

[image: Learning CFEngine]

 Learning CFEngine

 Automated System Administration for Sites of Any Size

 Diego Zamboni

 This book is for sale at http://leanpub.com/learning-cfengine

 This version was published on 2018-11-02

 [image: publisher's logo]

 * * * * *

 This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and many iterations to get reader feedback, pivot until you have the right book and build traction once you do.

 * * * * *

© 2018 Diego Zamboni

 Para Susi, Kari, Fabi y Nube

 Table of Contents

 	
 1. Getting Started with CFEngine

 	
 Installing CFEngine

 	
 Finishing the Installation and Bootstrapping

 	
 Auxiliary Files

 	
 Your First CFEngine Policy

 	
 2. CFEngine Basics

 	
 Basic Principles

 	
 CFEngine Components

 	
 A First Example

 	
 The CFEngine Policy Language

 	
 Clients and Servers

 	
 CFEngine Information Resources

 	
 Notes

 Guide

 	
 Begin Reading

1. Getting Started with CFEngine

The first step toward using CFEngine is getting it installed on at least one machine so that you can start playing with it. CFEngine Community (the open source version) is available from many package management repositories, and you can also easily build it from source yourself. You can also install CFEngine Enterprise, which is free for use on up to 25 hosts. In this chapter we will go through the process of installing CFEngine on your machine, setting it up, and writing and running your first policy. Don’t worry if you do not understand at first glance what all the different pieces mean—the idea of this chapter is to get you going. We will step back in CFEngine Basics to examine all the different CFEngine components.

I will mention one concept that you need to understand before we start. Your first CFEngine host will act as the policy hub, which is a server from where other CFEngine clients fetch their policy files. If you are just going to start playing with CFEngine, most likely you will be using it on a single host at the beginning, so the hub and the client can be on the same machine. As you grow your CFEngine installation, other machines will connect to the hub as well. Most CFEngine installations use a “star” configuration, with a single hub serving multiple machines. However, this is not a requirement—CFEngine allows you to connect its components in any architecture you desire1.

Installing CFEngine

Remember that CFEngine exists in two versions: community edition and commercial edition. Therefore, I will describe the following options for installing CFEngine:

 	Commercial edition (free for up to 25 nodes), installed from a binary package or on a pre-built virtual machine image using Vagrant.

 	Community edition (free), installed from a binary package or from a package repository.

 	Community edition (free), installed from source code.

Which Version of CFEngine?

You should always install the latest released version of CFEngine. Some operating systems include in their repositories older versions of CFEngine, but each new release includes new features, bug fixes and other improvements that make it worth staying up to date. All examples in this book have been tested with CFEngine 3.12 LTS, the latest release at the time of writing.

 Since version 3.7, CFEngine has adopted a regular 6-month release cycle for major releases. Every 18 months, the new release is labeled as LTS (Long-Term Support), which means that it will be supported for a full three years after release. You can read the details about this release schedule at https://cfengine.com/product/supported-versions/.

Testing CFEngine Enterprise using a Vagrant VM

The easiest way to give CFEngine a quick try is to use the CFEngine Enterprise binary packages, using the pre-made Vagrant configuration provided by CFEngine AS.

 For the purposes of learning CFEngine while you read this book, this method of installation is highly recommended, as you can experiment with both the Community and the Enterprise features. Of course, if you are installing directly on some of the machines you manage, you need to choose the appropriate edition depending on whether you plan to purchase Enterprise licenses.

Vagrant allows us to quickly set up one or more VMs with a repeatable, consistent configuration. Using Vagrant, the CFEngine Enterprise Vagrant Environment quickly sets up a CFEngine Enterprise Hub and one client running on your own machine, both running the latest version of CFEngine Enterprise. You can find the full instructions at the CFEngine documentation page2, but in short these are the steps you need to follow, applicable to Windows, Linux or macOS:

 	Download and install VirtualBox for your platform from https://www.virtualbox.org/

 	Download and install Vagrant for your platform from https://www.vagrantup.com/

 	Download and unpack the CFEngine Vagrant Environment tar file3. When you unpack this file, it will create a directory named CFEngine_Enterprise_vagrant_quickstart-3.12.0-1 (or similar, depending on the current release).

 	Change into the directory created and request the status of the VMs using the vagrant status command:

$ vagrant status
Current machine states:

hub not created (virtualbox)
host001 not created (virtualbox)

This environment represents multiple VMs. The VMs are all listed
above with their current state. For more information about a specific
VM, run `vagrant status NAME`.

 	Create and start the VMs using vagrant up. This may take a few minutes and you will need to be connected to the Internet, since Vagrant will need to download some VM images the first time. Vagrant will set up the VMs, install and configure CFEngine Enterprise on them

 $ vagrant up
 Bringing machine 'hub' up with 'virtualbox' provider...
 Bringing machine 'host001' up with 'virtualbox' provider...
 ==> hub: Importing base box 'centos-6.5-x86_64-cfengine_enterprise-
vagrant-201501201245'...
 ...
 ==> host001: Thank you for downloading the
 Getting Started with CFEngine Enterprise
 ==> host001: Vagrant Virtualbox environment
 ==> host001: Please log into the mission portal:
 ==> host001: https://localhost:9002
 ==> host001: username: admin
 ==> host001: password: admin

 	After a few minutes, you will have a new shiny CFEngine Enterprise setup consisting of one hub and one client:

$ vagrant status
Current machine states:

hub running (virtualbox)
host001 running (virtualbox)

This environment represents multiple VMs. The VMs are all listed
above with their current state. For more information about a specific
VM, run `vagrant status NAME`.

You can explore the CFEngine Enterprise console using the URL and credentials printed. You can also login to any of the VMs using the vagrant ssh command. You can run most of our examples in the client VM, to which you can login like this:

$ vagrant ssh host001
Last login: Tue Jan 20 19:18:45 2015 from 10.0.2.2
[vagrant@host001 ~]$

 The directory in which the Vagrant configuration is unpacked is mounted on the VMs under /vagrant. This can be very useful to share files between your host machine and the CFEngine VMs. For example, you can use your favorite local editor to type the examples and save them in that directory, and they will be available to the VMs as well so you can run them.

 By default the Vagrant configuration file will create only one client VM, but you can request more by setting the HOSTS environment variable:

$ export HOSTS=3
$ vagrant status
Current machine states:

hub running (virtualbox)
host001 running (virtualbox)
host002 not created (virtualbox)
host003 not created (virtualbox)

$ vagrant up
...
$ vagrant status
Current machine states:

hub running (virtualbox)
host001 running (virtualbox)
host002 running (virtualbox)
host003 running (virtualbox)

In this way, you can experiment with a multi-node setup, all within your local machine. Be mindful of starting many VMs, lest you overload your machine.

Installing the Community Edition from Binary Packages

CFEngine Community can also be installed from binary packages that are built for most popular Linux distributions. The easiest way to do this is by using the quick-start script provided by CFEngine AS. The script automatically downloads and installs the appropriate package according to your distribution. You can use it like this (make sure to type the whole command in a single line):

curl http://cfengine.package-repos.s3.amazonaws.com/quickinstall/
 quick-install-cfengine-community.sh | bash

Alternatively, you can download the individual package files for different Linux distributions from https://cfengine.com/product/community/. Once you download the appropriate package, install it using the corresponding tool for your operating system (for example, rpm or dpkg).

Installing the Community Edition using your system’s package repositories

Many Linux distributions and macOS package managers include CFEngine in their default package repositories. In these cases, it’s usually fine to install CFEngine from there. Be aware that in some cases, the packages available are for very old versions of CFEngine, so before you install it, make sure it is a recent version (preferably the latest) to have access to all the features we will discuss.

Installing the Community Edition from Source

You can download the CFEngine source code in a compressed tar file from https://cfengine.com/source-code. You can also fetch the very latest code from the CFEngine git repository by issuing the following command:

$ git clone git://github.com/cfengine/core.git

CFEngine requires the following packages (with their development-related content, such as header files):

 	
OpenSSL (installed by default in most Linux and Unix systems)

 	One of: LMDB, QDBM or Tokyo Cabinet

 	PCRE, the Perl-Compatible Regular Expressions Library (http://www.pcre.org/)

In addition, the following libraries are supported for enabling optional features. If they are installed, the CFEngine configure script will automatically enable the corresponding features.

 	
libxml2 for the ability to edit XML files.

 	
libacl for the ability to manipulate POSIX ACLs.

 	
MySQL client library for the ability to manage MySQL databases.

 	
PostgreSQL client library for the ability to manage PostgreSQL databases.

Once the required packages are installed, compiling and installing CFEngine is as easy as running the following commands in the CFEngine source directory:

$./configure
$ make
$ sudo make install

 If you checked out the source code from the git repository, use the following sequence (autogen.sh understands the same options as configure, in case you want to provide any):

$./autogen.sh
$ make
$ sudo make install

This will compile CFEngine and install all its binaries and support files under /var/cfengine/. The binaries will all be located in /var/cfengine/bin/, so you should add this directory to your PATH environment variable to be able to invoke the binaries conveniently.

 The configure script prints, near the end of its execution, a summary of all the CFEngine features that have been enabled, according to the optional libraries that were found. You can use this to verify that all the features you want are there, before compiling. For example, you can see here that XML support is disabled, which is most likely an indication that the libxml2 library is not installed:

Summary of options...
> Required libraries
-> OpenSSL: default path
-> PCRE: default path
-> DB: Tokyo Cabinet: default path
> Optional libraries
-> MySQL connector: default path
-> PostgreSQL connector: default path
-> libvirt: default path
-> libacl: default path
-> libxml2: disabled
-> Workdir: /var/cfengine

You can run ./configure --help to get a list of all the valid options, and find the detailed, latest compilation instructions at https://github.com/cfengine/core/blob/master/INSTALL.

Installing CFEngine Enterprise

If you have purchased the commercial edition of CFEngine, you will get access to the binary packages of CFEngine Enterprise for all the supported operating systems, including a native Windows installer. You will also need to register your CFEngine policy server to get a license key for it.

 You can use CFEngine Enterprise for free for up to 25 nodes. This is an excellent opportunity to learn and explore the commercial features of CFEngine before committing to purchasing it.

The policy language in the commercial edition of CFEngine is a strict superset of the Community Edition, so you can start by practicing with the Community Edition, and move to the commercial edition as you gain more experience and need more advanced features, knowing that your existing policies will work just as before.

CFEngine Enterprise comes in two package files, called cfengine-nova and cfengine-nova-hub. The first one should be installed on CFEngine client machines, and the second one on the policy hub, the central host from where clients will fetch their policies, and where the CFEngine graphical console available with Enterprise is installed. The hub software must be installed on a 64-bit machine, so the hub packages are only available in 64-bit versions.

 CFEngine Enterprise was originally called “CFEngine Nova”, which is why you will find many references to this name, including the package filenames.

Similarly to the Community edition, the easiest way to install Enterprise is by using the existing quick-install script, which you can download as follows (type the command in a single line):

$ wget http://s3.amazonaws.com/cfengine.packages/
 quick-install-cfengine-enterprise.sh

You then need to run the script with the argument hub or agent, depending on the type of host you want to install:

$ sudo bash ./quick-install-cfengine-enterprise.sh hub # on the hub
$ sudo bash ./quick-install-cfengine-enterprise.sh agent # on other hosts

You can also download the packages individually from https://cfengine.com/product/cfengine-enterprise-free-25/, and install them on your hosts using their corresponding installation mechanism.

If you have a commercial license (this is, you have purchased a license to use Enterprise on more than 25 hosts), you need to install the license key license.dat that you get from CFEngine by running the following command:

cf-key --install-license ./license.dat

After this, you can continue with the bootstrap process as described next.

Finishing the Installation and Bootstrapping

After installation, there may be a few finishing steps left to perform, depending on your installation method. If you are using the CFEngine Enterprise Vagrant setup as described in Testing CFEngine Enterprise using a Vagrant VM, then all VMs are already correctly bootstrapped, and you can skip this section. Otherwise, follow these steps:

 	Run the command /var/cfengine/bin/cf-key. This will generate a private- and public-key pair for the current host.

/var/cfengine/bin/cf-key
Making a key pair for cfengine, please wait, this could take a minute...

 These keys are necessary when operating in a distributed CFEngine environment. This command also sets up under /var/cfengine/ the basic directory structure used by CFEngine. The generated keys will be stored in /var/cfengine/ppkeys/.

 If the keys already exist (CFEngine-provided binary packages run this command automatically during the installation) you will see the following message:

/var/cfengine/bin/cf-key
A key file already exists at /var/cfengine/ppkeys/localhost.pub

 	CFEngine installs its binaries by default in /var/cfengine/bin/. Some binary packages may also copy them to /usr/local/sbin/ to have them in the same directory as other system utilities. You may want to add the correct directory to the PATH environment variable in your shell setup.

 	On the policy hub, CFEngine expects to find its “master files” under /var/cfengine/masterfiles/. This is meant to be the master copy of its policy files, from where they will be copied to the work directory (/var/cfengine/inputs/ by default). If the /var/cfengine/masterfiles/ directory is empty or nonexistent (this will be the case if you installed from source), you need to populate it with the sample masterfiles directory from the CFEngine distribution, which normally gets installed in /var/cfengine/share/CoreBase/:

ls /var/cfengine/masterfiles
cp -Rp /var/cfengine/share/CoreBase/* /var/cfengine/masterfiles/
ls -F /var/cfengine/masterfiles/
cf-sketch-runfile.cf controls/ def.cf libraries/
promises.cf services/ update.cf

 We will examine these files in detail later on.

 	Finally, CFEngine needs to be “bootstrapped” to a CFEngine policy server. This registers the client with the server, copies the masterfiles to their final working location in /var/cfengine/inputs/ and starts the base cf-execd daemon. The policy server also needs to be bootstrapped to itself.
 The cf-execd daemon controls the periodic execution of cf-agent, which is the one that actually executes the promises in the provided policies (we will look in more detail at the different components in CFEngine Components).

 To bootstrap a client, first find the IP address of your policy server, using the ifconfig command (ipconfig under Windows). Let’s assume it is 10.0.2.15. Run the cf-agent command with the --bootstrap option. For example, if you run the command on the policy server itself, you will see the following:

/var/cfengine/bin/cf-agent --bootstrap "10.0.2.15"
2013-07-03T06:12:34 notice: Q: "...f-serverd"":
2013-07-03T06:12:34 notice: Server is starting...
2013-07-03T06:12:34 notice: R: This host assumes the role of policy server
2013-07-03T06:12:34 notice: R: Updated local policy from policy server
2013-07-03T06:12:34 notice: R: Started the server
2013-07-03T06:12:34 notice: R: Started the scheduler
2013-07-03T06:12:35 notice: Bootstrap to '10.0.2.15' completed successfully!

