you encounter a case in
which you are positive that normal ordering needs to be changed, I encourage
you to back up and rethink at a higher level the task you want to accomplish.
Most of the time, you will find that structuring the task in some other way will
make the need to reorder operations go away, and will in fact make more sense
with the way CFEngine “thinks.”

Looping in CFEngine

One of the most evident examples of “thinking in CFEngine” is the concept of
implicit looping. It is one of the most basic behaviors, one of the most confusing
to a CFEngine beginner, and one of the most powerful once you harness it.

First, let us define it: in CFEngine 3, if you refer to a list variable (normally
called @(var)) as a scalar ($(var)), CFEngine interprets it to mean “iterate over
all the values in the list.”

Let’s try it. Type in the following policy:

body common control
{
bundlesequence => { "test" };

}

bundle agent test
{
vars:
"colors" slist => { "red", "green", "blue" };
reports:
cfengine::
"$(colors)";

Now run it:

CFEngine Basics 64

cf-agent --no-lock --inform -f ./loopingl.cf

R: red

R: green

R: blue

The lines that start with "R: " indicate messages produced by the reports:

promises in the policy. You can see that the single promise in the reports:
section has been repeated for every value in the list, therefore printing all the
values.

You can also try nested looping:

body common control

{
bundlesequence => { "test" };
}
bundle agent test
{
vars:
"colors" slist => { "red", "green", "blue" };
"tone" slist => { "dark", "light" };
reports:
cfengine_3::
"$(tone) $(colors)";
}

This returns the following:

cf-agent -K -f ./looping2.cf
R: dark red

R: dark green

R: dark blue

R: light red

R: light green

R: light blue

Simple enough, isn’t it? In this explicit example, the behavior is clear. The real
power of implicit looping comes when you realize that it can be used in any type
of promise, and that it means the whole promise will be executed as many times

https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=reports:
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=reports:

CFEngine Basics 65

as there are items in the list. Also, the looping variable can be used anywhere—
in defining variables or classes, in executing commands, or in making decisions
with classes.

Let’s look at a real example in which implicit looping saved the day (this was,
incidentally, the time when this really “clicked” in my head as I was starting
with CFEngine 3). I needed to determine which network interface in a system
was configured in a certain network segment, to apply some configuration
commands.

CFEngine has a built-in array variable called sys.ipv4 that contains the IP
addresses of all the network interfaces in the system, indexed by interface
name. My first thought was that I needed a function that gave me all the values
stored in this array, so I could compare them against my desired IP address
range and find the one I needed.

To my surprise, I realized that CFEngine has a getindices() function, but no
equivalent getvalues() function (actually this function was added as of version
3.1.5, but wasn’t available when I came up with this solution, and in any case
this is much more elegant). After turning the problem over a lot in my head, I
came to the realization that the getvalues() function is not needed in this case.
Here is the code I came up with:

body common control

{
bundlesequence => { "find netif" };
}
bundle agent find netif
{
vars:
"nics" slist => getindices("sys.ipv4");
Regex we want to match on the IP address
"ipregex" string => "192\.168\.1\..*";
classes:
"ismatch $(nics)" expression => regcmp("$(ipregex)",
"$(sys.ipv4[$(nics)])");
reports:
cfengine: :

"NICs found: $(nics) ($(sys.ipv4[$(nics)]))";

https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=getindices()
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=getvalues()
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=getvalues()

CFEngine Basics 66

"Matched NIC: $(nics) ($(sys.ipv4[$(nics)]))"
ifvarclass => "ismatch $(nics)";

}
Let us look at this in detail.

» First, we get a list (using getindices() of all the network interfaces in the
system, and store it in the nics variable. We also assign into ipregex the
regular expression for the IP address range I want to match (in this case,
192.168.1.%).

* Then we use this list, referenced as a scalar, in the classes: promise, to
define a number of classes named after each of the interfaces, by using
$(nics) in the class name itself. The definition of the class depends on
whether the IP address of that network interface ($(nics) is used again in
the call to the regcmp () method) matches the regular expression of the IP
address I want to find. The result is that, for each NIC on the system, the
corresponding class is defined if its IP address matches, and undefined if
it does not.

* Finally, we print all the interfaces by using $(nics) in a report message,
and we also print only the matching ones by conditioning the second
message using the ifvarclass => "ismatch $(nics)" attribute. The ref-
erence to $(nics) in the ifvarclass attribute is also expanded to each
value in turn, so the second message is printed only for those NICs whose
corresponding class is defined.

