

Lean Thinking per sviluppatori
software impegnati

Daniele Teti

Version 2.0, 11 novembre 2025

Table of Contents
Introduzione . 1

Storico delle Revisioni . 3

Capitolo 1: Le origini e la filosofia LEAN . 4

La rivoluzione silenziosa di Toyota . 4

Dal metallo al codice: il salto evolutivo . 4

Metodologia, framework o filosofia? . 5

Il concetto rivoluzionario di valore. 6

I tre pilastri del pensiero Lean . 6

La differenza tra essere occupati ed essere produttivi. 7

Il paradosso della velocità . 7

L’ecosistema Lean . 8

Cosa abbiamo imparato in questo capitolo . 8

Introduzione
Questo libro è per voi se:

• Lavorate a tempo pieno come sviluppatori e avete poco tempo per studiare

metodologie complesse

• Volete risultati pratici e immediati, non teorie astratte

• Cercate modi per lavorare meglio senza aggiungere ore alla vostra giornata

• Siete stanchi di sprecare tempo in processi inefficienti e volete soluzioni

concrete

Immaginate di entrare in una fabbrica Toyota degli anni '50. Quello che

vedreste non sono solo operai che montano automobili, ma un ecosistema

dove ogni movimento ha un senso, ogni azione aggiunge valore e ogni spreco

viene eliminato senza pietà. Questo è il cuore del pensiero Lean: un approccio

rivoluzionario che ha trasformato l’industria manifatturiera e che oggi può

rivoluzionare il modo in cui sviluppiamo software.

Ma cosa significa davvero "pensare Lean"? Non è semplicemente seguire una

metodologia o applicare qualche strumento di project management. Il Lean

thinking è una filosofia profonda che cambia il modo in cui vediamo il lavoro,

il valore e il miglioramento continuo. È come indossare un nuovo paio di

occhiali: improvvisamente iniziate a vedere sprechi che prima erano invisibili,

opportunità di miglioramento che sembravano impossibili e modi più efficaci

di creare valore per i vostri utenti.

Nel mondo dello sviluppo software, dove la complessità cresce

esponenzialmente e le richieste del mercato cambiano continuamente, i

principi Lean offrono una bussola per navigare in questa tempesta. Che

sviluppiate web application con Django, API REST con FastAPI, microservizi, o

applicazioni data-driven, i principi sono universali ma le applicazioni possono

essere sorprendentemente specifiche e pratiche.

Perché questo libro è diverso:

Questo libro è pensato specificamente per sviluppatori che lavorano a tempo

Daniele Teti | Introduzione - 1

pieno. Ogni capitolo è strutturato per essere letto in 20-30 minuti, con esempi

che potete applicare immediatamente nel vostro lavoro quotidiano. Non

troverete teorie astratte, ma esempi concreti in Python, scenari realistici e

soprattutto un approccio pragmatico che potete iniziare ad applicare da

domani mattina - anche se avete solo 15 minuti al giorno da dedicarci.



Il Lean non è solo un metodo, ma un modo di pensare. È la

differenza tra seguire delle regole e comprendere il perché

dietro ogni azione.

Nei prossimi capitoli esploreremo le origini del pensiero Lean, partendo dalle

fabbriche Toyota per arrivare alle moderne software house. Scopriremo i

principi fondamentali e come questi si traducono in pratiche quotidiane per

uno sviluppatore. Vedremo esempi specifici in Python, analizzeremo strumenti

pratici come Kanban e Value Stream Mapping, e soprattutto svilupperemo quel

mindset Lean che fa la differenza tra un programmatore e un vero problem

solver.



Non serve adottare tutto in blocco: puoi iniziare con piccoli

passi. Il viaggio Lean è un percorso di miglioramento continuo,

non una destinazione finale.

L’obiettivo di questo libro non è solo insegnarvi cosa fare, ma aiutarvi a

sviluppare quella sensibilità per riconoscere gli sprechi, quella capacità di

vedere il flusso del valore e quella disciplina nel miglioramento continuo che

caratterizzano i migliori team di sviluppo del mondo.

Preparatevi a cambiare il vostro modo di vedere il codice, i processi e

soprattutto il valore che create ogni giorno. Il viaggio verso il pensiero Lean

inizia ora.



Gli esempi e i casi d’uso presentati sono basati su principi

consolidati e best practices. Gli scenari descritti rappresentano

situazioni tipiche incontrate nell’applicazione dei principi LEAN

e SOLID nello sviluppo software, non necessariamente eventi

singoli verificabili nei dettagli specifici presentati.