 The cf-agent command recognizes you are using the machine’s own IP address to bootstrap, and configures it as a policy server. You can verify the success of this command by looking at the process list. You should see at least the cf-execd process, and maybe some others that are started automatically by it:

ps ax | grep cf
84284 ?? 0:00.22 /var/cfengine/bin/cf-execd
84287 ?? 0:00.15 /var/cfengine/bin/cf-serverd

 The policy server should be the first host you bootstrap. Once you have it running, you can boostrap CFEngine on other hosts by providing the server’s IP address to the cf-agent --bootstrap command.

Auxiliary Files

The CFEngine distribution includes not only the binaries, but also a large library of documentation and examples. The examples normally get installed in /var/cfengine/share/doc/ (in previous versions they were installed under /usr/local/share/cfengine/ or /usr/local/share/doc/cfengine/, and can be of big help for getting started. These directories include examples of CFEngine configurations for different tasks and demonstrate the use of different CFEngine constructs. The examples directory contains a large number of mostly-self-contained files that demonstrate and exercise different CFEngine abilities.

Your First CFEngine Policy

Now that you have CFEngine installed and running, let us start by writing a first simple policy. If you have finished the bootstrapping process described in Finishing the Installation and Bootstrapping, you can be sure that CFEngine is properly installed. You can also check this by running the following command:

cf-agent --version
CFEngine Core 3.12.2
CFEngine Enterprise 3.12.2

For our first policy, let us tackle a task that is simple to explain, yet can be useful in real systems. We will add a line to the /etc/motd file to indicate that CFEngine is running on this machine. And to keep with tradition, we will also print out a “Hello world!” message to the console when the policy is run.

I recommend you type the code as you read through the example, and save it in a file named edit_motd.cf so you can run it from CFEngine when we are done.

 If you are using the Vagrant quick-start setup, you can save this file under the same directory, and it will be available in the VMs under the {{{file(/vagrant)}}} directory.

CFEngine instructions (called “promises”) are contained in units called “bundles”. In our case, we will define a bundle called edit_motd. Here is the bundle code:

bundle agent edit_motd
{
 vars:
 "motd" string => "/etc/motd";

 files:
 "$(motd)"
 create => "true",
 edit_line => addmessage;

 reports:
 "Hello world!";
}

This is the part of the policy that tells CFEngine what to do. Here is how it works:

 	In CFEngine, a bundle of type agent (identified by its declaration bundle agent, followed by an arbitrary identifier, in this case edit_motd) could be considered the equivalent of a subroutine, and contains promises that CFEngine evaluates and acts on, if needed. It is split into sections that correspond to different types of promises, which are the lines that start with a word and end with a single colon. In this bundle, we have three sections: vars:, files:, and reports:.

 	The vars: section is used to declare variables. CFEngine has several variable types, including strings, lists, arrays, and numbers (both integers and floating-point numbers are supported). Here we are declaring a single string value named motd, which contains the path of the file we want to edit. If you are testing this on a system where you don’t have root privilege, you should change this path to some file you can edit, for example /tmp/motd.
 In a CFEngine policy, everything is expressed as promises, even variable declarations. In this case, motd promises to be a string variable containing the value "/etc/motd"​. We will reference this variable later in the policy. Scalar variable references are indicated by a dollar sign followed by the variable name enclosed in either parentheses or braces. Both ${motd} and $(motd) refer to the same variable.

 	In the files: section we indicate the file-related operations we want to perform. In this case, the promiser is "$(motd)" which expands the motd variable into its value, so the promiser becomes "/etc/motd", telling CFEngine which file to edit.
 The rest of the promise, up until the semicolon, is called the body of the promise, and is formed by attribute =​> value pairs, separated by commas. In this case we have two attribute specifications: create =​> "true" and edit_line =​> addmessage. The former simply indicates that the file needs to be created if it doesn’t exist yet. The latter means that lines in /etc/motd will be edited according to the specification given by a bundle named addmessage (which we haven’t seen yet).

 Casting this into CFEngine terminology: All promisers in the files: section are interpreted by CFEngine as files (or directories) on the system, so the promise in our sample policy means that the /etc/motd file promises to be edited according to the instructions given by the body of the promise. The value of the edit_line parameter is the name of an edit_line bundle. This means that it’s not a single value, but rather the name of a named collection of attributes that specifies the behavior of edit_line. Here is its definition:

bundle edit_line addmessage {
 insert_lines:
 "This system is managed by CFEngine 3";
}

 A bundle is also a container of promises, and is also divided in sections. The type of each bundle is given by the second word in its declaration (in this case, edit_line). You can see that the edit_motd bundle had agent as its type, which means it is an “execution” bundle that can be called directly (in this case, from the bundlesequence declaration, although there are other means for executing agent bundles that we will cover later). Thus, the first line assigns the type edit_line to the addmessage bundle, meaning that it can be used only as the value of an edit_line attribute. Additionally, the type of a bundle defines what sections are valid in it, and how the promises in it are interpreted. An edit_line bundle must contain promises that perform edits on a file. In this case, it contains an insert_lines: section, so promises are interpreted as lines that must be present in the file. The only promise in this bundle is a string that contains the message we want to insert in the file. The string itself is the promiser and no additional attributes are given, which means the line will always be inserted into the file, unless it is there already (this is CFEngine’s way of ensuring convergent behavior: if it always inserted a line, the file would never converge to a stable state).

 In summary, what this means is that the given line will be inserted into /etc/motd if it’s not there already.

 	Finally, the edit_motd bundle has a reports: section, which is meant to produce output during the execution of the policy. Promises in a reports: section indicate messages and how they will be handled. By default, the promised message will be printed to the console. In our case, we will print the message Hello world! to the console every single time the promise is executed.

This completes our first policy, so let us look at it in one piece:

bundle agent edit_motd
{
 vars:
 "motd" string => "/etc/motd";

 files:
 "$(motd)"
 create => "true",
 edit_line => addmessage;

 reports:
 "Hello world!";
}

bundle edit_line addmessage
{
 insert_lines:
 "This system is managed by CFEngine 3";
}

Type this in and save it to a file, for example edit_motd.cf. You can then execute it with the following command:

cf-agent --no-lock --inform --bundlesequence edit_motd --file ./edit_motd.cf
 info: Using command line specified bundlesequence
 info: Edit file '/etc/motd'
R: Hello world!

These are the options we used:

 	
--no-lock (can be abbreviated as -K) means “Ignore locking constraints during execution,” which in practice means “always execute all promises.” Normally, CFEngine obeys certain time periods between successive evaluations of the same promise, to avoid overloading the systems. The --no-lock option disables those constraints, and so is useful for testing policies that you may run several times in quick succession.

 	
--inform (short -I) means “Print basic information about changes made to the system,” essentially telling CFEngine to show you the actions that it is taking. If not specified, CFEngine’s output is quite terse, so again, this is useful when you are testing policies to get more information about what CFEngine is doing.

 	
--bundlesequence (short -b) tells CFEngine which bundle to execute within the file (the bundle sequence can also be specified within the policy file, but specifying it in the command line will make it easier to integrate with the rest of the system policy).

 	
--file (short -f) tells CFEngine to use the specified file as its input. Otherwise it will try to read /var/cfengine/inputs/promises.cf You can also omit the -f and simply give the filename as the last argument to the command.

Now examine the /etc/motd file, and you will see that the following line has been added to it:

This system is managed by CFEngine 3

If you run the command again, the output changes:

cf-agent -K -I -b edit_motd -f ./edit_motd.cf
 info: Using command line specified bundlesequence
R: Hello world!

The /etc/motd file already contains the message, so it is not edited again. Now try editing it by hand and removing or modifying the existing line. If you run cf-agent again, the message will reappear.

Congratulations! You have written and executed your first CFEngine policy. This is a very basic operation, but its structure is very similar to that of any other CFEngine policy, and allows enough flexibility and expressibility to tackle the most complex configuration tasks.

 In Unix machines, you can use “shebang” notation to make your policy files executable, just like any other script in a Unix system. To do this, make sure the first line of your policy file contains the following, and that the script itself has execute permissions:

#!/var/cfengine/bin/cf-agent -bedit_motd

 Then you can run the policy as a standalone script:

./edit_motd.cf
R: Hello world!

 Usually, your policies should all be integrated into a cohesive execution controlled by cf-execd (see Integrating Your New Policy Into Periodic CFEngine Execution), but this technique can be useful when you have some specific policies that you want to be able to execute separately or on demand.

Most of the examples in this book are shown running as the root user, since that is the normal conditions under which CFEngine should be executed to have the privileges necessary to exercise changes to the system. However, during development and testing it is perfectly possible to run CFEngine as a regular user. When you run it like this, CFEngine does not look under /var/cfengine/ for its input files, rather it looks under $HOME/.cfagent, so if you run cf-agent without specifying an input file, it will try to read $HOME/.cfagent/inputs/promises.cf.

For this to work, all the CFEngine executables and files (including its key files) need also to exist under $HOME/.cfagent/. So you need to run the following commands before you start:

$ cf-key # cf-key creates all the necessary directories
Making a key pair for CFEngine, please wait, this could take a minute...
$ ln -s /var/cfengine/bin/* ~/.cfagent/bin/

Integrating Your New Policy Into Periodic CFEngine Execution

In the example we just saw, you were running the policy file by hand using cf-agent. But CFEngine is meant to save you from running things by hand! For development and testing it is fine to run your policies this way, but once they are done, you need to integrate them into the main CFEngine execution loop so that they are evaluated continuously and automatically. This is done by integrating them into the policies executed by promises.cf, which is the file that CFEngine loads and executes by default.

The easiest way to do this integration is to make use of the built-in capabilities in the default CFEngine masterfiles policies to automatically load and execute certain bundles. In short, this is what we need to do:

 	Enable the “autorun” feature in the policy (it comes disabled by default).

 	Tag our edit_motd bundle with the autorun tag so that it is automatically executed.

 	Copy our edit_motd.cf policy file to the services/autorun directory inside the policy directory, so that it is automatically loaded.

More specifically, these are the steps we need to follow to automatically load and execute the edit_motd bundle:

 	Edit the edit_motd bundle to add the following lines at the beginning, which specify some metadata for the bundle, including the autorun tag:

meta:
 "tags" slist => { "autorun" };

 	Copy the modified edit_motd.cf to /var/cfengine/masterfiles/services/autorun/ in the policy server. This directory is special because all policy files in it will be automatically loaded.

 	Create file /var/cfengine/masterfiles/def.json with the following contents, to enable the autorun feature:

{
 "classes":
 {
 "services_autorun": ["any"]
 },
}

If you want to trigger the changes right away, run the following commands to force an immediate update of the policies, and then to execute them:

cf-agent -f /var/cfengine/inputs/update.cf -I
 info: Updated '/var/cfengine/inputs/services/autorun/edit_motd.cf'
 from source '/var/cfengine/masterfiles/services/autorun/edit_motd.cf'
 on 'localhost'
cf-agent
R: Hello world!

(you may want to remove the reports: promise that prints the message once you have this integrated)

That’s it! Now your edit_motd bundle will be run automatically as part of the regular CFEngine execution every five minutes, ensuring that the /etc/motd file is constantly kept correctly configured.

2. CFEngine Basics

In this chapter we will take a more detailed look at the basic concepts behind CFEngine, including its theoretical foundation, the syntax and constructs of its policy language, and some unique aspects of its behavior. I will also point you to some of the many online resources available for learning and improving your CFEngine skills.

Basic Principles

One of CFEngine’s unique characteristics is that it is built upon predefined, solid theoretical and behavioral principles. These principles guide the design and implementation of all the CFEngine components and of its policy language, and ensure that the behavior of those components remains consistent. These principles are: desired-state configuration, a minimum base set of native operations, promise theory, and convergent configuration. Let us look at them in more detail.

Desired-State Configuration

CFEngine is different from many other automation mechanisms in that you do not need to tell it what to do. Instead, you specify the state in which you wish the system to be, and CFEngine will automatically decide the actions to take to reach the desired state, or as close to it as possible. In programming language terms, we say that the CFEngine policy language is declarative, as opposed to imperative.

These are some examples of the things that you can express to CFEngine as desired states:

 	“Make sure file /etc/ssh/sshd_config contains the line UseDNS no​”

 	“Make sure user mysql exists/does not exist”

 	“Make sure process httpd is (not) running”

At a higher level of abstraction, you can encapsulate CFEngine operations and express high-level desired states:

 	“Make sure all web servers have Apache installed”

 	“Make sure all root accounts have the same, centrally-designated password”

 	“Make sure parameters UseDNS and PermitRootLogin are disabled on all sshd configurations, except on servers dbsrv01 and dbsrv02, where PermitRootLogin should be enabled”

And at an even higher level, you can express top-level desired states
like these:

 	“Configure host dbsrv01 as a database server”

 	“Create a new cluster of VMs to use as web servers”

 	“Give me a new datacenter in EC2 region ap-northeast-1”

Of course, at some point, CFEngine needs to know what specific changes to make to the system, and how to make them. To this effect, CFEngine knows how to perform a number of native operations on the system.

Basic CFEngine Operations

These are some of the basic operations that CFEngine natively knows how to perform:

 	Extract information from the system itself about its current state and configuration.

 	Inspect and modify the contents of text, XML or JSON files.

 	Check for and manipulate file permissions and ownerships.

 	Check for existence of processes running in the system.

 	Check for existence of users in the system.

 	Run programs and check their exit status.

 	Check and manipulate packages installed on the system.

 	Check and manipulate services on Unix systems.

 	Query and manipulate databases and their contents (as of this writing, MySQL, PostgreSQL and SQLite are supported).

 	Examine and manipulate POSIX Access Control Lists (ACLs).

 This is by necessity an incomplete list—it reflects only the major features implemented by major promise types in CFEngine. There are many other operations implemented by functions or by CFEngine’s monitoring components that allow both querying and modifying the system. Plus CFEngine is constantly evolving, so by the time you read this, new features may have appeared.