So you see, we do not need the getvalues() function after all. In this example I
used the defined classes to print messages, but in my real example I used them
to append the appropriate configuration statements to a file—but only for those
interfaces that matched the IP range I wanted.

I encourage you to look at that example again, and make sure you understand
it. There are no looping constructs anywhere—in fact, they do not exist in the
CFEngine syntax at all. It may take a while getting used to this. Whenever
you are constructing a policy and you think “I definitely need a while loop to
do this,” take a step back and see whether you can recast the problem using
implicit looping. The definition of classes based on a condition using implicit
looping is a powerful technique, and you will see it used in many of the examples
in this book.

declared in the current bundle). Starting with 3.3.0 this limitation was
removed, and you can now loop over lists from any bundle, provided
that you properly qualifiy its name with the bundle name where it is
declared ($(bundle.var)).

P Prior to CFEngine 3.3.0, looping was allowed only for local lists (those

https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=getindices()
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=classes:
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=regcmp()
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=ifvarclass

CFEngine Basics 67

Thinking in CFEngine

As we have seen, CFEngine imposes a rigid structure on many aspects of its
operation. Two prime examples are normal ordering and implicit looping, which
help get rid of the need for explicit control flow statements. For the most part,
you do not tell CFEngine how to do things. Rather, you tell it what you want to
achieve and write out the low-level building blocks of how to achieve certain
promises, and CFEngine will put them together for you to bring the system to
the desired state.

If you are like me, you have been programming for some time before you
encountered CFEngine, and your brain is wired to think about problems and
tasks in a certain way. This will almost inevitably cause a clash when you have
to “let go” of the control and lend it over to CFEngine.

I have personally found that what works for me is to step back from the details
of the task at hand, and think at a higher level: “what am I trying to achieve?”
Often this gives a different perspective on why you are doing certain things,
and how you are trying to achieve them. My main advice is to keep practicing,
and to use the community resources available to study examples and to get
feedback on your promises from more experienced users.

Clients and Servers

One of CFEngine’s key strengths is autonomy. A machine in which CFEngine is
installed and configured does not need a network connection to operate, and as
long as its policies are well defined, it will continue to obey those policies and
maintain the system as configured. For instance, a laptop that is sometimes
connected to the company network, but is also often away, will continue to
benefit from CFEngine running on it.

However, the true power of CFEngine lies in its ability to manage thousands
of machines with very little effort, and for this you need to distribute the
corresponding policies to all those hosts. Fortunately, CFEngine makes it very
easy to set up a client-server environment in which one or more hosts act as
policy hubs, distributing policies and data to others. As we saw in Finishing the
Installation and Bootstrapping, all it requires is a single command to configure
CFEngine and tell it which machine to use as its policy hub:

cf-agent --bootstrap x.y.z.w

CFEngine Basics 68

Prior to CFEngine 3.5.0 the bootstrapping options were different. This
is the command you have to run for older versions:

cf-agent --bootstrap --policy-server x.y.z.w

This command works on both the policy hub itself and its clients. In the hub,

cf-agent will recognize its own IP address and configure the host as a policy
hub.

In its simplest form, and one perfectly suitable for all but the largest of
organizations, you can have a single policy hub with multiple clients fetching
policies and files from it, as shown in the following figure.

Policy hub
AT

The simplest form of CFEngine distributed deployment, with a single policy hub and
multiple clients

In larger and more complex environments, you can have a more complex
structure. A CFEngine policy hub can itself be a client for some other hub, thus
creating a hierarchy of CFEngine policy distribution points, as shown next.

Master policy hub

4 A e
Policy hub 1 Policy hub 2 Policy hub 3

x % TRy o

Policy hub 4 | | Policy hub 5

More complex CFEngine distributed deployment, with multiple policy hubs in a hierarchy

The need for a hierarchical structure could be dictated by technical require-
ments (e.g., geographically disperse sites, low-bandwidth links between them,
traffic blocking) or administrative needs (e.g., different teams in charge of

https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=cf-agent

CFEngine Basics 69

different locations, needing to make their own customizations to the top-level
inherited policies). CFEngine is flexible enough to accomodate any of them.
Ideally, all the policy files should propagate from the top-level, where they are
maintained in a master repository, but you could also have several disjoint trees
in your organization.

