

[image: Learn Go programming]

 Learn Go programming

 Go Study Notes Version 1.0 dated 16th Aug. 2015

 Satish Talim

 This book is for sale at http://leanpub.com/learngoprogramming

 This version was published on 2015-08-31

 [image: publisher's logo]

 * * * * *

 This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and many iterations to get reader feedback, pivot until you have the right book and build traction once you do.

 * * * * *

[image: Creative Commons by]

This work is licensed under a Creative Commons Attribution 3.0 Unported License

 Computer programming is the art, craft and science of writing programs which define how computers operate.

 Caleb Doxsey

 Table of Contents

 	
 1. JSON and Go

 	
 1.1 JSON

 	
 1.2 Package json

 	
 1.2.1 Encoding

 	
 1.2.2 Struct tags

 	
 1.2.3 Decoding

 	
 1.2.4 Streaming Encoders and Decoders

 	
 1.3 A Fun, Weather Forecast Go Web App

 	
 1.3.1 Register for an account at Forecast for Developers

 Guide

 	
 Begin Reading

1. JSON and Go

1.1 JSON

JSON stands for JavaScript Object Notation.

JSON is syntax for storing and exchanging text information, much like XML. JSON is smaller than XML, and faster and easier to parse. JSON is language independent. Here’s an example:

1 {
2 "employees": [
3 { "firstName":"John" , "lastName":"Doe" },
4 { "firstName":"Anna" , "lastName":"Smith" },
5 { "firstName":"Peter" , "lastName":"Jones" }
6]
7 }

The employee object is an array of 3 employee records (objects).

JSON data is written as name/value pairs. A name/value pair consists of a field name (in double quotes), followed by a colon and followed by a value:

"firstName" : "Satish"

JSON values can be:

 	A number (integer or floating point)

 	A string (in double quotes)

 	A Boolean (true or false)

 	An array (in square brackets)

 	An object (in curly brackets)

 	null

JSON objects are written inside curly brackets, Objects can contain multiple name/values pairs:

{ "firstName":"Satish" , "lastName":"Talim" }

1.2 Package json

Usage: import "encoding/json"

Package json implements encoding and decoding of JSON objects.

1.2.1 Encoding

To encode JSON data we use the Marshal function.

 func Marshal(v interface{}) ([]byte, error)

Let’s look at an example.

 Program: json1.go

 1 package main
 2
 3 import (
 4 "encoding/json"
 5 "fmt"
 6)
 7
 8 type User struct {
 9 	UserName string
10 	EmailID string
11 	Password string
12 }
13
14 func main() {
15 	u := User{UserName: "IndianGuru", EmailID: "satishtalim@gmail.com", Password: "password"}
16 	m, _ := json.Marshal(u)
17 	fmt.Println(string(m))
18 }

The output is:

{"UserName":"IndianGuru","EmailID":"satishtalim@gmail.com","Password":"password"}

In the above program we have a simple struct, we create a new instance of this struct and encode it.

1.2.2 Struct tags

1 type Person struct {
2 UserName string `json:"user_name"`
3 EmailID string
4 Password string `json:"-"`
5 }

When we use the Marshal function on a struct instance it produces JSON.

In the above example, a field appears in JSON as key “user_name” and the Password field is ignored by this package.

In the previous example json1.go the password got printed. However, we don’t want to print the password. Here’s the changed code:

 Program: json2.go

 1 package main
 2
 3 import (
 4 "encoding/json"
 5 "fmt"
 6)
 7
 8 type User struct {
 9 	UserName string `json:"user_name"`
10 	EmailID string
11 	Password string `json:"-"`
12 }
13
14 func main() {
15 	u := User{UserName: "IndianGuru", EmailID: "satishtalim@gmail.com", Password: "password"}
16 	m, _ := json.Marshal(u)
17 	fmt.Println(string(m))
18 }

The output is:

{"user_name":"IndianGuru","EmailID":"satishtalim@gmail.com"}

What if I don’t want to show the UserName if it is empty? Here’s the modified code:

 Program: json3.go

 1 package main
 2
 3 import (
 4 "encoding/json"
 5 "fmt"
 6)
 7
 8 type User struct {
 9 	UserName string `json:"first_name,omitempty"`
10 	EmailID string
11 	Password string `json:"-"`
12 }
13
14 func main() {
15 	u := User{UserName: "", EmailID: "", Password: "password"}
16 	m, _ := json.Marshal(u)
17 	fmt.Println(string(m))
18 }

The output is:

{"EmailID":""}

The JSON parser also accepts a flag in the tag to let it know what to do if the field is empty. The omitempty flag tells it to not include the JSON value in the output if it’s the “zero-value” for that type.

The “zero-value” for numbers is 0, for strings it’s the empty string, for maps, slices and pointers it’s nil. This is how you include the omitempty flag.

1 type MyStruct struct {
2 SomeField string `json:"some_field,omitempty"`
3 }

Notice that the flag goes inside the quotes.

If the SomeField was an empty string, and you converted it to JSON, some_field wouldn’t be included in the output at all.

What if I want to retain the field name EmailID and at the same time use the omitempty flag? Here’s the modified code:

 Program: json4.go

 1 package main
 2
 3 import (
 4 "encoding/json"
 5 "fmt"
 6)
 7
 8 type User struct {
 9 	UserName string `json:"first_name,omitempty"`
10 	EmailID string `json:",omitempty"`
11 	Password string `json:"-"`
12 }
13
14 func main() {
15 	u := User{UserName: "", EmailID: "", Password: "password"}
16 	m, _ := json.Marshal(u)
17 	fmt.Println(string(m))
18 }

The output is:

{}

Let’s look at another example:

 Program: json5.go

 1 package main
 2
 3 import (
 4 "encoding/json"
 5 "fmt"
 6 "os"
 7)
 8
 9 type Response1 struct {
10 Page int
11 Conf []string
12 }
13
14 type Response2 struct {
15 Page int `json:"page"` // Field appears in JSON as key "page"
16 Conf []string `json:"conf"` // Field appears in JSON as key "conf"
17 }
18
19 func main() {
20 // encoding basic data types to JSON strings
21 bolB, _ := json.Marshal(false)
22 fmt.Println(string(bolB))
23
24 intB, _ := json.Marshal(3)
25 fmt.Println(string(intB))
26
27 fltB, _ := json.Marshal(87.23)
28 fmt.Println(string(fltB))
29
30 strB, _ := json.Marshal("go class")
31 fmt.Println(string(strB))
32
33 // encoding a slice
34 slcD := []string{"gophercon", "gopherconindia", "go china"}
35 slcB, _ := json.Marshal(slcD)
36 fmt.Println(string(slcB))
37
38 // encoding a map
39 // the map's key type must be a string
40 mapD := map[string]int{"pune": 5, "franklin": 7}
41 mapB, _ := json.Marshal(mapD)
42 fmt.Println(string(mapB))
43
44 // The JSON package can automatically encode your
45 // custom data types. It will only include exported
46 // fields in the encoded output and will by default
47 // use those names as the JSON keys.
48 res1D := &Response1{
49 Page: 1,
50 Conf: []string{"gophercon", "gopherconindia", "go china"}}
51 res1B, _ := json.Marshal(res1D)
52 fmt.Println(string(res1B))
53
54 // You can use tags on struct field declarations to
55 // customize the encoded JSON key names. Check the
56 // definition of Response2 above to see an example of
57 // such tags.
58 res2D := &Response2{
59 Page: 1,
60 Conf: []string{"gophercon", "gopherconindia", "go china"}}
61 res2B, _ := json.Marshal(res2D)
62 fmt.Println(string(res2B))
63 }

The output is:

false
3
87.23
"go class"
["gophercon","gopherconindia","go china"]
{"franklin":7,"pune":5}
{"Page":1,"Conf":["gophercon","gopherconindia","go china"]}
{"page":1,"conf":["gophercon","gopherconindia","go china"]}

 Tip:

 The json package only accesses the exported fields of
struct types (those that begin with an uppercase letter).
 Therefore only the exported fields of a struct will be
present in the JSON output.