The commercial version of CFEngine has some additional capabilities, including the following:

 	Check and manipulate the Windows registry, event logs, and services.

 	Query and manipulate LDAP (and, by extension, Active Directory) databases.

 	Examine and manipulate Windows Access Control Lists (ACLs).

These operations are sufficient to perform most configuration tasks on a system. At the lowest possible level, CFEngine contains functional specifications of how to make changes to the system. At the highest level, however, you declare what you want as shown in Desired-State Configuration, and leave the details to CFEngine.

CFEngine ships with some built-in libraries that perform more advanced operations using these basic capabilities, and you can also build your own or use existing libraries to perform custom checks and activities.

Promise Theory

CFEngine 3 works on top of a theoretical model called Promise Theory. This theory models the behavior of autonomous agents in an environment without central authority, based only on promises of behavior made by each agent, and shows that even without central control, the system can converge to a stable state.

Promise Theory underlays one of the basic tenets of CFEngine: voluntary cooperation. In CFEngine, each system participates voluntarily, makes promises only about its own behavior (if you think about it, it makes no sense for a system to make promises about someone else’s behavior), and cannot be forced to accept commands or information from any external entities. This gives CFEngine very strong security properties, since it means that CFEngine running on a host cannot be coerced into modifying its behavior according to some external influence. It may choose to do so (for example, by getting policies from a central server), but unlike many other configuration management systems, CFEngine does not require you to open a command channel through which each host can be given instructions (all you can do is “ping” clients so that they run their policies before their scheduled time, or to query them for information, but never to perform arbitrary actions or commands).

 It’s worth mentioning that CFEngine’s principle of voluntary cooperation is more than a theoretical nicety in terms of security: in its entire 25-year history (spanning versions 1 through 3), CFEngine has had only seven published vulnerabilities, only three of which were remotely exploitable. The last one of those was published in 2005, still in CFEngine 2. CFEngine 3 has the impressive record of zero published vulnerabilities since its release in 2009.

A promise is simply a declaration of intent, a model of the desired state of the promiser. A promise does not imply that the desired state will be reached in the next iteration (or ever), but implies a capability for verifying whether the promise has been satisfied. Through this seemingly simple characteristic, promise theory allows CFEngine to deal with a crucial aspect of systems management: operational uncertainty. Systems are under constant change, both intentional (changing requirements, changing software, changing user behavior, security attacks) and accidental (disconnected network links, disappearing resources, software crashes) and have to react to it, often with incomplete information. Promise theory allows CFEngine to deal with these conditions in a resilient fashion.

Promise Theory was developed initially as the foundation for CFEngine’s behavior (in fact, the policy language in CFEngine 3 was redesigned to reflect this theory), but it has found more general applications in Computer Science and in other disciplines such as Economics and Organization.

According to Promise Theory, everything in CFEngine 3 is a promise, with specifications of what to do if the promise is already satisfied, if the promise was not satisfied but could be fixed, if the promise was not satisfied and could not be fixed, etc. The following table shows some examples of promises you could find in a CFEngine policy, and of the possible actions CFEngine could take automatically if the promise is not kept.

Examples of objects (promisers), promises, and repair actions in CFEngine.

 	Promiser
 	Promises to…
 	If not currently kept, CFEngine will…

 	A variable
 	…hold a certain value of a certain type.
 	…store the appropriate value in the variable.

 	A file
 	…have certain characteristics (permissions, ownership, ACLs, etc.).
 	…set the desired properties on the file.

 	A file
 	…exist and to have certain content.
 	…create the file if needed, modify its content (add, remove or edit lines) to match the desired state.

 	A user account
 	…exist and have certain characteristics (home directory, group, etc.)
 	…create the user account with the desired characteristics.

 	A process
 	…be running on the system.
 	…run the appropriate command to create the process.

 	A shell command
 	…have been executed.
 	…execute the command and collect its output and exit status.

 	A directory on the policy hub
 	…provide access to its content to certain clients.
 	…reconfigure its access rules to permit or block the access as desired.

 	An output message
 	…be generated when certain conditions arise, with a certain frequency and in a certain format.
 	…produce the appropriate message.

When a promise is not already satisfied (e.g., a file does not exist as it should), CFEngine will take the necessary actions to fix it, according to both its built-in rules and any additional promises declared in the policy.

Depending on the current state of the system with respect to a given promise, on the actions that CFEngine took when evaluating a promise, and on the result of those actions, CFEngine defines the following promise states:

 	
Promise kept: The state of the system was already as described by the promise, so no action had to be taken.

 	
Promise repaired: The state of the system was not as required by the promise, so CFEngine took the appropriate actions, and repaired the system state to match the requirements of the promise.

 	
Repair failed: Repair actions were attempted by CFEngine, but they failed for some reason (for example, lack of permissions to edit a file). Depending on why the repair action failed, one of the following states may also be set:
 	
Repair denied: Repair actions were attempted by CFEngine, but they failed due to lack of access to some resource.

 	
Repair timeout: Repair actions were attempted by CFEngine but took too long to execute, and CFEngine cancelled the operation.

A CFEngine policy is constructed out of individual promises that get executed in certain order, and that can interact with other promises. After a promise is evaluated (executed), you can determine its state and act based on it, triggering further actions such as reporting, command execution, or evaluation of other promises.

Convergent Configuration

One of CFEngine’s basic principles is that of convergent configuration. This means that you don’t have to leave the system in the desired state on the first pass. Instead, you make changes incrementally, getting closer to the objective every time, independently of the starting state of the system. A CFEngine policy may not leave the system completely configured on the first pass, but at least it will make some changes. On subsequent passes, it will continue to make changes, eventually bringing it as close as possible to the desired state.

One advantage of convergent configuration, and of the declarative nature of CFEngine, is that you do not need to know the current state of the system in order to correct it. If the system is already in the desired state, a correctly written CFEngine policy will do nothing. If it’s not, CFEngine will iteratively make discrete changes to bring it closer to the ideal, taking only the necessary actions to correct the existing deviations.

In order to carry out convergent configuration, CFEngine performs three passes over its policy. During each pass, all the promises in the policy are evaluated. There may be some promises that cannot be evaluated until the second or third pass due to dependencies between different components of the policy, so the multiple passes help CFEngine bring things to a convergent state as soon as possible.

CFEngine Components

A CFEngine installation contains multiple components that perform different, specific functions, as shown in the following figure. Dotted lines represent components that execute others, solid lines represent communication among components, and bold lines indicate data flow.

Let’s look in more detail at the functionality and role of each one of these components.

 [image: CFEngine components and their relationships]
 CFEngine components and their relationships

 	
cf-agent: This process is the “instigator of change,” the program that evaluates policies and acts on them, making any necessary changes to the system. cf-agent is normally started directly by the user (for example, we have been running it manually from the command line to test the policies in this book), or by one of cf-execd (as a mechanism for starting it at regular intervals) or cf-serverd (in response to the cf-runagent command executed from a different host). Note that depending on its policies, cf-agent can in turn be responsible for restarting cf-execd, cf-serverd or cf-monitord if they have stopped for any reason (in addition, cf-promises is used by cf-agent to validate its policies before attempting to run them).
 By default, cf-agent will attempt to run /var/cfengine/inputs/promises.cf (more precisely, the file found by expanding the string $(sys.workdir)/inputs/promises.cf) when invoked, unless a different file is specified using the -f command-line option. If the filename executed produces an error, cf-agent will try to run /var/cfengine/inputs/failsafe.cf. The idea is for failsafe.cf to be a barebones policy that does little more than try to restore the CFEngine policies to a working state. Normally failsafe.cf will attempt to update the local policies from the policy hub, and it may also try to start cf-execd and cf-monitord to have at least a minimal CFEngine infrastructure running. If the failsafe.cf file is not found, cf-agent will generate it from a built-in template.

 	
cf-execd: This process executes cf-agent in a periodic basis, collecting its output, and potentially emailing it somewhere. By default, cf-execd runs cf-agent every five minutes, but you can modify its behavior using an executor control body. For example:

body executor control
{
 any::

 splaytime => "10";
 mailto => "cfengine@example.org";
 mailfrom => "cfengine@$(sys.host).example.org";
 smtpserver => "mail.example.org";

 schedule => { "Min00_05", "Min30_35" };

}

 In this case, the schedule attribute tells cf-execd to only run cf-agent every 30 minutes (more precisely, whenever either the Min00_05 or Min30_35 classes are enabled, which would be the case between 00-05 and 30-35 minutes of every hour). The splaytime parameter tells cf-execd that the execution could be delayed up to 10 minutes (this is useful in large installations to prevent all the clients from connecting to the server at once). The mailto, mailfrom and smtpserver attributes determine how email reports will be sent.

 It is common for cf-execd to be the one process started by the operating system (for example, through a cron job or an init script) when the system starts. cf-execd then runs cf-agent, which makes sure through the appropriate policies that cf-execd, cf-monitord, and cf-serverd are running in the background, if needed.

 	
cf-serverd: This component implements server functionality in CFEngine—the ability to listen for connections from clients and serve files to them. cf-serverd also has the ability to listen for connections from the cf-runagent process in other hosts, and according to its configuration, respond by executing cf-agent locally (this is the one reason why you may want to run cf-serverd on CFEngine clients: if you want the policy hub to be able to remotely instruct clients to run cf-agent). We will look in more detail at the cf-serverd configuration in Clients and Servers. cf-serverd listens on port TCP/5308, and this is the only port that needs to be open for the clients to be able to communicate with the server.

 	
cf-runagent: Invokes cf-agent on remote hosts so that they evaluate their policies. This is the only form of control a remote machine may exercise over another in CFEngine. We will talk more about this in CFEngine Remote Execution Using cf-runagent.

 	
cf-key: This is one of the first commands you run when installing CFEngine on a new host. It creates a cryptographic key pair for the current host, which is used for authentication when communicating with the policy hub or any other CFEngine server.

 	
cf-monitord: This process is intended to run continuously in the background. It collects statistical information about different aspects of the system and makes it available to cf-agent through the specialmon variable context. Some examples of the information collected by cf-monitord are the numbers of users with active processes in the system (mon.value_users), free space in the root disk partition (mon.value_diskfree), and kernel load average (mon.value_loadavg). For most values cf-monitord also keeps a running average and the standard deviation (for example, mon.av_loadvg and mon.dev_loadavg).

 	
cf-hub: This process exists only in CFEngine Enterprise, and is responsible for collecting from all the clients information about their current status, reports and monitoring information, for analysis and reporting purposes. cf-hub periodically connects to the cf-serverd process on all the clients it knows about (this is, all the clients that have bootstrapped to it) to collect this information. If it cannot connect to a client, this information is also reported in the Enterprise console.

A First Example

Let’s consider the simple case of modifying the configuration of an ssh server. At the top level, we need to make sure the sshd service is up and running. With CFEngine, we can simply write the following:

services:
 "ssh";

This will by default enable and make sure the service is running, on any operating system. If we wanted to make sure the service is not running, we would simply need to write:

services:
 "ssh" service_policy => "stop";

Now, let’s go down a level and change the configuration of the ssh daemon. Traditionally, we would do this sort of task with a shell script. The following snippet from a shell script is intended to add a line to /etc/ssh/sshd_config to prevent root logins:

echo "PermitRootLogin no" >> /etc/ssh/sshd_config

As is, this code will add a new line to the file every time it runs. It assumes that the file does not contain the line already. Of course, you can add checks for this, but the code quickly becomes unreadable:

(grep -iq 'PermitRootLogin' /etc/ssh/sshd_config ||
 echo "PermitRootLogin no" >> /etc/ssh/sshd_config) &&
 sed -i 's/^.*PermitRootLogin.*$/PermitRootLogin no/;' /etc/ssh/sshd_config

This snippet uses the grep command to determine if the file alredady contains the PermitRootLogin string, and based on the result either adds the corresponding line or uses the sed command to edit the existing line.

Compare this with the equivalent CFEngine declaration:

files:
 "/etc/ssh/sshd_config"
 comment => "Disallow direct root login",
 edit_line => replace_or_add(".*PermitRootLogin.*", "PermitRootLogin no");

The CFEngine policy will add the line only if it is not there already. Additionally, you can see that CFEngine rules allow comments as rule attributes. These comments can be made available as the policy executes, allowing administrators to better understand and debug the actions taken by CFEngine.

Rules in CFEngine can be as detailed or as high-level as you wish. For example, you could generalize the SSH configuration file mechanism and express it like this (and we will look into the details of how to do this in Editing /etc/sshd_config):

bundle agent main {
 vars:
 # SSHD configuration to set
 "sshd" data => parsejson('{
 "Protocol": "2",
 "X11Forwarding": "yes",
 "UseDNS": "no",
 "PermitRootLogin": "no"
 }');

files:
 "/etc/ssh/sshd_config"
 handle => "sshd_config",
 comment => "Set sshd configuration",
 edit_line => set_config_values("sshd"),
 classes => if_repaired("restart_sshd");

commands:
 restart_sshd::
 "/etc/init.d/sshd reload"
 handle => "sshd_restart",
 comment => "Restart sshd if the config file was modified";
}

This CFEngine policy allows you to define arbitrary configuration parameters in the sshd array defined at the top (in the vars: section), which will be applied by the files: section by modifying or adding only those parameters that need to be fixed. Finally, sshd will be restarted only if any changes were made. In other words, the promise of having the right parameters in the file could be satisfied just by checking that they’re set properly already (the “Promise kept” state described earlier), so the restart will take place only in the “Promise repaired” state.

Let’s go back to our description of promises, to start figuring out what is happening in this policy. The vars: section is simply variable declarations—in this case, an array indexed by configuration parameter names, and containing the values of each parameter. In the files: section, the /etc/ssh/sshd_config file promises to have its content edited according to the specifications contained in the set_config_values() bundle (a named collection of CFEngine promises), and to set the restart_sshd class if the file needed to be repaired (i.e. modified to satisfy the promise). Finally, in the commands: section, the /etc/init.d/sshd reload command promises to run only if the restart_sshd class is set (if this class is set, it means that the file was modified, so the daemon needs to be restarted for the changes to take effect).

Not shown in this example is the set_config_values() bundle. This bundle is part of the CFEngine Standard Library (described in CFEngine Standard Library), and which takes care of the actual editing of the file to set the desired parameters, using the built-in file-editing primitives in CFEngine. We will examine this bundle in detail in Editing /etc/sshd_config.