CFEngine follows a strict pull-only philosophy: only the client can make
requests to the server, asking for the information and files it needs. The server
cannot push anything onto the clients. This convention makes it very simple
to configure the network to allow communication between CFEngine clients
and servers. Only one port—TCP/5308—is necessary for the client to connect
to the server. All communication, including file transfers, takes place through
this port.

clients. In this case port, TCP/5308 also needs to be open from the
server to the clients, and cf-serverd needs to be running on the clients
to process those connections. Note, however, that cf-runagent does
not allow the server to execute arbitrary commands on the clients. All
that it does is instruct cf-agent on the client to “wake up” and process
its policies immediately, instead of waiting for the next scheduled
run. We will see the details of this configuration in CFEngine Remote
Execution Using cf-runagent.

o The cf-runagent command can be used on the server to contact the

The decision to only allow the clients to pull from the server (and not the
server to push things onto the clients) is also rooted in promise theory. An
entity cannot make promises about anyone other than itself. Because of this, the
operation of a distributed system cannot depend on one entity forcing others
to do something. Entities may request information from others, but they may
make promises only about their own behavior. Voluntary cooperation is one of
CFEngine’s core principles.

On the other hand, CFEngine is designed with resilience and graceful degra-
dation in mind. If a client becomes disconnected from the network, CFEngine
continues managing it using the latest locally-stored version of the policies until
it restores connectivity. This allows clients to continue working during network
outages, network congestion, security incidents, or other circumstances that
may prevent connectivity to the master policy hub.

CFEngine Server Configuration

The CFEngine server functionality is provided by the cf-serverd process. It is
configured using a server control body block like in the following example,

https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=cf-runagent
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=cf-serverd
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=cf-runagent
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=cf-agent
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=cf-serverd
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=server%20control

CFEngine Basics 70

taken from the default configuration provided with CFEngine (this is part
of the /var/cfengine/inputs/controls/cf serverd.cf file generated when you
bootstrap CFEngine):

body server control

{
denybadclocks => "false";
allowconnects = { "127.0.0.1" , "::1", @(def.acl) };
allowallconnects = { "127.0.0.1" , "::1", @(def.acl) };
trustkeysfrom = { "127.0.0.1" , "::1", @(def.acl) };
skipverify = { ".*$(def.domain)", "127.0.0.1" , "::1",
@(def.acl) };
allowusers => { "root" };
maxconnections => "100";
Uncomment the line below to allow remote users to run
cf-agent through cf-runagent
cfruncommand => "$(sys.cf agent)";
}

a client are an excellent starting point and provide a lot of basic
functionality. I advise you to go over them and try to get at least a
general understanding of what they do. Most of the parts you may
need to customize are in def.cf, promises.cf and some of the files
under controls/, as needed.

, The default policy files produced by CFEngine when you bootstrap

This body defines the set of machines from which connections will be allowed
allowconnects), those that will be allowed to connect multiple times simultane-
ously allowallconnect s),! those whose public keys will be trusted if they have
not been seen before trustkeysfrom) and those whose DNS record will not be
checked for consistency skipverify). Also specified are the maximum number
of simultaneous connections maxconnections), the users that will be allowed
to connect allowusers), and whether machines with out-of-sync clocks will be
blocked denybadclocks).

Additionally, per-directory and per-file ACLs can be defined in the access -
rules() bundle, whose default version contains the following:

1Normally each host is allowed only one connection at a time.

https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=allowconnects
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=allowallconnects
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=trustkeysfrom
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=skipverify
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=maxconnections
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=allowusers
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=denybadclocks

CFEngine Basics 71

bundle server access rules()

{
access:
any::
"$(def.dir_masterfiles)"
handle => "server _access rule grant _access policy",
comment => "Grant access to the policy updates",
admit => { ".*\.$(def.domain)", @(def.acl) };
roles:
}

This bundle contains promises of type access:, which define the ACLs to
apply. In this case, directory $(def.dir masterfiles) (which expands by de-
fault to /var/cfengine/masterfiles) will be accessible by all machines in the
$(def.domain) domain, plus those defined explicitely in the @(def.acl) list.