 Errors are less common during marshals, but they can occur if Go can’t figure out how to convert one of your types to JSON. For example if you try to marshal something containing a nil pointer.

 If you don’t want to deal with handling errors in every marshal, and marshal errors are suitably uncommon, one option is to convert errors into panics with a MustMarshal function:

func MustMarshal(data interface{}) []byte {
 out, err := json.Marshal(data)
 if err != nil {
 panic(err)
 }

 return out
}

1.2.3 Decoding

To decode JSON data we use the Unmarshal function.

 func Unmarshal(data []byte, v interface{}) error

We must first create a place where the decoded data will be stored.

 var m Message

and call json.Unmarshal, passing it a []byte of JSON data and a pointer to m.

 err := json.Unmarshal(b, &m)

If b contains valid JSON that fits in m, after the call err will be nil and the data from b will have been stored in the struct m, as if by an assignment like:

1 m = Message {
2 Name: "Alice",
3 Body: "Hello",
4 Time: 1294706395881547000,
5 }

How does Unmarshal identify the fields in which to store the decoded data? For a given JSON key “Foo”, Unmarshal will look through the destination struct’s fields to find (in order of preference):

 	An exported field with a tag of “Foo” (see the Go spec for more on struct tags),

 	An exported field named “Foo”, or

 	An exported field named “FOO” or “FoO” or some other case-insensitive match of “Foo”.

What happens when the structure of the JSON data doesn’t exactly match the Go type?

1 b := []byte(`{"Name":"Bob","Food":"Pickle"}`)
2 var m Message
3 err := json.Unmarshal(b, &m)

Unmarshal will decode only the fields that it can find in the destination type. In this case, only the Name field of m will be populated, and the Food field will be ignored. This behavior is particularly useful when you wish to pick only a few specific fields out of a large JSON blob. It also means that any unexported fields in the destination struct will be unaffected by Unmarshal.

Unmarshal stores in the interface value: map[string]interface{}, for JSON objects.

Here’s an example:

 Program: json6.go

 1 package main
 2
 3 import (
 4 "encoding/json"
 5 "fmt"
 6)
 7
 8 type Response2 struct {
 9 Page int `json:"page"`
10 Conf []string `json:"conf"`
11 }
12
13 func main() {
14 // We can also decode JSON into custom data types.
15 // This has the advantages of adding additional
16 // type-safety to our programs and eliminating the
17 // need for type assertions when accessing the decoded data.
18 // `Unmarshal` will decode only the fields that it can find
19 // in the destination type. In this case, only the Page and
20 // Conf field of res will be populated, and the Food field
21 // will be ignored.
22 str := `{"page": 1, "conf": ["gophercon", "gopherconindia"], "Food":"Pickle"}`
23 res := &Response2{}
24 json.Unmarshal([]byte(str), &res)
25 fmt.Println(res)
26 fmt.Println(res.Conf[0])
27 }

The output is:

&{1 [gophercon gopherconindia]}
gophercon

1.2.4 Streaming Encoders and Decoders

The json package provides Decoder and Encoder types to support the common operation of reading and writing streams of JSON data. The NewDecoder and NewEncoder functions wrap the io.Reader and io.Writer interface types.

 func NewDecoder(r io.Reader) *Decoder

 func NewEncoder(w io.Writer) *Encoder

 func (enc *Encoder) Encode(v interface{}) error

Encode1 writes the JSON encoding of v to the stream, followed by a newline character.

 func (dec *Decoder) Decode(v interface{}) error

Decode2 reads the next JSON-encoded value from its input and stores it in the value pointed to by v.