2 - Introduzione | Daniele Teti

Storico delle Revisioni

Version

e

Data Modifiche

2.0 11 novembre 2025 • Conversione completa formattazione da

Markdown ad AsciiDoc (titoli, code blocks,

tabelle)

• Completamento esempi Python con

implementazione metodi mancanti

• Correzione tabelle con unità esplicite e

formattazione migliorata

• Rimozione anglicismi italianizzati (buildate

→ compilate, ecc.)

• Sostituzione checkbox con liste puntate

standard

• Conversione diagrammi e sequenze lunghe

in tabelle leggibili

• Aggiunta sezioni "Cosa Abbiamo Imparato"

alla fine di ogni capitolo

• Correzione liste di definizioni in appendice

con formattazione coerente

• Miglioramento gerarchia visiva con

intestazioni appropriate

• Aggiunta tool Kanban open source (Wekan,

Taiga, Kanboard, Focalboard)

• Chiarificazione metriche con linguaggio

naturale italiano

1.0 26 ottobre 2025 Prima edizione del libro

Daniele Teti | Storico delle Revisioni - 3

Capitolo 1: Le origini e la filosofia LEAN

La rivoluzione silenziosa di Toyota

Era il 1950 quando Taiichi Ohno, un ingegnere giapponese della Toyota, si

trovava di fronte a un problema apparentemente impossibile. Il Giappone del

dopoguerra aveva risorse limitate, mercati piccoli e frammentati, e doveva

competere con i giganti americani dell’automobile che producevano centinaia

di migliaia di auto identiche.

La soluzione tradizionale sarebbe stata copiare il modello americano della

produzione di massa. Invece, Ohno fece qualcosa di rivoluzionario: ribaltò

completamente la prospettiva. Invece di concentrarsi sulla massimizzazione

della produzione, si concentrò sulla minimizzazione degli sprechi. Invece di

produrre grandi lotti di auto sperando di venderle, decise di produrre solo

quello che i clienti volevano, quando lo volevano.

Nacque così il Toyota Production System (TPS), che in seguito sarebbe

diventato il fondamento del pensiero Lean. Ma la vera rivoluzione non era

negli strumenti o nelle tecniche: era in un modo completamente nuovo di

pensare al lavoro e al valore.



Ohno capì che il vero nemico non era la concorrenza, ma lo

spreco. Ogni minuto sprecato, ogni movimento inutile, ogni

difetto era un’opportunità persa di creare valore per il cliente.

Dal metallo al codice: il salto evolutivo

Potreste chiedervi: cosa c’entra una fabbrica di automobili con lo sviluppo

software? La risposta è più profonda di quanto possiate immaginare. Sia

nell’assemblaggio di un’auto che nella scrittura di codice, stiamo trasformando

materie prime (componenti fisici o requisiti logici) in prodotti finiti che devono

soddisfare bisogni specifici dei clienti.

Mary e Tom Poppendieck furono i primi a riconoscere questo parallelismo nel

loro libro pionieristico "Lean Software Development". Osservarono che molti

4 - La rivoluzione silenziosa di Toyota | Daniele Teti

dei "sprechi" identificati da Toyota esistevano anche nello sviluppo software,

spesso in forme ancora più insidiose.

Considerate questo esempio: in una fabbrica, quando una macchina si rompe,

tutti se ne accorgono immediatamente. Nel software, quando un pezzo di

codice è mal progettato o difficile da mantenere, il "guasto" può rimanere

nascosto per mesi o anni, accumulando debito tecnico come una malattia

silenziosa.

Nel mondo del software, questo si manifesta spesso in forme specifiche:

moduli mal strutturati con centinaia di linee, dipendenze tight-coupled tra

interfaccia utente e business logic, query SQL hardcoded che rendono

impossibile l’evoluzione del database. Tutti sprechi che funzionano

nell’immediato ma costano enormemente nel lungo periodo.

Metodologia, framework o filosofia?

Prima di addentrarci nei dettagli, è fondamentale chiarire cosa non è il Lean

thinking. Non è una metodologia rigida con passi predefiniti da seguire. Non è

un framework con ruoli e cerimonie specifiche. È qualcosa di più profondo:

una filosofia, un modo di vedere il mondo del lavoro.

Pensate alla differenza tra imparare le regole del poker e sviluppare l’intuito

del giocatore esperto. Le regole le potete memorizzare in un’ora, ma l’intuito si

sviluppa attraverso anni di pratica consapevole. Il Lean thinking è più simile

all’intuito del giocatore esperto: una sensibilità sviluppata che vi permette di

"sentire" quando qualcosa non sta funzionando nel vostro processo di

sviluppo.