Note that most of these parameters include the @(def.acl) and $(def.domain)
variables. These are references to the acl and domain variables defined in the
def () bundle, which is defined in /var/cfengine/inputs/def.cf:

bundle common def

{
vars:
"domain" string => "example.com",
comment => "Define a global domain for all hosts",
handle => "common def vars domain";
"acl" slist => { "$(sys.policy hub)/16" },
comment => "Define an acl for the machines to be granted accesses",
handle => "common def vars acl";
"dir masterfiles" string => translatepath("$(sys.workdir)/masterfiles"),
comment => "Define masterfiles path",
handle => "common def vars dir masterfiles";
}

You are expected to edit the def() bundle before putting CFEngine into
production, in particular two values:

* The $(domain) variable must contain the domain name of your current
environment. This is used in the code shown earlier to limit access to
machines from this domain. It is also used in some other contexts in the
default promises.cf file.

https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=access:

CFEngine Basics 72

* The @(acl) variable is a list containing all the IP addresses that should
have access to the server. This promise uses the value of $(sys.policy hub)
(an automatically-set variable that contains the IP address of the hub from
which the host was bootstrapped) and determines its local class-B network
(/16). The assumption is that the policy hub will in most cases be in the
same network as the client. Of course, this range may well be too broad
or too narrow according to your needs, so you must edit it accordingly.

You can also define these parameters using the def. json file, formally known as
augments. Instead of modifying def.cf, you can create /var/cfengine/masterfiles/def.jso
in your server with the corresponding values, like this:

{
"vars": {
"domain": "example.com",
"acl": ["$(sys.policy hub)/16"],
"dir masterfiles": "$(sys.workdir)/masterfiles"
}
}

Updating Client Files from the Server

One of the main tasks of the policy hub is to distribute policy files, and any
other necessary files, to its clients. This is a crucial operation, since it makes it
possible to update files on the hub and have them propagate automatically to
all the clients. To this effect, CFEngine provides ample capabilities for efficient
and secure file transfer.

The default policy installed with CFEngine contains a bundle called cfe -
internal update() which is executed on the clients (remember that the CFEngine
policy hub cannot instruct the clients to do anything). It takes care of all these
tasks automatically, but you may want to modify it according to your needs. It
is contained in the file /var/cfengine/inputs/update.cf, and in a nutshell these
are the tasks it performs:

* Check whether the host key files exist (under /var/cfengine/ppkeys/), and
run cf-key to create them if they are not present.

» Start the cf-serverd, cf-monitord and cf-execd processes if they are not
running.

https://docs.cfengine.com/docs/3.12/reference-language-concepts-augments.html
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=cf-key
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=cf-serverd
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=cf-monitord
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=cf-execd

CFEngine Basics 73

* Copy updated files from /var/cfengine/masterfiles/ on the policy hub to
/var/cfengine/inputs/ on all machines (both the clients and the policy
hub) to put them in production.

* Symlink CFEngine binaries from /var/cfengine/bin/ to /usr/local/sbin/
for easier access.

* Ensure all critical directories and files have the correct permissions.

For now we will look only at the file-copying operations, but I encourage you
to read through the whole bundle to get an idea of what it does. These are the
crucial parts:

bundle agent cfe internal update
{
vars:
"inputs dir"
string => translatepath("$(sys.workdir)/inputs"),
comment => "Directory containing Cfengine policies",
handle => "update vars inputs dir";
"master location"
string => "/var/cfengine/masterfiles",
comment => "The master cfengine policy directory on the policy host",
handle => "update vars master location";
files:
"$(inputs_dir)"
comment => "Copy policy updates from master source on policy server",
handle => "update files inputs dir",
copy_from => u_rcp("$(master_location)","$(sys.policy hub)"),
depth_search => u recurse("inf"),
file_select => u input files,
classes => u_if repaired("update report");

* The $(inputs_dir) variable contains the directory where the local CFEngine
installation expects to find its policy files. On Unix/Linux hosts this is
normally /var/cfengine/inputs, but the location can vary in different
platforms. For this reason, we are using the $(sys.workdir) variable, which
is automatically defined to be the base directory of the local CFEngine
installation. We are also using the translatepath() function to translate the
Unix-style path into the local style (for example, using backslashes instead
of forward slashes on Windows).

CFEngine Basics 74

* The $(master location) variable contains the directory on the policy hub
where the “master files” are located, and from where they will be copied
to the local host. The policy hub has to be a Unix-style host, so in this case
we don’t need to perform any path translation.

* The files: promise is the one that does the actual work. The promiser is
the destination directory $(inputs_dir), to which the files will be copied
according to the parameters specified by the promise attributes that
follow.