 A Rule of thumb is this:

 	Use json.Decoder if your data is coming from an io.Reader stream, or you need to decode multiple values from a stream of data.

 	Use json.Unmarshal if you already have the JSON data in memory.

 For the case of reading from an HTTP request, pick json.Decoder since you’re obviously reading from a stream.

Previously, to encode JSON data we had used the Marshal function.

 Program: json1.go

 1 package main
 2
 3 import (
 4 "encoding/json"
 5 "fmt"
 6)
 7
 8 type User struct {
 9 	UserName string
10 	EmailID string
11 	Password string
12 }
13
14 func main() {
15 	u := User{UserName: "IndianGuru", EmailID: "satishtalim@gmail.com", Password: "password"}
16 	m, _ := json.Marshal(u)
17 	fmt.Println(string(m))
18 }

The output was:

{"UserName":"IndianGuru","EmailID":"satishtalim@gmail.com","Password":"password"}

Let’s rewrite the above program using json.NewEncoder as follows:

 Program: json7.go

 1 package main
 2
 3 import (
 4 "encoding/json"
 5 "log"
 6 "os"
 7)
 8
 9 type User struct {
10 	UserName string
11 	EmailID string
12 	Password string
13 }
14
15 func main() {
16 	u := User{UserName: "IndianGuru", EmailID: "satishtalim@gmail.com", Password: "password"}
17 	
18 	// Replace the following lines of json1.go
19 	// m, _ := json.Marshal(u)
20 	// fmt.Println(string(m))
21 	// with:
22 	enc := json.NewEncoder(os.Stdout)
23 	if err := enc.Encode(u); err != nil {
24 log.Println(err)
25 }
26 }

The output is the same as before:

{"UserName":"IndianGuru","EmailID":"satishtalim@gmail.com","Password":"password"}

These Encoder and Decoder types can be used in a broad range of scenarios, such as reading and writing to HTTP connections, WebSockets, or files.

1.3 A Fun, Weather Forecast Go Web App

We shall build a fun Go app that displays the current weather forecast for a given city.

1.3.1 Register for an account at Forecast for Developers

Go to https://developer.forecast.io/register3 and register for an account. We shall use their free plan that allows us to use 1000 calls to their API per day. As such, there is no need to enter your credit card details. Also, this page gives you your very own API key that you will use in your program.

1.3.1.1 Study the API documentation

We need to read thro’ the API documentation4 of the Forecast for Developers.

Very briefly:

 The Forecast Call

 https://api.forecast.io/forecast/APIKEY/LATITUDE,LONGITUDE?units=ca

APIKEY should be your API key as mentioned above. LATITUDE and LONGITUDE should be the geographic coordinates of a location in decimal degrees.

The response will be a JSON-formatted object with the following properties defined:

 	
latitude: The requested latitude.

 	
longitude: The requested longitude.

 	
timezone: The timezone name for the requested location (e.g. America/New_York).

 	
offset: The current timezone offset in hours from GMT.

 	
currently: A data point (see below) containing the current weather conditions at the requested location.

The following JSON Schema of the API is very informative - forecast.json5

 Data Points

A data point object represents the various weather phenomena occurring at a specific instant of time, and has many varied properties. All of these properties (except time) are optional, and will only be set if we have that type of information for that location and time.

The following JSON Schema of the API is very informative - datapoint.json6

We shall use the two schema (datapoint.json and forecast.json) in our program.