CFEngine allows you to express configuration policies at the level of abstraction you wish, leaving lower-level details out of sight but available when you need them. Now, let’s take a more detailed look at the syntax of a CFEngine policy.

The CFEngine Policy Language

The syntax of the CFEngine 3 configuration files is very uniform, since everything is a promise. In general, every element in a CFEngine policy has the following structure:

promise_type:
 class_expression::
 "promiser" -> { "promisee1", "promiseeX" }
 attribute1 => value1,
 attributeX => valueX;
 ...

The values that promise_type can have depend on the type of container in which the promise is stored (and we will look at them in detail in Bundles, Bodies, and Namespaces). The value of promise_type determines how the "promiser" is interpreted, which attributes are valid and how their corresponding values are used. The attribute values can be either constant values, variables of the types described in Data Types and Variables in CFEngine, or container names as described in Bundles, Bodies, and Namespaces. The type of allowed values is fixed for each attribute.

The promisees are optional and, if specified, contain references to other promises that depend on the current one, and are used for documentation. In this way, we can specify which promises affect others or who might care about a particular promise. CFEngine has the ability to produce reports that include this information. Note that specifying promisees has no effect on the execution order of the policy, they are merely for informational purposes. Promisees can be arbitrary strings.

The class_expression, if specified, allows the promise to be conditionally executed depending on the value of the expression. If omitted it defaults to any, which is always defined (you can also use the class expression line any:: to make this explicit). We will look at them in detail in Classes and Decision Making.

Depending on the type of promise, almost all elements of this syntax, except for the promise_type and the promiser, are optional. For example, to unconditionally execute a command, we would simply state it like this:

commands:
 "/bin/ls /";

In this case commands: is the promise type, and specifies that the promisers in the following section are to be interpreted as commands to execute. The promiser, "/bin/ls /" indicates the command to run. Since no attributes are specified, the command will always be executed and its output reported by CFEngine.

 You can find some guidance on the style and form of policy writing in the CFEngine Policy Style Guide.

Data Types and Variables in CFEngine

CFEngine supports different data types:

 	Scalars can be strings, integers or floating-point numbers;

 	Lists contain an ordered set of scalars

 	Arrays contain sets of key/value pairs.

 	Data containers can hold arbitrary data structures, including lists and associative arrays.

 Please note that “native” CFEngine arrays are being deprecated in favor of data containers, which are much more flexible and robust. You should use them whenever possible. Most functions which take the native types are also able to handle data containers.

Variable declarations

Variables in CFEngine are declared in the vars: section (they are promises of type vars:) of a bundle. vars: is one of the common promise types (along with classes: and reports:) that can be included in any type of bundle. vars: promises adhere to the common structure described in The CFEngine Policy Language, which in this case is interpreted as follows:

vars:
 "variable"
 type => value;

The promiser is the name of the variable in quotes. The type of the variable is given as an attribute, and its value indicates the value to store in the variable. For short values, we normally write the whole declaration in a single line for brevity:

vars:
 "name" string => "Diego";
 "year" int => "2011";
 "colors_rgb" slist => { "red", "green", "blue" };
 "colors_cmyk" data => '["cyan", "magenta", "yellow", "black"]';
 "user" data => '{
 "name": "Diego Zamboni",
 "username": "zzamboni",
 "id": 501
 }';

Let us now look at the details of the different data types available in CFEngine.

Strings

Strings in CFEngine are declared using the string type. String values must always be enclosed by single or double quotes (there is no difference in their behavior). If you need to include a double quote in a double-quoted string, you need to precede it with a backslash (and similarly for single quotes inside single-quoted strings). You can create multiline strings simply by splitting them across multiple lines. To reference a string variable (and any scalar variable), you need to enclose the variable name in parentheses or curly braces, and precede them with a dollar sign.

You can interpolate variables into a string simply by referencing them inside the string. The following example shows some examples of strings:

body common control
{
 bundlesequence => { "test" };
}

bundle agent test
{
 vars:
 "s1" string => "one";
 "s2" string => 'this
is a
multine string';
 "s3" string => 'with "quotes"';

 reports:
 cfengine::
 "s1 = \"$(s1)\"";
 "s2 = $(s2)";
 "s3 = $(s3)";
}

If you save this short policy into a file and run it, you will get the following output:

cf-agent --no-lock -f ./ch03_4.cf
R: s1 = "one"
R: s2 = this
is a
multine string
R: s3 = with "quotes"

Note that the strings in the reports: section adhere to the same rules, and contain the interpolated values of the declared variables.

Numbers

CFEngine supports both integers and floating-point numbers, denoted by the int and real types. Note that numeric values are also given as strings in CFEngine, but they are checked for validity before they are stored in the variable. For integers, CFEngine supports the suffixes k, m, and g to represent powers of 10 (that is, 1000, etc.), and the suffixes K, M, and G to represent powers of 2 (that is, 1024, etc.). Real numbers can be specified in decimal or exponential notation. For example:

body common control
{
 bundlesequence => { "test" };
}

bundle agent test
{
 vars:
 "i1" int => "25";
 "i2" int => "10k";
 "i3" int => "10K";
 "r1" real => "1.2";
 "r2" real => "10e-5";

 reports:
 cfengine::
 "i1 = $(i1)";
 "i2 = $(i2)";
 "i3 = $(i3)";
 "r1 = $(r1)";
 "r2 = $(r2)";
}

Produces the following output:

cf-agent --no-lock -f ./ch03_5.cf
R: i1 = 25
R: i2 = 10000
R: i3 = 10240
R: r1 = 1.200000
R: r2 = 0.000100

Lists

CFEngine supports ordered lists of any of the scalar types: lists of strings (slist), lists of integers (ilist) and lists of reals (rlist). In all cases, the values have to be specified as strings, but they are interpreted and validated according to the declared type. You can assign and store lists across variables of different types, as long as the values can be converted. This means you can always assign an ilist or an rlist into an slist, but you can assign an slist into an ilist or rlist only if it contains valid values according to the type of the destination variable.

You can refer to list variables by using an at-sign (@) before the variable name. By doing this you can pass the whole list to a function that expects a list argument. You can also specify a list as part of another list value, and it will be expanded in place. The following example illustrates these points:

body common control
{
 bundlesequence => { "test" };
}

bundle agent test
{
 vars:
 "l1" ilist => { "1", "2", "3" };
 "l2" rlist => { "1.0", "2.0", "3.0" };
 "l3" slist => { "one", "two", "three", @(l1), @(l2) };

 reports:
 cfengine::
 "l3 = $(l3)";
}

When you run it you get the following output:

cf-agent --no-lock -f ./ch03_6.cf
R: l3 = one
R: l3 = two
R: l3 = three
R: l3 = 1
R: l3 = 2
R: l3 = 3
R: l3 = 1.0
R: l3 = 2.0
R: l3 = 3.0

Both @(l1) and @(l2) are being expanded inside @(l3), so that its final value is this:

{ "one", "two", "three", "1", "2", "3", "1.0", "2.0", "3.0" }

In this example we are also using CFEngine implicit looping by referring to the @(l3) array as a scalar $(l3). See Looping in CFEngine for a full explanation of how this works.

Data Containers

Object of type data can contain arbitrary data structures, including lists or hashes (associative arrays). Such objects can commonly be represented in JSON or YAML formats. CFEngine provides functions to read both of those formats, either from files or from strings.

The basic functions that return data container objects are parsejson() and parseyaml() (for parsing strings), readjson() and readyaml() (for parsing files). For declaring fixed values, CFEngine allows specifying the data structure as a string which can contain either JSON or YAML.

bundle agent main
{
 vars:
 # Parse JSON explicitly
 "animals_json" data => parsejson('{ "animals": ["dog", "cat", "crow"] }');
 # Parse YAML explicitly - no header needed
 "animals_yaml" data => parseyaml("animals:
 - dog
 - cat
 - crow");
 # Parsed as JSON
 "colors_json" data => '["red", "green", "blue"]';
 # Parsed as YAML thanks to the "---" header
 "colors_yaml" data => '---
 - red
 - green
 - blue';

 # Serialize the objects to their string representation
 "a1" string => format("%S", "animals_json");
 "a2" string => format("%S", "animals_yaml");
 "c1" string => format("%S", "colors_json");
 "c2" string => format("%S", "colors_yaml");

 reports:
 "animals_json = $(animals_json[animals])";
 "animals_yaml = $(animals_yaml[animals])";
 "colors_json = $(colors_json)";
 "colors_yaml = $(colors_yaml)";
 "a1 = $(a1)";
 "a2 = $(a2)";
 "c1 = $(c1)";
 "c2 = $(c2)";
}

Running this code produces the output you might expect. Note that regardless of the original format, the JSON and YAML specifications parse to identical objects.

R: animals_json = dog
R: animals_json = cat
R: animals_json = crow
R: animals_yaml = dog
R: animals_yaml = cat
R: animals_yaml = crow
R: colors_json = red
R: colors_json = green
R: colors_json = blue
R: colors_yaml = red
R: colors_yaml = green
R: colors_yaml = blue
R: a1 = {"animals":["dog","cat","crow"]}
R: a2 = {"animals":["dog","cat","crow"]}
R: c1 = ["red","green","blue"]
R: c2 = ["red","green","blue"]

A couple of notes about data containers:

 	They are immutable once created. However, you can combine them into
new objects using the mergedata() function.

 	In many respects, data objects behave in the same way as
“traditional” CFEngine lists and arrays, but they are not subject to
many of their limitations in size and behavior.

 	Data containers are returned by several different functions, including
the JSON or YAML parsing functions mentioned above, but also
data_regextract(), data_readstringarray(), data_expand() and
others.

 	In my experience, parsing of YAML strings works better when the string
is specified in multiple lines as shown above instead of using
embedded newline characters (\n) as shown in the documentation.

Data containers are undoubtedly the most powerful data type in CFEngine,
and you will see them used extensively through this book.

Arrays

Arrays are sets of values indexed by a string
(they are commonly called hashes in other programming languages).
Array elements can contain scalars, lists or other arrays, even within
the same array.

 The Array data type in CFEngine is in the process of being fully
replaced by Data Containers, which are much more powerful and
flexible. Whenever possible you should use containers instead of
arrays. We describe them here since you will still find them in many
CFEngine policies.

In
CFEngine, arrays are declared element by element, as if they were
regular variables, except their name contains the index surrounded by
brackets. There is no shortcut for declaring the whole array in a single
step. There are certain
functions that operate on arrays, such as
getindices() and
getvalues(), and they receive
as argument the name of the array as a string. For example, we could use
an array to store user account information:

body common control
{
 bundlesequence => { "test" };
}

bundle agent test
{
 vars:
 "user[name]" string => "zamboni";
 "user[fullname][first]" string => "Diego";
 "user[fullname][last]" string => "Zamboni";
 "user[dirs]" slist => { "/home/zamboni",
 "/tmp/zamboni",
 "/export/home/zamboni" };

 "fields" slist => getindices("user");
 "userfields" slist => getindices("user[fullname]");

 reports:
 cfengine::
 "user fields = $(fields)";
 "account name = $(user[name])";
 "$(userfields) name = $(user[fullname][$(userfields)])";
 "user dir = $(user[dirs])";
}

This example is intentionally contrived to show how you can store
different data types in an array. Note how @(fields) is being
automatically populated by
getindices() based on the
indices declared for the user array. In other words, the statement:

"fields" slist => getindices("user");

creates a variable named fields that refers to a list of three strings
taken from the indices: name, fullname, and dirs.
The list
can then be used to loop through the user array, like before.
Additionally, @(userfields) is being populated with the indices of the
array stored in user[fullname]:

"userfields" slist => getindices("user[fullname]");

Finally, observe that user[dirs] contains a list of strings, and we
are looping over that list as we would over a regular list variable
(such as @(fields) or @(userfields) in this example) by referencing
it as a scalar:

"user dir = $(user[dirs])";

Here is its output:

cf-agent --no-lock -f ./ch03_7.cf
R: user fields = dirs
R: user fields = fullname
R: user fields = name
R: account name = zamboni
R: first name = Diego
R: last name = Zamboni
R: user dir = /home/zamboni
R: user dir = /tmp/zamboni
R: user dir = /export/home/zamboni

Classes and Decision Making

Classes are the key to controlling flow and making decisions in a CFEngine policy. In CFEngine, classes are named boolean values that can be either true (the class is defined) or false (the class is undefined). Classes can represent any characteristic of the system, information that is known (true) or unknown (false), or any condition that you want to indicate in the policy. They can be volatile (they stop existing as soon as the current CFEngine run is over) or persistent for a period of time you define. While many important classes are predefined by CFEngine (hard classes), you can define others for your particular needs (soft classes).

Hard classes

These are defined automatically by CFEngine when it runs, and represent mainly information about the system or the current environment that is discovered by CFEngine. Examples of hard classes include:

 	Host information (e.g., class doomsday would be defined if the hostname of the machine where cf-agent is running is “doomsday” and class ipv4_192_168_1_2 would be defined if the host’s IP address is 192.168.1.2).

 	Time information (e.g., class Hr5 would be set if CFEngine is running between 5 and 6 AM, class Min15_20 is defined if it is currently between minutes 15 and 20 of the hour, and class Mon would be set if it’s Monday).

 	Operating system information (e.g., linux would be set on any Linux system, and suse_9 would be set if the Linux distribution is SuSE 9).

To see the full list of hard classes defined on a particular system, run the following command (partial example output from a macOS machine at 15:31 GMT on a Tuesday):

cf-promises --show-classes | grep hardclass
 127_0_0_1 inventory,attribute_name=none,source=agent,hardclass
 192_168_1_107 inventory,attribute_name=none,source=agent,hardclass
 64_bit source=agent,hardclass
 8_cpus source=agent,derived-from=sys.cpus,hardclass
 Afternoon time_based,...,source=agent,hardclass
 Day2 time_based,...,source=agent,hardclass
 GMT_Afternoon time_based,...,source=agent,hardclass
 GMT_Day2 time_based,...,source=agent,hardclass
 GMT_Hr15 time_based,...,source=agent,hardclass
 GMT_January time_based,...,source=agent,hardclass
 GMT_Lcycle_2 time_based,...,source=agent,hardclass
 GMT_Min30_35 time_based,...,source=agent,hardclass
 GMT_Min31 time_based,...,source=agent,hardclass
 GMT_Tuesday time_based,...,source=agent,hardclass
 GMT_Yr2018 time_based,...,source=agent,hardclass
 Hr16 time_based,...,source=agent,hardclass
 January time_based,...,source=agent,hardclass
 Lcycle_2 time_based,...,source=agent,hardclass
 Min30_35 time_based,...,source=agent,hardclass
 Min31 time_based,...,source=agent,hardclass
 Q3 time_based,...,source=agent,hardclass
 Tuesday time_based,...,source=agent,hardclass
 Yr2018 time_based,...,source=agent,hardclass
 any source=agent,hardclass
 cfengine inventory,attribute_name=none,source=agent,hardclass
 cfengine_3 inventory,attribute_name=none,source=agent,hardclass
 ...