* The copy_ from attribute indicates the source of the files. The value of this
attribute is a body, defined in the same update.cf file as follows:

body copy_from u_rcp(from,server)

{
source => "$(from)";
compare => "digest";
trustkey => "true";

lam_policy_hub::
servers => { "$(server)" };

}

This body receives as arguments the directory and the host from where
the files should be copied. $(master location) is the variable defined
before, and $(sys.policy hub) is a special CFEngine variable that is
set when the client is bootstrapped, as described in #bootstrapping-
cfengine. Additionally, it indicates that the files should be compared using
a cryptographic digest (compare => "digest"), and that the client should
trust the cryptographic keys presented by the server (trustkey => "true").
The servers attribute is set only when the am policy hub class is not set,
and am _policy hub is a hard class set only on the policy hub, so the effect
is that on the policy hub, the file copy operation will be done locally, from
/var/cfengine/masterfiles/ to /var/cfengine/inputs/.

* The depth_search attribute is used to indicate a recursive file copy opera-
tion of infinite depth. Its value is another body:

body depth_search u recurse(d)
{
depth => "$(d)";
exclude_dirs => { "\.svn", "\.git" };

}

The depth attribute is set to the passed argument (which can be a number,
or the special value "inf" for infinite recursion). The exclude dirs at-

CFEngine Basics 75

tribute is also used to skip version-control directories that may be present
in the server (assuming that version control is done using Subversion or
Git).

* The file select attribute is used to control which types of files are copied.
This is another body:

body file select u input files

{
leaf_name => { ".*.cf",".*.dat",".*.txt" };
file_result => "leaf name";

}

In this case we are asking CFEngine to copy only files whose names end
with .cf, .dat and .txt. There are many criteria that can be specified in
a file select body, and for this reason we need the file result attribute
to tell CFEngine on which criteria we want to match (in this case it is the
only one available).

* The classes attribute indicates that if any files are copied (which flags
the promise as “repaired”), then the update report class should be set.
This class can be used in other parts of the policy to execute any actions
necessary (for example, produce a report) when the files are updated. This
is yet another body that sets the appropriate class: pass:

body classes u if repaired(x)

{

promise_repaired => { "$(x)" };

File-copy promises are extremely flexible and powerful. Policy and binary
updates are automatically handled by the built-in CFEngine policies, but I
encourage you to read the documentation for files: promises to get a good
idea of the wide range of tasks they can perform.

The default CFEngine policy instructs cf-execd (this is defined in the
body executor controlin /var/cfengine/inputs/controls/cf execd.cf)
to always evaluate update.cf before running promises.cf, to ensure
that all files are properly updated. Additionally, if there is any failure
in policy evaluation, cf-agent automatically tries to load failsafe.cf,
which performs many of the same update operations to try and bring
CFEngine back into operation.

o Why is this bundle in the update. cf file instead of the promises.cf file?

https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=files:
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=cf-execd
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=cf-agent

CFEngine Basics 76

CFEngine Remote Execution Using cf-runagent

One of the basic premises of CFEngine is that clients operate autonomously.
If there is a central coordination point, like the policy hub, it is up to the
clients to connect to it and fetch policies or files. However, in practice, the
server (or some other machine) sometimes needs to “ping” the clients and ask
them to do something. This is where cf-runagent comes in. It does not allow
arbitrary actions to be executed, but simply asks the remote machine to run
cf-agent and evaluate its policies. The remote host (in most cases it would be
a CFEngine client) needs to have cf-serverd running and configured to listen
for connections from cf-runagent.

Allow me to emphasize this point: cf-runagent does not allow the execution of
arbitrary commands or arbitrary actions on a remote host. It simply instructs
the host to run cf-agent and start evaluating its policies. This is useful when
you don’t want to wait until the next regular execution of cf-agent (for example,
critical policy or operating system updates).

The behavior of the cf-runagent command can be configured as part of the
CFEngine policy in a runagent control body, which allows you to specify, among
other things, a list of hosts that will be contacted by default when running the
command. On the client side (the one to which the cf-runagent command will
connect), the server control body specifies whether cf-runagent connections
will be allowed, and what they will be allowed to do. It can also specify a
list of remote users that will be allowed to set custom classes when running
cf-runagent. This allows more fine-grained control of the policy behavior.

cf-runagent connections are handled by cf-serverd, so if you need this func-
tionality you will also need to open port TCP/5308 traffic from the server to the
clients.