Let us define our structs DataPoint and Forecast based on these two schema as follows:

 1 type DataPoint struct {
 2 Time float64
 3 Summary string
 4 Icon string
 5 SunriseTime float64
 6 SunsetTime float64
 7 PrecipIntensity float64
 8 PrecipIntensityMax float64
 9 PrecipIntensityMaxTime float64
10 PrecipProbability float64
11 PrecipType string
12 PrecipAccumulation float64
13 Temperature float64
14 TemperatureMin float64
15 TemperatureMinTime float64
16 TemperatureMax float64
17 TemperatureMaxTime float64
18 DewPoint float64
19 WindSpeed float64
20 WindBearing float64
21 CloudCover float64
22 Humidity float64
23 Pressure float64
24 Visibility float64
25 Ozone float64
26 }
27
28 type Forecast struct {
29 Latitude float64
30 Longitude float64
31 Timezone string
32 Offset float64
33 Currently DataPoint
34 Junk string
35 }

 Understanding url query string

A query string is a part of an URL that contains data that can be passed to web applications. This data needs to be encoded, and this encoding is done using url.QueryEscape. It performs what is also commonly called URL encoding7.

1 // addr is a string which contains our address
2 addr := "Pune,India"
3
4 // QueryEscape escapes the addr string so
5 // it can be safely placed inside a URL query
6 safeAddr := url.QueryEscape(addr)
7 fmt.Println(safeAddr) // Pune%2CIndia

With url.QueryEscape our address “Pune,India” becomes “Pune%2CIndia” where %2C is the ASCII keycode in hexadecimal for a comma (,).

 The Google Geocoding API

We shall use The Google Geocoding API8 to help us convert addresses (like “1600 Amphitheatre Parkway, Mountain View, CA”) into geographic coordinates (like latitude 37.423021 and longitude -122.083739).

To access the Geocoding API over HTTP, use:

 http://maps.googleapis.com/maps/api/geocode/output?parameters

where output may be either of the following values:

 	json (recommended) indicates output in JavaScript Object Notation (JSON)

 	xml indicates output as XML

Some parameters are required while some are optional. As is standard in URLs, parameters are separated using the ampersand (&) character.

Required parameters in a geocoding request:

address — The street address that you want to geocode, in the format used by the national postal service of the country concerned. Additional address elements such as business names and unit, suite or floor numbers should be avoided.

We are not using any optional parameters in our geocoding request.

1 // Geocoding API
2 fullUrl := fmt.Sprintf("http://maps.googleapis.com/maps/api/geocode/json?address=%s", safe\
3 Addr)
4 fmt.Println(fullUrl)

The output is:

http://maps.googleapis.com/maps/api/geocode/json?address=Pune%2C+India

In your browser, open the site http://maps.googleapis.com/maps/api/geocode/json?address=Pune%2C+India the browser output is a huge blob of JSON. This may be difficult to look at in the browser, unless you have the JSONView plugin installed. These extensions are available for Firefox9 and Chrome10. With the extension installed you should be able to see a better view of the JSON returned.

 Build the http request

 func NewRequest(method, urlStr string, body io.Reader) (*Request, error)

NewRequest11 returns a new Request given a method, URL, and an optional body.

1 // Build the http request
2 req, err1 := http.NewRequest("GET", fullUrl, nil)
3 check(err1, "NewRequest:")

Also, we write a check function that checks for errors, if any:

1 func check(e error, str string) {
2 if e != nil {
3 log.Fatal(str, " ", e)
4 return
5 }
6 }

 Create a Client

For control over HTTP client headers, redirect policy, and other settings, create a Client12. A Client is an HTTP client:

 client := &http.Client{}

 Send the request via a client

 func (c *Client) Do(req *Request) (resp *Response, err error)

Do sends an HTTP request and returns an HTTP response.

1 resp, err2 := client.Do(req)
2 check(err2, "Do:")
3
4 // Callers should close resp.Body
5 // when done reading from it
6 // Defer the closing of the body
7 defer resp.Body.Close()

 Create a Response struct

Observe the JSON output when you open the site http://maps.googleapis.com/maps/api/geocode/json?address=Pune%2C+India in your browser. There is a results array, within which there is geometry, then location which finally contains lat and lng.