Soft classes

These are defined by the policy during its execution. For example, a class could be defined in the following cases:

 	Depending on whether a certain file exists. In this example, we set the devel_host class if the /var/sitedata/devel_host.flag file exists, using the built-in fileexists() function to perform the check:

classes:
 "devel_host" expression =>
 fileexists("/var/sitedata/devel_host.flag");

Setting a class like this might be useful, for example, to establish whether certain executable programs or other capabilities are present on a system before invoking them, or to apply different configurations to the system.

 	As a Boolean expression of other classes. In this example, test_host will be defined if any of testhost1, testhost2, or testhost3 classes is defined. These might be the hostnames of the machines in which you want the test_host class to be defined:

classes:
 "test_host" or => { "testhost1", "testhost2", "testhost3"};

Setting a class like this might be useful to run certain operations on certain systems—tests in this case.

 	As an indication of the status of a particular promise. In this example, if any changes are made to the /etc/ssh/sshd_config file by the edit_line attribute, CFEngine would consider the promise as repaired, in which case the restart_sshd class will be defined:

files:
 "/etc/ssh/sshd_config"
 edit_line => set_config_values("sshd"),
 classes => if_repaired("restart_sshd");

 Setting a class like this might be useful to keep track of the state of the system, and make sure that CFEngine follows up on an operation during its next pass.

Note that classes can be explicitly defined in a classes: section, but as you can see in the third example, they can also be defined by the common classes attribute, which you can use in all promises to set or unset classes based on the result of the promise. Several classes bodies are predefined in the CFEngine standard library, including if_repaired, if_ok, if_notkept, if_else, always and classes_generic.

 The classes_generic body provides a useful way to set consistent class names depending on the outcome of a promise. If you specify, for example:

classes => classes_generic("foo");

 Then, depending on the state of the promise, you will get one of foo_repaired, foo_failed, foo_denied, foo_timeout or foo_kept defined. This body also defines a few other class name patterns, including foo_reached, which gets defined regardless of the promise outcome and can be used to determine if a promise has been evaluated at all.

You may see “classes” described sometimes as “contexts”. This term expresses the idea of a particular context (be it time or date, operating system, architecture, etc.) in which a host is at the moment. The CFEngine team has decided to keep using class in all official documentation to avoid confusion, but context might still be used in some explanations when it makes things clearer.

Apart from defining classes, you need a way to act on them. This is what the class_expression shown in The CFEngine Policy Language is for. A class expression in CFEngine is a boolean expression constructed with class names and the boolean operators AND (& or .), OR (|) and NOT (!). Parenthesis can be used to group parts of the expression. When a line ends with a double colon, it is evaluted as a class expression. Only if the class expression is true are the lines that follow evaluated. The following are examples of valid class expressions:

True if the linux class is defined
linux::
True if both reboot_needed and linux are defined
reboot_needed.linux::
True if reboot_needed is defined and neither linux nor windows are defined
reboot_needed.!(linux|windows)::
The any class is always defined, so whatever follows will always be evaluated
any::

Additionally, you can use the ifvarclass attribute in most promise types to condition the evaluation of one promise to the result of the included class expression. For example, the following two promises are equivalent:

commands:
 # First command is conditioned by the ifvarclass attribute
 "/usr/sbin/shutdown -r now"
 ifvarclass => "linux";

 # Second command is conditioned by the class expression before it
 linux::
 "/usr/sbin/shutdown -r now";

The ifvarclass attribute allows you to place a condition around a single promise. It has the advantage of specifying the class expression as a string, which means you can use variables in the class expression, and they will be expanded before evaluating the expression. This allows a lot of flexibility in the types of conditions that you can use. For example, you can construct class names on the fly using variables:

body common control
{
 bundlesequence => { "test" };
}

bundle agent test
{
 vars:
 "words" slist => { "chair", "darwin", "table", "linux" };
 reports:
 cfengine::
 "Class $(words) is defined"
 ifvarclass => "$(words)";
 "Class $(words) is not defined"
 ifvarclass => "!$(words)";
}

In this example, the reports: section is looping through all the strings in the @(words) list (see Looping in CFEngine), and the corresponding message is printed depending on whether the class named after the current value is defined. Note how the class expression for the second report (“not defined”) includes the NOT character at the beginning. Here is its output on a Mac (whose base operating system is Darwin, so the darwin class is defined):

cf-agent --no-lock -f ./ch03_8.cf
R: Class darwin is defined
R: Class chair is not defined
R: Class table is not defined
R: Class linux is not defined

Class expressions can
also be used to define other classes using the
expression attribute in a
classes: promise. For example,
the test_host class shown above could also be defined
like this:

classes:
 "test_host" expression =\> "testhost1|testhost2|testhost3";

Finally, classes can be made
persistent, even across invocations of
cf-agent, by using the
persistence attribute in the
class declaration. Its value should be the length of time, in minutes,
for which the class should retain its value after being evaluated. This
can be useful if the class value is the result of a time-consuming or
otherwise expensive operation, to avoid recomputation every time
cf-agent runs.

Note that setting a class as persistent does not mean it will not be
reevaluated every time cf-agent runs, only that its previous value will
be available during the persistence period. To avoid unnecessary
reevaluation, the usual practice is to use a “flag class” with the same
persistence period. For example:

bundle agent test
{
 classes:
 !cache_is_active::
 "line_exists" expression => regline(".*foo.*", "/tmp/test_data.txt"),
 persistence => "1";
 "cache_is_active" expression => "any",
 persistence => "1";
 reports:
 line_exists::
 "Line exists in file";
 !line_exists::
 "Line does not exist in file";
}

In this case, we are using cache_is_active as the “flag class” to
indicate whether we should recompute the value of line_exists, which
would arguably be a very costly class to compute.
In this case we are using
regline() to look for a line
containing “foo” in the file /tmp/test_data.txt). In the
classes: section, we evaluate
the classes only when cache_is_active is not defined. In this case, we
set cache_is_active unconditionally (using the special expression
"any"), and set line_exists depending on the result of the function,
both with the same persistence period. This means that within one
minute, no matter how many times
cf-agent executes, the classes
will not be reevaluated and their cached values will be reported. You
can test this behavior in the previous example by running it, then
editing the file, and observing that the changes are not detected until
a minute has passed since the last execution. In deployment, this can be
extremely useful to limit reevaluation of complex or costly class
expressions whose values change slowly or
infrequently.

Bundles, Bodies, and Namespaces

CFEngine policies can grow quite complex, so it would not be very
scalable simply to list promises back to back. For this reason, and to
promote reusability, CFEngine groups its syntax elements into two types
of structures: bundles and bodies, and they in turn can be grouped
into namespaces.

Bundles

Bundles are the most general and powerful grouping mechanism. They are the only elements that can contain promises. A bundle can contain many promises, possibly separated into sections. The structure described at the beginning of The CFEngine Policy Language can be contained only inside a bundle. Bundles are defined as follows:

bundle type name(arguments)
{
 promise_type:
 class_expression::
 promise
 ...
}

The name of the bundle is an arbitrary string that you can use to
identify it. The type of the bundle has to be one of the
CFEngine-recognized types, and it defines the semantics of the bundle
(that is, how are the promises in it interpreted), as well as the
promise type sections it can contain. All bundles can receive an
arbitrary number of arguments. If no arguments are needed, the
parenthesis are optional.

The bundle types defined by CFEngine are:

 	
agent: Bundles of type
agent are “executable” bundles
that can be called from the main
bundlesequence
declaration, or as method calls in the
methods: section of another
agent bundle. In this respect they could be compared to subroutines in
other programming languages. They are the most extensive and powerful
type of bundle, and the ones that actually implement any changes that
we want to make in the system. These bundles can contain the following promise types:

 	
commands: to
specify commands to be executed

 	
files: to
edit and manipulate files

 	
methods: to
call other agent bundles

 	
packages: to
query and manipulate software packages in the system

 	
processes: to
query and manipulate
running processes

 	
storage: to
query and configure file systems

 	
services: to
configure system services in Unix-like systems
(CFEngine Enterprise also supports Windows system services)

 	
databases: to
manipulate and
configure databases

 	
guest_environments:
to manipulate
and configure virtual environments

 	
common: Bundles of this type are
just like agent bundles, but are
special in two ways:

 	The variables and classes defined in them are automatically
available to every other bundle in your policy.

 	They are evaluated by all the CFEngine components
(cf-agent,
cf-serverd,
cf-monitord, etc.)

 For these reasons, they are a good place to define globally useful
variables and classes. For example:

bundle common g
{
 vars:
 "localdir" string => "/usr/local";
 "confdir" string => "/etc";
 classes:
 "testhost" or => { "testhost1", "testhost2" };
}

 This example defines two variables with strings that will be useful in other parts of the policy, and which we can reference as $(g.localdir) and $(g.confdir) (in general, any variable can be accessed from anywhere else by prefixing it with the name of the bundle where it was defined). Also defined is a class based on whether either of the classes testhost1 or testhost2 is defined (this would be the case if the current host has any of those names, and is a common way of defining a class for a certain group of hosts—more on this in Defining Classes for Groups of Hosts). This class is automatically made global, which means it can be used in any other bundle.

 All variables in
CFEngine are local to the bundle in which they are defined. However,
they can be accessed from any other bundle by prefixing them with the
bundle name in which they are defined, separated by a dot, as in
$(g.localdir).

 Most classes in CFEngine are local to the bundle in which they are
defined, and they cannot be accessed from anywhere else (there is no
mechanism for specifying the bundle of a class). The exceptions are:

 	Classes defined in a
common bundle are
automatically global.

 	Classes defined by the
classes attribute in a
promise (as a result of its status) are automatically global. This
is useful because these classes are commonly used as a signaling
mechanism across promises and bundles.

 	Since CFEngine 3.5.0, both
classes:
promises and
classes
bodies can specify a scope
attribute, which can take the values “bundle” (the default for
classes: promises) and “namespace” (the default for classes
bodies)

 Note that common bundles are
not necessarily evaluated before regular
agent bundles, although this
is a common misconception. You can (and should) put them in
bundlesequence to
ensure they are evaluated at the correct moment (normally, you would
put them at the beginning of the execution sequence, to ensure the
values defined in them are properly available to all other bundles).

 	
edit_line: Bundles of type
edit_line can be used to
change a file, one of the most common and most complex operations
performed by CFEngine. These bundles must be specified as the value of
the edit_line attribute in a
file-editing promise (this is, a promise of type
files:).
edit_line bundles themselves
can be quite complex and contain their own set of allowable promise types, which include:

 	
insert_lines: to
add lines to a
file

 	
delete_lines: to
remove lines from
a file

 	
field_edits: to
make field-oriented
changes in a file

 	
replace_patterns:
to make regular
expression substitutions in a file

 	
server: Bundles of type
server control the behavior of
the cf-serverd process,
which has the task of serving files to other CFEngine machines that
request them (cf-serverd
normally runs on the CFEngine policy hub).
This type of bundle
can contain two promise types:

 	
access: to
define access permissions to different resources on the
server.

 	
roles: to
define which users can indicate classes (and which
classes they can define) in the server process, to alter the
behavior of the
cf-serverd daemon. One of
CFEngine’s strong security features is that remote machines can
never execute arbitrary commands. Instead, they can execute certain
bundles. Some users, as defined by
roles: promises, may have the
ability to set custom classes when invoking those remote promises,
thus allowing them to modify the promises’ behavior, but only as
allowed by the remote bundle and its handling of the defined
classes.

 	
monitor: Bundles of this type are supported
only in commercial editions of CFEngine. They define custom parameters
that CFEngine can monitor automatically, and specify how to react to
changes in their values. CFEngine natively knows how to monitor a
large set of system values, such as CPU and memory utilization.
This type of bundle
supports only one section called
measurements:, which
contains promises defining what and how to monitor it, and how to
react to changes.

Certain generic promise
types are allowed in all bundle types:

 	
vars: to define variables

 	
classes: to
define classes

 	
reports: to
define produced output

 	
meta: to define metadata about
a bundle.

Bodies

Bodies are collections of
attributes and values that can be used as values to other attributes.
Bodies cannot contain promises nor sections, although they can receive
arguments, and can contain class expressions to specify different values
for some of the attributes. Bodies, just like bundles, have a type,
which indicates the attribute to which they can be passed, as well as
the attributes they can contain. The generic structure of a body is:

body type name(arguments)
{
 attribute1 => value1;
 attribute2 => value2;
 ...
[class_expression::]
 attributeN => valueN;
}

Some common bodies you will use include:

 	
control
bodies are special structures that are not
referenced in any promises, but that control the behavior of different
aspects of CFEngine itself. There are different types of control
bodies, depending on the component whose behavior they control. The
one you are bound to use is the common control body.
Among other things, it is in this body that you specify which
bundles will be executed in your policy and in which order, using the
bundlesequence
attribute, and which additional files to read, using the
inputs attribute:

body common control
{
 inputs => { "tests.cf" };
 bundlesequence => { "test" };
}

 This block tells CFEngine to load the file tests.cf and to execute
the test bundle. Every CFEngine policy needs to have a
bundlesequence
definition, and this is most commonly done through a
common control body.
(You can also specify it with the -b option to
cf-agent, but I normally do
this only when testing policy components.)

 As you might imagine,
common control supports
many other attributes that specify global CFEngine behavior. There are
also control bodies for
specific CFEngine components, including the following:

 	
agent control bodies to
specify promise-evaluation behavior such as minimum time between
consecutive evaluations of the same promise
(ifelapsed), classes that
tell CFEngine to abort
(abortclasses), and
many others.

 	
server control bodies to
specify server behavior, such as addresses and users from which
connections will be allowed
(allowconnects,
allowusers) and the
interface to which the
cf-serverd process should
bind
(bindtointerface).