Because of its potential security implications, the cf-runagent functionality
comes disabled in the CFEngine default policy. To enable it, you need to
uncomment the cfruncommand attribute in the server control body, shown in
CFEngine Server Configuration:

cfruncommand => "$(sys.cf_agent)";

This instructs cf-serverd to listen for connections from cf-runagent, and
to execute cf-agent in response to them (remember that this is all that
cf-runagent allows you to do: wake up cf-agent). We still need to instruct
cf-serverd to allow access to the cf-agent binary (its path is stored in the
special variable $(sys.cf agent), normally /var/cfengine/bin/cf-agent) from
the policy hub. We need to do this in the access rules() bundle, stored in
/var/cfengine/inputs/controls/cf serverd.cf:

https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=cf-runagent
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=cf-agent
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=cf-serverd
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=cf-runagent
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=cf-runagent
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=cf-agent
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=cf-agent
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=cf-runagent
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=runagent%20control
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=cf-runagent
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=cf-runagent
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=cf-runagent
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=cf-runagent
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=cf-serverd
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=cf-runagent
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=cf-serverd
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=cf-runagent
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=cf-agent
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=cf-runagent
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=cf-agent
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=cf-agent
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=\protect \char "0024\relax (sys.cf_agent)

CFEngine Basics 77

bundle server access rules()

{
access:
any::
"$(sys.cf_agent)"
handle => "grant access policy agent",
comment => "Grant access to the agent (for cf-runagent)",
admit => { "$(sys.policy hub)" };
}

In this case, we are telling cf-serverd to allow access to the cf-agent binary
only to the policy hub, as defined by the special variable $(sys.policy hub).

Finally, we need to tell the policy hub which hosts to contact by default when
cf-runagent is executed. We need to do this explicitly in the runagent control
body:

body runagent control
{
A list of hosts to contact when using cf-runagent
any::
hosts => { "127.0.0.1" };
, "myhost.example.com:5308",

Note that defining this list is not strictly necessary, as the list of hosts can
be specified in the command line when running cf-runagent, using the --hail
option.

CFEngine Information Resources

CFEngine has been around for a long time, and it has developed a solid
body of documentation and information. In addition to community support,
the company that was formed to provide commercial support for CFEngine,
CFEngine AS, provides extensive documentation and information, most of it
free of charge.

One word of caution: Some of the information you find online may still be geared
towards CFEngine 2. While you can apply many of the basic ideas, be aware

https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=cf-serverd
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=cf-agent
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=\protect \char "0024\relax (sys.policy_hub)
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=cf-runagent
http://cf-learn.info/ref/control-runagent
https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=cf-runagent

CFEngine Basics 78

that the syntax of CFEngine 3 is completely different and incompatible with the
previous version.

Let’s look at some of the information resources available for CFEngine

Manuals and Official Guides

Most of the documentation made available by CFEngine AS can be found at
the CFEngine Documentation web page. The core documentation includes the
following:

* CFEngine Reference: the most complete and authoritative reference for
CFEngine concepts, installation, syntax, and examples.

* CFEngine Guide: documents that describe different aspects of CFEngine,
including its design, architecture and components, basic language con-
cepts and more.

Apart from the core documents, you will find a growing collection of Special
Topics Guides, a series of shorter documents that focus on specific advanced
aspects of working with CFEngine. You can find documentation about best
practices for different topics, such as team collaboration, integrating CFEngine
into change management practices or specific frameworks such as the ITIL
standard, reporting capabilities, knowledge management, etc.

CFEngine Standard Library

The CFEngine Standard Library contains implementations of a large number
of commonly-used promise bundles and bodies. It includes bundles for tasks
such as editing files in common formats, interfacing with common package and
service managers, editing text files, and copying files. The standard library
allows you to focus on the task at hand without having to worry about the
details, and also serves as a fantastic source of examples, based on which you
can extend or define your own bundles and bodies for CFEngine configura-
tion. This library is constantly evolving, and users are encouraged to submit
changes and additions to it. The CFEngine standard library is hosted in the
cfengine/masterfiles repository on GitHub, but is included with the CFEngine
distribution, so if you have installed CFEgine from the official packages, the
Standard Library is already installed on your macines.