Therefore let’s define our struct as follows:

 1 type Response struct {
 2 Results []struct {
 3 Geometry struct {
 4 Location struct {
 5 Lat float64
 6 Lng float64
 7 }
 8 }
 9 }
10 }

 Tip

 Many-a-times the JSON can be very unreadable and large. There is a website created by Matthew Holt to create a struct automatically.
Convert JSON to Go struct13.

 Use a streaming Decoder

1 // Use json.Decode for reading streams of JSON data
2 if err := json.NewDecoder(resp.Body).Decode(&res); err != nil {
3 log.Println(err)
4 }

 Extract the latitude and logitude

1 // lat, lng as float64
2 lat := res.Results[0].Geometry.Location.Lat
3 lng := res.Results[0].Geometry.Location.Lng

 Use the Forecast API

Declare a global constant APIKey as:
const APIKey string = "yourapikey"

safeLatLng := url.QueryEscape(fmt.Sprintf("%.13f,%.13f", lat, lng))
url := fmt.Sprintf("https://api.forecast.io/forecast/%s/%s?units=ca", APIKey, safeLatLng)

 	Remember to replace APIKey above with your actual api key.

 	
%.13f is used to convert float64 to a string

 	
?units=ca - the API request was optionally modified through the use of query parameter units=ca will return temperatures in degrees Celsius.

 Use http.Get

 func Get(url string) (resp *Response, err error)

Get14 issues a GET to the specified URL.

1 resp, err := http.Get(url)
2 check(err, "Get:")
3 defer resp.Body.Close()

 Use the Forecast struct to get the results

1 var f Forecast
2 if err := json.NewDecoder(resp.Body).Decode(&f); err != nil {
3 log.Println(err)
4 }
5
6 fmt.Println("The Weather at ", addr)
7 fmt.Println("Timezone = ", f.Timezone)
8 fmt.Println("Temp in Celsius = ", f.Currently.Temperature)
9 fmt.Println("Summary = ", f.Currently.Summary)

Here’s the full program:

 Program: weather.go

 1 package main
 2
 3 import (
 4 	"encoding/json"
 5 	"fmt"
 6 	"log"
 7 	"net/http"
 8 	"net/url"
 9)
 10
 11 type DataPoint struct {
 12 	Time float64
 13 	Summary string
 14 	Icon string
 15 	SunriseTime float64
 16 	SunsetTime float64
 17 	PrecipIntensity float64
 18 	PrecipIntensityMax float64
 19 	PrecipIntensityMaxTime float64
 20 	PrecipProbability float64
 21 	PrecipType string
 22 	PrecipAccumulation float64
 23 	Temperature float64
 24 	TemperatureMin float64
 25 	TemperatureMinTime float64
 26 	TemperatureMax float64
 27 	TemperatureMaxTime float64
 28 	DewPoint float64
 29 	WindSpeed float64
 30 	WindBearing float64
 31 	CloudCover float64
 32 	Humidity float64
 33 	Pressure float64
 34 	Visibility float64
 35 	Ozone float64
 36 }
 37
 38 type Forecast struct {
 39 	Latitude float64
 40 	Longitude float64
 41 	Timezone string
 42 	Offset float64
 43 	Currently DataPoint
 44 	Junk string
 45 }
 46
 47 type Response struct {
 48 	Results []struct {
 49 		Geometry struct {
 50 			Location struct {
 51 				Lat float64
 52 				Lng float64
 53 			}
 54 		}
 55 	}
 56 }
 57
 58 // Replace the text `yourapikey` below with your actual api key
 59 const APIKey string = "yourapikey"
 60
 61 func main() {
 62 	Get()
 63 }
 64
 65 func check(e error, str string) {
 66 	if e != nil {
 67 		log.Fatal(str, " ", e)
 68 		return
 69 	}
 70 }
 71
 72 func Get() {
 73 	var addr string
 74
 75 	fmt.Println("Enter City eg. Pune, India: ")
 76 	fmt.Scanf("%s", &addr)
 77
 78 	// QueryEscape escapes the addr string so
 79 	// it can be safely placed inside a URL query
 80 	safeAddr := url.QueryEscape(addr)
 81
 82 	// Geocoding API
 83 	fullUrl := fmt.Sprintf("http://maps.googleapis.com/maps/api/geocode/json?address=%s", saf\
 84 eAddr)
 85
 86 	// Build the http request
 87 	req, err1 := http.NewRequest("GET", fullUrl, nil)
 88 	check(err1, "NewRequest:")
 89
 90 	// For control over HTTP client headers,
 91 	// redirect policy, and other settings,
 92 	// create a Client
 93 	// A Client is an HTTP client
 94 	client := &http.Client{}
 95
 96 	// Send the request via a client
 97 	// Do sends an HTTP request and
 98 	// returns an HTTP response
 99 	resp, err2 := client.Do(req)
100 	check(err2, "Do:")
101
102 	// Callers should close resp.Body
103 	// when done reading from it
104 	// Defer the closing of the body
105 	defer resp.Body.Close()
106
107 	var res Response
108
109 // Use json.Decode or json.Encode for reading or writing streams of JSON data
110 	if err := json.NewDecoder(resp.Body).Decode(&res); err != nil {
111 		log.Println(err)
112 	}
113
114 	// lat, lng as float64
115 	lat := res.Results[0].Geometry.Location.Lat
116 	lng := res.Results[0].Geometry.Location.Lng
117
118 	safeLatLng := url.QueryEscape(fmt.Sprintf("%.13f,%.13f", lat, lng))
119 	url := fmt.Sprintf("https://api.forecast.io/forecast/%s/%s?units=ca", APIKey, safeLatLng)
120
121 	resp, err := http.Get(url)
122 	check(err, "Get:")
123 	defer resp.Body.Close()
124
125 	var f Forecast
126
127 	if err := json.NewDecoder(resp.Body).Decode(&f); err != nil {
128 		log.Println(err)
129 	}
130
131 	fmt.Println("The Weather at ", addr)
132 	fmt.Println("Timezone = ", f.Timezone)
133 	fmt.Println("Temp in Celsius = ", f.Currently.Temperature)
134 	fmt.Println("Summary = ", f.Currently.Summary)
135 }

The output is:

Enter City eg. Pune, India:
Pune, India
The Weather at Pune,
Timezone = Asia/Kolkata
Temp in Celsius = 30.59
Summary = Mostly Cloudy

That’s it!

 	http://golang.org/pkg/encoding/json/#Encoder.Encode↩

 	http://golang.org/pkg/encoding/json/#Decoder.Decode↩

 	https://developer.forecast.io/register↩

 	https://developer.forecast.io/docs/v2↩

 	https://github.com/kingsfleet/rest-metadata/blob/master/forecast.io/forecast.json↩

 	https://github.com/kingsfleet/rest-metadata/blob/master/forecast.io/datapoint.json↩

 	http://en.wikipedia.org/wiki/Query_string#URL_encoding↩

 	https://developers.google.com/maps/documentation/geocoding/↩

 	https://addons.mozilla.org/en-us/firefox/addon/jsonview/↩

 	https://chrome.google.com/webstore/detail/jsonview/chklaanhfefbnpoihckbnefhakgolnmc↩

 	http://golang.org/pkg/net/http/#NewRequest↩

 	http://golang.org/pkg/net/http/#Client↩

 	http://mholt.github.io/json-to-go/↩

 	http://golang.org/pkg/net/http/#Get↩

OEBPS/images/leanpub_key.png

OEBPS/images/leanpub-logo.png
[

Leanpub

OEBPS/images/title_page.jpeg
Learn Go Programming

OEBPS/images/cc-by.png
() _®