 	Others such as
monitor control,
runagent control,
executor control,
hub control and
file control.

 	
classes
bodies specify which classes will be
defined depending on the outcome of a promise. These bodies are valid
attributes for all promise types. For example, consider the following
file promise:

"/var/run/somefile"
 create => "true",
 classes => passfail;

 	In this case, passfail is the name of a body, of type

 classes, that needs to be
defined somewhere else. For example:

 -

body classes passfail
{
 promise_kept => { "fileexisted" };
 promise_repaired => { "filecreated" };
 repair_failed => { "fileerror" };
}

 	There are several things you should notice here. First, the type of the body part is classes, which means it can be used only as the value of a classes attribute in a promise. The name passfail is an arbitrary identifier. The documentation for the classes body type lists the attributes it can contain. In this case, if /var/run/somefile already existed (the promise was kept), the fileexisted class will be defined after the promise runs. If /var/run/somefile did not exist and CFEngine was able to create it (the promise was repaired), filecreated will be defined. And if the file cannot be created for some reason (the repair failed), the fileerror class will be defined. These classes can be used later on to control other promises. And more importantly, the passfail body can be used in many different promises, allowing for encapsulation and code reutilization.

 An important thing to notice is that body parts can also have parameters, which allows even further customization of their behavior. For example, suppose we want the repaired/kept/failed classes to contain an arbitrary identifier to help us differentiate among multiple file checks. We could define passfail as follows:

body classes passfail(id)
{
 promise_kept => { "$(id)_existed" };
 promise_repaired => { "$(id)_created" };
 repair_failed => { "$(id)_error" };
}

 We would then have to modify the files promises to something like this:

"/var/run/somefile"
 create => "true",
 classes => passfail("somefile");

 Now "somefile" is being passed as an argument to the passfail body part, and used as part of the class names to define. This means that depending on the result of the promise, the classes somefile_existed, somefile_created or somefile_error will be defined, instead of the generic names we had used before.

 The classes_generic body defined in the CFEngine Standard Library behaves much like our passfail body, but considers all possible promise outcomes, and defines several classname patterns for each outcome. For example, if a promise is repaired and you call classes_generic("somefile”) you will get the following classes defined: promise_repaired_somefile, somefile_repaired, somefile_ok and somefile_reached.

 	
action is another attribute that can be used in any promise, and defines how the promise should be evaluated and fixed. Using it we can define that promises should only be checked but not fixed, whether the actions related to the promise should occur in the background, how often promises should be checked, logging behavior for the promise, and other attributes. For example, the following promise will warn if a certain line does not exist in /etc/motd but will not fix it, and will issue the warning only every hour, even if CFEngine checks more frequently:

bundle agent test
{
 files:
 "/etc/motd"
 edit_lines => insert_lines("Unauthorized access will be prosecuted."),
 action => warn_hourly;
}

body action warn_hourly
{
 # Produce warning only, don't fix anything
 action_policy => "warn";
 ifelapsed => "60";
}

 	
copy_from is
an attribute that can
be used only in files: promises,
and indicates from where and how a file will be copied. It is an
extremely flexible attribute, since it allows us to request local or
remote file copies, how the files will be compared, whether the file
will be encrypted in transit, and many other parameters. For example,
the following two bodies are from CFEngine’s standard library:

body copy_from secure_cp(from,server)
{
 source => "$(from)";
 servers => { "$(server)" };
 compare => "digest";
 encrypt => "true";
 verify => "true";
}

body copy_from remote_cp(from,server)
{
 servers => { "$(server)" };
 source => "$(from)";
 compare => "mtime";
}

 Both handle copying files from a remote server, and take both a server
address and a source file as arguments. The first one specifies that
the connection will be encrypted (using an internal CFEngine
mechanism), that the files will be verified after copying them, and
that files will be compared by computing a cryptographic hash of their
contents. The second one is simpler, indicating no need for encryption
or verification, and the comparison will be made using simply the time
of last modification (mtime) of both files. The former, more
expensive verification mechanism allows us to reliably detect changes
in the files in cases when their modification date might not be a
reliable indicator. In both cases, the comparison mechanism allows
CFEngine to skip the expensive copy operation if the files already
match.

 	
depth_search is
another attribute
of files: promises that allows
us to control recursive operations. It specifies how deep to traverse,
which directories to skip, and other parameters. For example:

body depth_search recurse_ignore(d,list)
{
 depth => "$(d)";
 exclude_dirs => { @(list) };
}

 This definition specifies that only directories up to $(d) levels
deep will be traversed (the special string "inf" can be used to
specify infinite recursion), and allows the caller to specify a list
of directories to exclude.

 Putting
copy_from and
depth_search together, we
can already create a working file-copy promise:

bundle agent update_inputs
{
 vars:
 "server" string => "10.1.1.1";
 "inputs" string => "/var/cfengine/masterfiles/inputs";
 files:
 "$(sys.workdir)/inputs"
 copy_from => remote_cp("$(server)", "$(inputs)"),
 depth_search => recurse_ignore("inf", { "_.*" });
}

 Here we will be copying all files from the directory /var/cfengine/masterfiles/inputs on server 10.1.1.1 onto the local /var/cfengine/inputs directory ($(sys.workdir) is an internal variable that CFEngine defines to be its working directory, normally /var/cfengine). A recursive copy of infinite depth will be done, but all directories starting with an underscore (_) will be ignored (the patterns provided have to be regular expressions and not shell metacharacter expressions, hence the _.* instead of just _*). Note that it is not possible to use depth_search in conjunction with edit_line. For editing files, the precise file to be edited needs to be specified.

 	
edit_defaults
is an attribute of
files: promises that controls
parameters of the file-editing process. You can specify whether
backups should be made of the original file, the maximum size of a
reasonable file for editing, and whether the file should be emptied
and recreated every time. In the following example, timestamped copies
of the file will be kept every time the file is changed:

bundle agent editexample
{
 files:
 "/etc/motd"
 create => "true",
 edit_line => insert_lines("Unauthorized use will be prosecuted"),
 edit_defaults => backup_timestamp;
}

body edit_defaults backup_timestamp
{
 empty_file_before_editing => "false";
 edit_backup => "timestamp";
 max_file_size => "300000";
}

 	
edit_field is
an attribute of
field_edits: promises that
performs field-based editing in a file (it must be specified as an
attribute in a promise of type
field_edits:, which in
turn is allowable only inside
edit_line bundles). It
specifies what characters to use as delimiters and which actions will
be taken on which fields. For example, the following definition from
the Standard Library performs generic field-editing operations using
user-provided information:

body edit_field col(split,col,newval,method)
{
 field_separator => "$(split)";
 select_field => "$(col)";
 value_separator => ",";
 field_value => "$(newval)";
 field_operation => "$(method)";
 extend_fields => "true";
 allow_blank_fields => "true";
}

 The split
argument specifies a regular expression to use as separator (thus it
gets assigned to the field_separator attribute), col indicates the
column on which to operate and gets assigned to select_field (by
default CFEngine starts counting from one, although this behavior can
be changed using the start_fields_from_zero attribute in the
edit_field body), newval
indicates the value to insert or delete from that field
(it gets used for field_value, each field can contain multiple
values separated by value_separator, a comma in this case), and
method indicates which operation to perform (set,
delete, append, prepend,
etc.).

 The col() body
definition can be used to edit colon-separated files, such as
/etc/passwd in Unix systems. This set_user_field() bundle is also
defined in the Standard Library:

bundle edit_line set_user_field(user,field,val)
{
 field_edits:
 "$(user):.*"
 comment => "Edit a user attribute in the password file",
 edit_field => col(":","$(field)","$(val)","set");
}

 This bundle takes three
arguments: the user to edit (user), the field number to edit
(field), and the value to set in that field (val). In
field_edits: promises, the
promiser is interpreted as a regular expression that is matched
against all the lines in the file, to select which lines to edit. In
this case, the value of the $(user) parameter is used to select the
line that starts with that string, followed by a colon and any other
text ("$(user):.*" —the pattern is automatically anchored by
CFEngine to the beginning and end of the line, so there is no need for
the ^ character to specify that the pattern must start at the
beginning of the line). Once a
line is selected, the
edit_field attribute uses
col() to perform the actual field-change operation, The separator is
specified as a colon, the field number and the new value are passed
directly from the arguments $(field) and $(val), and the operation
to perform is "set", which tells CFEngine to replace the old value
of the field with the new one.

 To put this in context, note
that set_user_field() is an
edit_line bundle, which
means it has to be used as the argument to the
edit_line attribute of a
files: promise. For example:

files:
 # Set the 7th field (shell) of user "nobody" to "/bin/false"
 "/etc/passwd"
 edit_line => set_user_field("nobody", "7", "/bin/false");

Many other body attributes are allowed in CFEngine for different promise
types. I have shown here some of the most common ones, but you can find
the full listing and details in the
CFEngine
Reference documentation.

The distinction
between bundles and bodies can be confusing at first. Remembering these
points may help:

 	Bodies are named groups of attributes, whereas bundles are
collections of promises. Promises are the units that actually do
something in CFEngine (for example, run a command or add a line to a
file), whereas attributes specify characteristics of how things are
done (for example, whether to run the command in a shell, or where in
the file to add the line).

 	The value of an attribute can be a basic data type (string, integer,
list, container, etc.), it can be the name of a body, or it can be the
name of a bundle.

 	The type of an attribute’s value is fixed, and determined by the
attribute itself (for example, the value of the
depth_search attribute in
a files: promise is always a
body, and the value of an
edit_line attribute is
always a bundle).

 	Bodies can inherit attributes from other bodies by using the
inherit_from
attribute. In this way you can modularize and better structure your
body definitions.

 	For bodies
and bundles, their type is always the name of the attribute to which
they correspond. For example, bodies to be used with the
depth_search attribute
are always declared as body depth_search xyz, where xyz is an
arbitrary name of your choosing. The same goes for bundles: bundles to
be used with the edit_line
attribute are always declared as bundle edit_line xyz.

 	There are only three types of “top level” bundles that are not used as
arguments to attributes:
agent,
server and
monitor.

 	The promise types (sections) that can appear in a bundle are
determined by the bundle type. For example,
commands: promises can only
appear in bundles of type
agent.

Namespaces

By default, all bodies, bundles, and classes in
CFEngine exist in a common namespace. This makes it easy to call bundles
and bodies from anywhere in the policy. However, as a policy grows in
size to handle a large or complex infrastructure, and particularly if
multiple people are in charge of writing policies, the possibility for
naming conflicts increases—for example, it becomes entirely possible
that a bundle named restart_service will be defined in two different
files that correspond to different services.

To avoid this problem,
files can be assigned to
/namespaces/. Bundles, bodies,
and global classes with the same name can coexist, as long as they are
in separate namespaces. To declare a namespace for the current file, you
use a body file control
declaration, like this:

body file control
{
 namespace => "name1";
}

If no namespace declaration is found, the default namespace is used.
Note that the namespace declaration is placement-sensitive: it affects
everything on the file after its appearance, and it can appear multiple
times in a single file. This means that you can in principle declare
bundles and bodies belonging to different namespaces in the same file. I
strongly advise against this practice to avoid confusion, and recommend
limiting each file to a single namespace, if any, by placing the
body file
control declaration at the top.

When you call a bundle or a body, CFEngine will look for it only in the
current namespace (whether it’s default or a declared one). To
access things in a different namespace, you need to
prepend their names with the namespace, separated by a colon. For
example:

methods:
 "any" usebundle => namespace:bundle("arg");

files:
 "/tmp/file"
 create => true,
 perms => namespace:myperms;

Note that namespacing also affects
global classes: they will be global only within the namespace in which
they are declared. Global classes from other namespaces can also be used
by prefixing them with the namespace, separated by a colon.

 Bundles and bodies in the CFEngine Standard Library are declared in
the default namespace. To call them from a namespaced file, you need
to explicitly prefix them with "default:".

We will not use namespaces in the examples in this book, to keep things
simple. However, namespacing is a powerful mechanism that will help you
grow your policies with a minimum of naming conflicts, so I encourage
you to use them whenever appropriate.

Normal Ordering

CFEngine does not have any flow control statements, at least not in the sense with which you may be familiar from imperative programming languages (the concept of implicit flow control may be familiar to you if you have done any declarative programming before, for example in Prolog). A lot of the behavior of CFEngine is hard-coded, and this includes the order in which things are evaluated. This is called normal ordering, and is determined based on what makes sense for different types of bundles and promises. For example, it makes no sense to first create a file and then delete it, while it makes sense to first delete it and then create it again. Normal ordering can, if needed, be overriden by defining classes after an operation completes, and then defining other operations based on that class (for details, see Controlling Promise Execution Order).

Bundles of type
common are a good place to define
variables and classes that will be accessible to all other bundles in
the policy. Variables defined in common bundles are accessible from
other bundles (just like all variables) by prefixing them with the
bundle name, as in $(bundle.variable). For classes, the rules slightly
more complicated, but easy to understand:

 	In common bundles, classes defined by classes promises are by
default namespace scoped (i.e. they can be used from any bundle in
the current namespace). They can be bundle scoped (made accessible
only from the current bundle) by using the scope attribute.

 	In agent bundles classes defined by classes promises are by
default bundle scoped. They can be namespace scoped by using the
scope attribute.

 	In all bundles, classes defined as the result of a promise via a
classes body are by default namespace scoped. They can be bundle
scoped by using the scope attribute.

 CFEngine has mechanisms to detect variable/class dependencies and a
best-effort algorithm to make sure all necessary values are available
before an expression or promise is evaluated. You can help it ensure
consistency and convergence by including bundles of type
common in the
bundlesequence
declaration, even though this is not strictly needed.

CFEngine executes agent
bundles three times in an attempt to achieve a convergent state. In each
iteration, the sections in the bundle will be executed in the following
order:

 	vars

 	classes

 	interfaces

 	
files.

 	packages

 	guest_environments

 	methods

 	processes

 	services

 	commands

 	storage

 	databases

 	reports

Within edit_line bundles, the
following order will be kept:

 	vars

 	classes

 	delete_lines

 	field_edits

 	insert_lines

 	replace_patterns

 	reports

Within each section, promises will be executed in the order in which
they appear in the policy. Multiple executions of each bundle mean that
you can, for example, define a variable, then define a class based on
that variable, and then define other variables depending on that class.