Open Promise Body Library (COPBL). This name is no longer being

o The CFEngine Standard Library used to be known as the Community
used, but you may still see some references to it.

https://docs.cfengine.com/
https://docs.cfengine.com/docs/3.12/reference.html
https://docs.cfengine.com/docs/3.12/guide.html
https://docs.cfengine.com/docs/3.12/guide-special-topics.html
https://docs.cfengine.com/docs/3.12/guide-special-topics.html
https://github.com/cfengine/masterfiles

CFEngine Basics 79

The Standard Library is split into multiple files by promise type. For example, all
bodies and bundles related to files: promises are stored in $(sys.libdir)/files.cf
(the special $sys.libdir variable defaults to /var/cfengine/inputs/lib, but it
may change depending on your installation or the user under which you are
running CFEngine). You need to load the parts that you are going to use in
your policy, for example:

body common control
{
inputs => { "$(sys.libdir)/common.cf",
"$(sys.libdir)/files.cf",
"$(sys.libdir)/commands.cf" };

If you want to load the whole standard library, you can also just load the
included stdlib.cf file, which in turn loads the others:

body common control

{
inputs => { "$(sys.libdir)/stdlib.cf" };

ically loads the standard library using the correct method for the
current version of CFEngine, so you only need to worry about how to
load it (and which parts to load) for standalone policy files you write.
In this book, for the examples that need it, we will sometimes see the
stdlib.cf file, and others the specific files from the library.

P The default promises.cf file in all CFEngine distributions automat-

The standard library provides you with most of the basic building blocks for
implementing different tasks using CFEngine.

Community Forum and IRC channel

The official CFEngine help forum can be found in Google Groups, at https://
groups.google.com/forum/?fromgroups# !forum/help-cfengine, and is a fantas-
tic resource of information and help. Both CFEngine developers and advanced
users participate actively in the forum, providing a friendly and fertile ground
for newcomers to ask questions and learn about CFEngine, and for experienced

https://docs.cfengine.com/docs/3.12/search.html?ie=UTF-8&q=files:
https://groups.google.com/forum/?fromgroups#!forum/help-cfengine
https://groups.google.com/forum/?fromgroups#!forum/help-cfengine

CFEngine Basics 80

users to exchange information, discuss advanced aspects, and provide feedback
to the developers.

The official IRC channel is called #cfengine and hosted on http://freenode.net/
(use your favorite IRC client to connect to it). It is a good place to ask questions
and have informal discussions with CFEngine users, engineers and developers.
I would advise you to post complex questions to the forum, and use IRC only
for quick questions or conversations.

CFEngine Bug Tracker

The official mechanism for reporting bugs or feature requests is the CFEngine
issue tracker.

Other Community Resources

CFEngine users have also developed and made available an incredible amount
of useful resources. Here is the list of some of the most useful ones.

* Neil H. Watson’s CFEngine 3 Tutorial was one of the first tutorials
available specifically for CFEngine 3, and provides a very useful, hands-
on guide to CFEngine installation and setting up an initial scheme for
experimenting.

* Jessica Greer’s Yale University’s CFEngine 3 library shows many real-
world examples of bodies and bundles used to maintain Yale’s computers
with CFEngine.

» Aleksey Tsalolikhin’s Guide to CFEngine 3 Body of Knowledge is a great
collection of links to a lot of the information available about CFEngine 3,
including many of the resources already mentioned. Aleksey is a prolific
CFEngine expert and trainer.

* As a companion to this book, I would recommend reading and exploring
the CFEngine Language Concepts page from CFEngine AS, and to always
have the CFEngine Reference pages handy for the full details about the
CFEngine policy language.

http://freenode.net/
https://tracker.mender.io/projects/CFE/
https://tracker.mender.io/projects/CFE/
http://watson-wilson.ca/blog/2011/03/08/cfengine-tutorial/
https://github.com/jlgreer/yale_cfengine3/
http://verticalsysadmin.com/blog/guide-to-cfengine-3-body-of-knowledge/
https://docs.cfengine.com/docs/3.12/reference-language-concepts.html
https://docs.cfengine.com/docs/3.12/reference-all-types.html

	Table of Contents
	Getting Started with CFEngine
	Installing CFEngine
	Finishing the Installation and Bootstrapping
	Auxiliary Files
	Your First CFEngine Policy

	CFEngine Basics
	Basic Principles
	CFEngine Components
	A First Example
	The CFEngine Policy Language
	Clients and Servers
	CFEngine Information Resources