Within server
bundles, the normal ordering is as follows:

 	vars

 	classes

 	access

 	roles

 Although syntactically correct,
reports:
promises that appear inside a
server bundle are
not evaluated.

Within monitor bundles,
the normal ordering is as follows (sections marked with * are only
available in CFEngine Enterprise):

 	vars

 	classes

 	
measurements *

 	reports

Normal ordering provides a fairly rigid structure to the execution of
CFEngine policies. It is common when you first start writing CFEngine
policies, particularly if you are familiar with imperative programming,
to try to “fight” the normal ordering to fit what you want to do. When
you encounter a case in which you are positive that normal ordering
needs to be changed, I encourage you to back up and rethink at a higher
level the task you want to accomplish. Most of the time, you will find
that structuring the task in some other way will make the need to
reorder operations go away, and will in fact make more sense with the
way CFEngine “thinks.”

Looping in CFEngine

One of the most evident examples of “thinking in
CFEngine” is the concept of implicit looping. It is one of the most
basic behaviors, one of the most confusing to a CFEngine beginner, and
one of the most powerful once you harness it.

First, let us define it: in CFEngine 3, if you refer to a
list variable (normally called @(var)) as a scalar ($(var)),
CFEngine interprets it to mean “iterate over all the values in the
list.”

Let’s try it. Type in the following policy:

body common control
{
 bundlesequence => { "test" };
}

bundle agent test
{
 vars:
 "colors" slist => { "red", "green", "blue" };
 reports:
 cfengine::
 "$(colors)";
}

Now run it:

cf-agent --no-lock --inform -f ./looping1.cf
R: red
R: green
R: blue

The lines that start with "R: " indicate messages produced by the
reports: promises in the policy.
You can see that the single promise in the
reports: section has been
repeated for every value in the list, therefore printing all the values.

You can also try nested looping:

body common control
{
 bundlesequence => { "test" };
}

bundle agent test
{
 vars:
 "colors" slist => { "red", "green", "blue" };
 "tone" slist => { "dark", "light" };
 reports:
 cfengine_3::
 "$(tone) $(colors)";
}

This returns the following:

cf-agent -K -f ./looping2.cf
R: dark red
R: dark green
R: dark blue
R: light red
R: light green
R: light blue

Simple enough, isn’t it? In this explicit example, the behavior is
clear. The real power of implicit looping comes when you realize that it
can be used in any type of promise, and that it means the whole
promise will be executed as many times as there are items in the list.
Also, the looping variable can be used anywhere—in defining variables
or classes, in executing commands, or in making decisions with classes.

Let’s look at a real example in which implicit looping saved the day
(this was, incidentally, the time when this really “clicked” in my head
as I was starting with CFEngine 3). I needed to determine which network
interface in a system was configured in a certain network segment, to
apply some configuration commands.

CFEngine has a built-in array variable called sys.ipv4 that contains
the IP addresses of all the network interfaces in the system, indexed by
interface name. My first thought was that I needed a function that gave
me all the values stored in this array, so I could compare them against
my desired IP address range and find the one I needed.

To my surprise, I realized that CFEngine has a
getindices() function, but no
equivalent getvalues()
function (actually this function was added as of version 3.1.5, but
wasn’t available when I came up with this solution, and in any case this
is much more elegant). After turning the problem over a lot in my head,
I came to the realization that the
getvalues() function is not
needed in this case. Here is the code I came up with:

body common control
{
 bundlesequence => { "find_netif" };
}

bundle agent find_netif
{
 vars:
 "nics" slist => getindices("sys.ipv4");
 # Regex we want to match on the IP address
 "ipregex" string => "192\.168\.1\..*";

 classes:
 "ismatch_$(nics)" expression => regcmp("$(ipregex)",
 "$(sys.ipv4[$(nics)])");

 reports:
 cfengine::
 "NICs found: $(nics) ($(sys.ipv4[$(nics)]))";

 "Matched NIC: $(nics) ($(sys.ipv4[$(nics)]))"
 ifvarclass => "ismatch_$(nics)";
}

Let us look at this in detail.

 	First, we get a list (using
getindices() of all the
network interfaces in the system, and store it in the nics variable.
We also assign into ipregex the regular expression for the IP address
range I want to match (in this case, 192.168.1.*).

 	Then we use this list, referenced as a scalar, in the
classes: promise, to define a
number of classes named after each of the interfaces, by using $(nics)
 in the class name itself. The definition of the class depends on
 whether the IP address of that network interface ($(nics) is used
again in the call to the regcmp()
method) matches the regular expression of the IP address I want to
find. The result is that, for each NIC on the system, the
corresponding class is defined if its IP address matches, and
undefined if it does not.

 	Finally, we print all the interfaces by using $(nics) in a report
 message, and we also print only the matching ones by conditioning the
 second message using the ifvarclass =​> "ismatch_$(nics)" attribute.
The reference to $(nics) in the
ifvarclass attribute is also
expanded to each value in turn, so the second message is printed only
for those NICs whose corresponding class is defined.

So you see, we do not need the getvalues() function after all. In this
example I used the defined classes to print messages, but in my real
example I used them to append the appropriate configuration statements
to a file—but only for those interfaces that matched the IP range I
wanted.

I encourage you to look at that example again, and make sure you
understand it. There are no looping constructs anywhere—in fact, they
do not exist in the CFEngine syntax at all. It may take a while getting
used to this. Whenever you are constructing a policy and you think “I
definitely need a while loop to do this,” take a step back and see
whether you can recast the problem using implicit looping. The
definition of classes based on a condition using implicit looping is a
powerful technique, and you will see it used in many of the examples in
this book.

 Prior to CFEngine 3.3.0, looping was allowed only for local lists
(those declared in the current bundle). Starting with 3.3.0 this
limitation was removed, and you can now loop over lists from any
bundle, provided that you properly qualifiy its name with the bundle
name where it is declared ($(bundle.var)).

Thinking in CFEngine

As we have seen, CFEngine imposes a rigid structure on many aspects of
its operation. Two prime examples are normal ordering and implicit
looping, which help get rid of the need for explicit control flow
statements. For the most part, you do not tell CFEngine how to do
things. Rather, you tell it what you want to achieve and write out the
low-level building blocks of how to achieve certain promises, and
CFEngine will put them together for you to bring the system to the
desired state.

If you are like me, you have been programming for some time before you
encountered CFEngine, and your brain is wired to think about problems
and tasks in a certain way. This will almost inevitably cause a clash
when you have to “let go” of the control and lend it over to CFEngine.

I have personally found that what works for me is to step back from the
details of the task at hand, and think at a higher level: “what am I
trying to achieve?” Often this gives a different perspective on why you
are doing certain things, and how you are trying to achieve them. My
main advice is to keep practicing, and to use the community resources
available to study examples and to get feedback on your promises from
more experienced users.

Clients and Servers

One of CFEngine’s
key strengths is autonomy. A machine in which CFEngine is installed and
configured does not need a network connection to operate, and as long as
its policies are well defined, it will continue to obey those policies
and maintain the system as configured. For instance, a laptop that is
sometimes connected to the company network, but is also often away, will
continue to benefit from CFEngine running on it.

However, the true power of CFEngine lies in its ability to manage
thousands of machines with very little effort, and for this you need to
distribute the corresponding policies to all those hosts. Fortunately,
CFEngine makes it very easy to set up a client-server environment in
which one or more hosts act as policy hubs, distributing policies and
data to others. As we saw in Finishing the
Installation and Bootstrapping, all
it requires is a single command to configure CFEngine and tell it which
machine to use as its policy hub:

cf-agent --bootstrap x.y.z.w

 Prior to CFEngine 3.5.0 the bootstrapping options were different. This
is the command you have to run for older versions:

cf-agent --bootstrap --policy-server x.y.z.w

This command works on both the policy hub itself and its clients. In the
hub, cf-agent will recognize
its own IP address and configure the host as a policy hub.

In its simplest form, and one perfectly suitable for all but the largest of organizations, you can have a single policy hub with multiple clients fetching policies and files from it, as shown in the following figure.

 [image: The simplest form of CFEngine distributed deployment, with a single policy hub and multiple clients]
 The simplest form of CFEngine distributed deployment, with a single policy hub and multiple clients

In larger and more complex environments, you can have a more complex structure. A CFEngine policy hub can itself be a client for some other hub, thus creating a hierarchy of CFEngine policy distribution points, as shown next.

 [image: More complex CFEngine distributed deployment, with multiple policy hubs in a hierarchy]
 More complex CFEngine distributed deployment, with multiple policy hubs in a hierarchy

The need for a hierarchical structure could be dictated by technical
requirements (e.g., geographically disperse sites, low-bandwidth links
between them, traffic blocking) or administrative needs (e.g., different
teams in charge of different locations, needing to make their own
customizations to the top-level inherited policies). CFEngine is
flexible enough to accomodate any of them. Ideally, all the policy files
should propagate from the top-level, where they are maintained in a
master repository, but you could also have several disjoint trees in
your organization.

CFEngine follows a strict pull-only philosophy: only the client can make
requests to the server, asking for the information and files it needs.
The server cannot push anything onto the clients. This convention makes
it very simple to configure the network to allow communication between
CFEngine clients and servers. Only one port—TCP/5308—is
necessary for the client to connect to the server. All communication,
including file transfers, takes place through this port.

 The cf-runagent command can be used on the server to contact the clients. In this case port, TCP/5308 also needs to be open from the server to the clients, and cf-serverd needs to be running on the clients to process those connections. Note, however, that cf-runagent does not allow the server to execute arbitrary commands on the clients. All that it does is instruct cf-agent on the client to “wake up” and process its policies immediately, instead of waiting for the next scheduled run. We will see the details of this configuration in CFEngine Remote Execution Using cf-runagent.

The decision to only allow the clients to pull from the server (and not
the server to push things onto the clients) is also rooted in promise
theory. An entity cannot make promises about anyone other than itself.
Because of this, the operation of a distributed system cannot depend on
one entity forcing others to do something. Entities may request
information from others, but they may make promises only about their own
behavior. Voluntary cooperation is one of CFEngine’s core principles.

On the other hand, CFEngine is designed with resilience and graceful
degradation in mind. If a client becomes disconnected from the network,
CFEngine continues managing it using the latest locally-stored version
of the policies until it restores connectivity. This allows clients to
continue working during network outages, network congestion, security
incidents, or other circumstances that may prevent connectivity to the
master policy hub.

CFEngine Server Configuration

The CFEngine server
functionality is provided by the
cf-serverd process. It is
configured using a
server control body block
like in the following example, taken from the default configuration
provided with CFEngine (this is part of the
/var/cfengine/inputs/controls/cf_serverd.cf file generated when you
bootstrap CFEngine):

body server control
{
 denybadclocks => "false";
 allowconnects => { "127.0.0.1" , "::1", @(def.acl) };
 allowallconnects => { "127.0.0.1" , "::1", @(def.acl) };
 trustkeysfrom => { "127.0.0.1" , "::1", @(def.acl) };
 skipverify => { ".*$(def.domain)", "127.0.0.1" , "::1",
 @(def.acl) };
 allowusers => { "root" };
 maxconnections => "100";

 # Uncomment the line below to allow remote users to run
 # cf-agent through cf-runagent

 # cfruncommand => "$(sys.cf_agent)";
}

 The default policy files produced by CFEngine when you bootstrap a
client are an excellent starting point and provide a lot of basic
functionality. I advise you to go over them and try to get at least a
general understanding of what they do. Most of the parts you may need
to customize are in def.cf, promises.cf and some of the files
under controls/, as needed.

This body defines the set of machines from which connections will be
allowed allowconnects),
those that will be allowed to connect multiple times simultaneously
allowallconnects),4
those whose public
keys will be trusted if they have not been seen before
trustkeysfrom)
and those whose DNS record will not be checked for consistency
skipverify). Also
specified are the maximum number of simultaneous connections
maxconnections),
the users that will be allowed to connect allowusers), and
whether machines with out-of-sync clocks will be blocked
denybadclocks).

Additionally, per-directory and per-file ACLs can be
defined in the access_rules() bundle, whose default version contains
the following:

bundle server access_rules()
{
 access:
 any::
 "$(def.dir_masterfiles)"
 handle => "server_access_rule_grant_access_policy",
 comment => "Grant access to the policy updates",
 admit => { ".*\.$(def.domain)", @(def.acl) };
 roles:
}

This bundle contains promises of type
access:, which define the ACLs to
apply. In this case, directory $(def.dir_masterfiles) (which expands
by default to /var/cfengine/masterfiles) will be accessible by all
machines in the $(def.domain) domain, plus those defined explicitely
in the @(def.acl) list.

Note that most of these parameters include the
@(def.acl) and $(def.domain) variables. These are references to the
acl and domain variables defined in the def() bundle, which is
defined in /var/cfengine/inputs/def.cf:

bundle common def
{
 vars:
 "domain" string => "example.com",
 comment => "Define a global domain for all hosts",
 handle => "common_def_vars_domain";
 "acl" slist => { "$(sys.policy_hub)/16" },
 comment => "Define an acl for the machines to be granted accesses",
 handle => "common_def_vars_acl";
 "dir_masterfiles" string => translatepath("$(sys.workdir)/masterfiles"),
 comment => "Define masterfiles path",
 handle => "common_def_vars_dir_masterfiles";
}

You are expected to edit the def() bundle before putting CFEngine into
production, in particular two values:

 	The $(domain) variable must contain the domain name of your current
environment. This is used in the code shown earlier to limit access to
machines from this domain. It is also used in some other contexts in
the default promises.cf file.

 	The @(acl) variable is a list containing all the IP addresses that
should have access to the server. This promise uses the value of
 $(sys.policy_hub) (an
automatically-set variable that contains the IP address of the hub
from which the host was bootstrapped) and determines its local class-B
network (/16). The assumption is that the policy hub will in most
cases be in the same network as the client. Of course, this range may
well be too broad or too narrow according to your needs, so you must
edit it accordingly.

You can also define these parameters using the def.json file, formally
known as
augments.
Instead of modifying def.cf, you can create
/var/cfengine/masterfiles/def.json in your server with the
corresponding values, like this:

{
 "vars": {
 "domain": "example.com",
 "acl": ["$(sys.policy_hub)/16"],
 "dir_masterfiles": "$(sys.workdir)/masterfiles"
 }
}

Updating Client Files from the Server

One
of the main tasks of the policy hub is to distribute policy files, and
any other necessary files, to its clients. This is a crucial operation,
since it makes it possible to update files on the hub and have them
propagate automatically to all the clients. To this effect, CFEngine
provides ample capabilities for efficient and secure file transfer.

The default policy
installed with CFEngine contains a bundle called cfe_internal_update()
which is executed on the clients (remember that the CFEngine policy
hub cannot instruct the clients to do anything). It takes care of all
these tasks automatically, but you may want to modify it according to
your needs. It is contained in the file
/var/cfengine/inputs/update.cf, and in a nutshell these are the tasks
it performs:

 	Check whether the host key files exist (under
/var/cfengine/ppkeys/), and run
cf-key to create them if they
are not present.

 	Start the cf-serverd,
cf-monitord and
cf-execd processes if they
are not running.

 	Copy updated files from /var/cfengine/masterfiles/ on the policy hub
to /var/cfengine/inputs/ on all machines (both the clients and the
policy hub) to put them in production.

 	Symlink CFEngine binaries from /var/cfengine/bin/ to
/usr/local/sbin/ for easier access.

 	Ensure all critical directories and files have the correct
permissions.

For now we will look only at the file-copying operations, but I
encourage you to read through the whole bundle to get an idea of what it
does. These are the crucial parts:

bundle agent cfe_internal_update
{
 vars:
 "inputs_dir"
 string => translatepath("$(sys.workdir)/inputs"),
 comment => "Directory containing Cfengine policies",
 handle => "update_vars_inputs_dir";
 "master_location"
 string => "/var/cfengine/masterfiles",
 comment => "The master cfengine policy directory on the policy host",
 handle => "update_vars_master_location";
 files:
 "$(inputs_dir)"
 comment => "Copy policy updates from master source on policy server",
 handle => "update_files_inputs_dir",
 copy_from => u_rcp("$(master_location)","$(sys.policy_hub)"),
 depth_search => u_recurse("inf"),
 file_select => u_input_files,
 classes => u_if_repaired("update_report");
}

 	The $(inputs_dir) variable contains the directory where the local
CFEngine installation expects to find its policy files. On Unix/Linux
hosts this is normally /var/cfengine/inputs, but the location can
vary in different platforms. For this reason, we are using the
$(sys.workdir) variable, which is
automatically defined to be the base directory of the local CFEngine
installation. We are also using the translatepath() function to
translate the Unix-style path into the local style (for example, using
backslashes instead of forward slashes on Windows).

 	The $(master_location) variable contains the directory on the policy
hub where the “master files” are located, and from where they will be
copied to the local host. The policy hub has to be a Unix-style host,
so in this case we don’t need to perform any path translation.

 	The files: promise is the one that does the actual work.
The promiser is the destination directory $(inputs_dir), to which the
files will be copied according to the parameters specified by the
promise attributes that follow.

 	The copy_from attribute
indicates the source of the files. The value of this attribute is a
body, defined in the same update.cf file as follows:

body copy_from u_rcp(from,server)
{
 source => "$(from)";
 compare => "digest";
 trustkey => "true";
 !am_policy_hub::
 servers => { "$(server)" };
}

 This body receives as arguments the directory and the host from where the files should be copied. $(master_location) is the variable defined before, and $(sys.policy_hub) is a special CFEngine variable that is set when the client is bootstrapped, as described in #bootstrapping-cfengine. Additionally, it indicates that the files should be compared using a cryptographic digest (compare =​> "digest"​), and that the client should trust the cryptographic keys presented by the server (trustkey =​> "true"​). The servers attribute is set only when the am_policy_hub class is not set, and am_policy_hub is a hard class set only on the policy hub, so the effect is that on the policy hub, the file copy operation will be done locally, from /var/cfengine/masterfiles/ to /var/cfengine/inputs/.

 	The depth_search attribute is used to indicate a recursive file copy operation of infinite depth. Its value is another body:

body depth_search u_recurse(d)
{
 depth => "$(d)";
 exclude_dirs => { "\.svn", "\.git" };
}

 The depth attribute is set to the passed argument (which can be a number, or the special value "inf" for infinite recursion). The exclude_dirs attribute is also used to skip version-control directories that may be present in the server (assuming that version control is done using Subversion or Git).

 	The file_select attribute is used to control which types of files are copied. This is another body:

body file_select u_input_files
{
 leaf_name => { ".*.cf",".*.dat",".*.txt" };
 file_result => "leaf_name";
}

 In this case we are asking CFEngine to copy only files whose names end with .cf, .dat and .txt. There are many criteria that can be specified in a file_select body, and for this reason we need the file_result attribute to tell CFEngine on which criteria we want to match (in this case it is the only one available).

 	The classes attribute indicates that if any files are copied (which flags the promise as “repaired”), then the update_report class should be set. This class can be used in other parts of the policy to execute any actions necessary (for example, produce a report) when the files are updated. This is yet another body that sets the appropriate class: pass:

body classes u_if_repaired(x)
{
 promise_repaired => { "$(x)" };
}

File-copy promises are extremely flexible and powerful. Policy and binary updates are automatically handled by the built-in CFEngine policies, but I encourage you to read the documentation for files: promises to get a good idea of the wide range of tasks they can perform.

 Why is this bundle in the update.cf file instead of the promises.cf file? The default CFEngine policy instructs cf-execd (this is defined in the body executor control in /var/cfengine/inputs/controls/cf_execd.cf) to always evaluate update.cf before running promises.cf, to ensure that all files are properly updated. Additionally, if there is any failure in policy evaluation, cf-agent automatically tries to load failsafe.cf, which performs many of the same update operations to try and bring CFEngine back into operation.

CFEngine Remote Execution Using cf-runagent

One of the basic premises of CFEngine is that clients operate autonomously. If there is a central coordination point, like the policy hub, it is up to the clients to connect to it and fetch policies or files. However, in practice, the server (or some other machine) sometimes needs to “ping” the clients and ask them to do something. This is where cf-runagent comes in. It does not allow arbitrary actions to be executed, but simply asks the remote machine to run cf-agent and evaluate its policies. The remote host (in most cases it would be a CFEngine client) needs to have cf-serverd running and configured to listen for connections from cf-runagent.

Allow me to emphasize this point: cf-runagent does not allow the execution of arbitrary commands or arbitrary actions on a remote host. It simply instructs the host to run cf-agent and start evaluating its policies. This is useful when you don’t want to wait until the next regular execution of cf-agent (for example, critical policy or operating system updates).

The behavior of the cf-runagent command can be configured as part of the CFEngine policy in a runagent control body, which allows you to specify, among other things, a list of hosts that will be contacted by default when running the command. On the client side (the one to which the cf-runagent command will connect), the server control body specifies whether cf-runagent connections will be allowed, and what they will be allowed to do. It can also specify a list of remote users that will be allowed to set custom classes when running cf-runagent. This allows more fine-grained control of the policy behavior.

cf-runagent connections are handled by cf-serverd, so if you need this functionality you will also need to open port TCP/5308 traffic from the server to the clients.

Because of its potential security implications, the cf-runagent functionality comes disabled in the CFEngine default policy. To enable it, you need to uncomment the cfruncommand attribute in the server control body, shown in CFEngine Server Configuration:

cfruncommand => "$(sys.cf_agent)";

This instructs cf-serverd to listen for connections from cf-runagent, and to execute cf-agent in response to them (remember that this is all that cf-runagent allows you to do: wake up cf-agent). We still need to instruct cf-serverd to allow access to the cf-agent binary (its path is stored in the special variable $(sys.cf_agent), normally /var/cfengine/bin/cf-agent) from the policy hub. We need to do this in the access_rules() bundle, stored in /var/cfengine/inputs/controls/cf_serverd.cf:

bundle server access_rules()
{
 access:
 any::
...
 "$(sys.cf_agent)"
 handle => "grant_access_policy_agent",
 comment => "Grant access to the agent (for cf-runagent)",
 admit => { "$(sys.policy_hub)" };
}

In this case, we are telling cf-serverd to allow access to the cf-agent binary only to the policy hub, as defined by the special variable $(sys.policy_hub).

Finally, we need to tell the policy hub which hosts to contact by default when cf-runagent is executed. We need to do this explicitly in the runagent control body:

body runagent control
{
 # A list of hosts to contact when using cf-runagent
 any::
 hosts => { "127.0.0.1" };
 # , "myhost.example.com:5308", ...
}

Note that defining this list is not strictly necessary, as the list of hosts can be specified in the command line when running cf-runagent, using the --hail option.

CFEngine Information Resources

CFEngine has been around for a long time, and it has developed a solid body of documentation and information. In addition to community support, the company that was formed to provide commercial support for CFEngine, CFEngine AS, provides extensive documentation and information, most of it free of charge.

One word of caution: Some of the information you find online may still be geared towards CFEngine 2. While you can apply many of the basic ideas, be aware that the syntax of CFEngine 3 is completely different and incompatible with the previous version.

Let’s look at some of the information resources available for CFEngine

Manuals and Official Guides

Most of the documentation made available by CFEngine AS can be found at the CFEngine Documentation web page. The core documentation includes the following:

 	
CFEngine Reference: the most complete and authoritative reference for CFEngine concepts, installation, syntax, and examples.

 	
CFEngine Guide: documents that describe different aspects of CFEngine, including its design, architecture and components, basic language concepts and more.

Apart from the core documents, you will find a growing collection of Special Topics Guides, a series of shorter documents that focus on specific advanced aspects of working with CFEngine. You can find documentation about best practices for different topics, such as team collaboration, integrating CFEngine into change management practices or specific frameworks such as the ITIL standard, reporting capabilities, knowledge management, etc.

CFEngine Standard Library

The CFEngine Standard Library contains implementations of a large number of commonly-used promise bundles and bodies. It includes bundles for tasks such as editing files in common formats, interfacing with common package and service managers, editing text files, and copying files. The standard library allows you to focus on the task at hand without having to worry about the details, and also serves as a fantastic source of examples, based on which you can extend or define your own bundles and bodies for CFEngine configuration. This library is constantly evolving, and users are encouraged to submit changes and additions to it. The CFEngine standard library is hosted in the cfengine/masterfiles repository on GitHub, but is included with the CFEngine distribution, so if you have installed CFEgine from the official packages, the Standard Library is already installed on your macines.

 The CFEngine Standard Library used to be known as the Community Open Promise Body Library (COPBL). This name is no longer being used, but you may still see some references to it.

The Standard Library is split into multiple files by promise type. For example, all bodies and bundles related to files: promises are stored in $(sys.libdir)/files.cf (the special $sys.libdir variable defaults to /var/cfengine/inputs/lib, but it may change depending on your installation or the user under which you are running CFEngine). You need to load the parts that you are going to use in your policy, for example:

body common control
{
 inputs => { "$(sys.libdir)/common.cf",
 "$(sys.libdir)/files.cf",
 "$(sys.libdir)/commands.cf" };
}

If you want to load the whole standard library, you can also just load the included stdlib.cf file, which in turn loads the others:

body common control
{
 inputs => { "$(sys.libdir)/stdlib.cf" };
}

 The default promises.cf file in all CFEngine distributions automatically loads the standard library using the correct method for the current version of CFEngine, so you only need to worry about how to load it (and which parts to load) for standalone policy files you write. In this book, for the examples that need it, we will sometimes see the stdlib.cf file, and others the specific files from the library.

The standard library provides you with most of the basic building blocks for implementing different tasks using CFEngine.

Community Forum and IRC channel

The official CFEngine help forum can be found in Google Groups, at https://groups.google.com/forum/?fromgroups#!forum/help-cfengine, and is a fantastic resource of information and help. Both CFEngine developers and advanced users participate actively in the forum, providing a friendly and fertile ground for newcomers to ask questions and learn about CFEngine, and for experienced users to exchange information, discuss advanced aspects, and provide feedback to the developers.

The official IRC channel is called #cfengine and hosted on http://freenode.net/ (use your favorite IRC client to connect to it). It is a good place to ask questions and have informal discussions with CFEngine users, engineers and developers. I would advise you to post complex questions to the forum, and use IRC only for quick questions or conversations.

CFEngine Bug Tracker

The official mechanism for reporting bugs or feature requests is the CFEngine issue tracker.

Other Community Resources

CFEngine users have also developed and made available an incredible amount of useful resources. Here is the list of some of the most useful ones.

 	Neil H. Watson’s CFEngine 3 Tutorial was one of the first tutorials available specifically for CFEngine 3, and provides a very useful, hands-on guide to CFEngine installation and setting up an initial scheme for experimenting.

 	Jessica Greer’s Yale University’s CFEngine 3 library shows many real-world examples of bodies and bundles used to maintain Yale’s computers with CFEngine.

 	Aleksey Tsalolikhin’s Guide to CFEngine 3 Body of Knowledge is a great collection of links to a lot of the information available about CFEngine 3, including many of the resources already mentioned. Aleksey is a prolific CFEngine expert and trainer.

 	As a companion to this book, I would recommend reading and exploring the CFEngine Language Concepts page from CFEngine AS, and to always have the CFEngine Reference pages handy for the full details about the CFEngine policy language.

Notes

1In fact, with CFEngine Community there is no difference at all in the software installed on a hub and on a client, just in their configuration. It is easy to convert a client into a hub (and vice versa) by bootstrapping it again with the correct options, as described in Finishing the Installation and Bootstrapping.↩

2https://docs.cfengine.com/docs/3.12/guide-installation-and-configuration-general-installation-installation-enterprise-vagrant.html↩

3https://cfengine-package-repos.s3.amazonaws.com/enterprise/Enterprise-3.12.0/misc/CFEngine_Enterprise_vagrant_quickstart-3.12.0-1.tar.gz↩

4Normally each host is allowed only one connection at a time.↩

OEBPS/images/leanpub_info-circle.png

OEBPS/images/leanpub_warning.png

OEBPS/images/leanpub_key.png

OEBPS/images/lcfe_0301.png
Server

cf-serverd |« A
. P Policies,
Client {Executes Connects le
4 and data
cf-key
v
cf-runagent 1 s

Ly ; v v

cf-hub :: cf-serverd cf-monitord | | cf-promises

OEBPS/images/lcfe_0302.png
Policy hub

4

OEBPS/images/lcfe_0303.png
Policy hub 1 Policy hub 2

Policy hub 3

T Ty,

Policy hub 4

Policy hub 5

OEBPS/images/leanpub-logo.png
[

Leanpub

OEBPS/images/title_page.jpg