Il Lean thinking non sostituisce metodologie come Scrum o

Kanban, ma le potenzia. È come avere una lente di

ingrandimento che vi permette di vedere opportunità di

miglioramento in qualsiasi processo stiate usando.

Daniele Teti | Metodologia, framework o filosofia? - 5

Il concetto rivoluzionario di valore

La prima domanda che il pensiero Lean ci insegna a porci non è "come

possiamo fare questo più velocemente?" ma "dovremmo proprio farlo?".

Questa distinzione è cruciale. Tradizionalmente, nel software come in altri

settori, ci concentriamo sull’efficienza: fare le cose nel modo giusto. Il Lean

thinking ci spinge verso l’efficacia: fare le cose giuste.

Ma cosa determina se qualcosa è "giusto"? La risposta è il valore per il cliente

finale. Non quello che noi sviluppatori pensiamo sia importante, non quello

che il management richiede, ma quello per cui il cliente è disposto a pagare o

che risolve un suo problema reale.

Facciamo un esempio concreto. Immaginate di stare sviluppando un’API REST

con FastAPI o Django. Potreste passare settimane a implementare un sistema

di logging sofisticatissimo con 15 livelli di dettaglio, serializzazione JSON

personalizzata, e rotazione automatica dei file. Dal punto di vista tecnico è

magnifico, mostra la vostra competenza e vi dà soddisfazione personale. Ma se

l’utente finale non ha mai bisogno di consultare questi log dettagliati, state

creando valore o spreco?

La risposta Lean è chiara: se non aggiunge valore per il cliente finale, è spreco,

indipendentemente da quanto sia tecnicamente elegante.

I tre pilastri del pensiero Lean

Il Lean thinking si regge su tre pilastri fondamentali:

Rispetto per le persone: Non parliamo di cortesia formale, ma di un rispetto

profondo per l’intelligenza e la creatività di ogni membro del team. Nel

contesto software, questo significa riconoscere che il programmatore junior

potrebbe avere l’insight che risolve un problema su cui il senior architect si sta

scervellando da giorni.

Miglioramento continuo (Kaizen): Non esiste il software perfetto, non

esistono processi perfetti. Esiste solo il miglioramento costante, incrementale,

guidato dall’osservazione e dalla sperimentazione. Una riflessione comune tra

6 - Il concetto rivoluzionario di valore | Daniele Teti

sviluppatori esperti è che "il codice perfetto è quello che non abbiamo ancora

scritto".

Focus a lungo termine: Le decisioni non vengono prese solo in base ai

risultati del trimestre corrente, ma considerando l’impatto a lungo termine

sulla qualità del prodotto, sulla soddisfazione del team e sulla sostenibilità del

processo di sviluppo.



Attenzione a non confondere il Lean thinking con l’approccio

"quick and dirty". Il Lean non significa tagliare la qualità per

andare più veloci, ma eliminare tutto ciò che non aggiunge

valore per andare più veloci mantenendo la qualità.

La differenza tra essere occupati ed essere
produttivi

Una delle illuminazioni più potenti del pensiero Lean riguarda la distinzione

tra essere occupati e essere produttivi. Nell’industria software, è facile cadere

nella trappola dell’attivismo: meeting continui, refactoring infiniti, aggiunta di

feature "per sicurezza", over-engineering di soluzioni semplici.

Il pensiero Lean ci insegna a distinguere tra movimento e progresso.

Movimento è scrivere mille righe di codice al giorno. Progresso è risolvere il

problema del cliente con dieci righe di codice perfettamente mirate.

Questa distinzione diventa particolarmente evidente nello sviluppo software.

Un approccio eccessivamente compatto può sembrare più efficiente, ma la

chiarezza e la manutenibilità del codice rappresentano un valore enorme a

lungo termine. Un modulo Python di 50 righe ben strutturate e leggibili è più

produttivo di 200 righe di codice compatto ma incomprensibile.

Il paradosso della velocità

Uno dei paradossi più interessanti del Lean thinking è che per andare più

veloci, spesso dobbiamo prima rallentare. Questo concetto può sembrare

controintuitivo, ma ha radici profonde nella teoria dei sistemi.

Daniele Teti | La differenza tra essere occupati ed essere produttivi - 7

Immaginate un team che rilascia feature velocemente ma con molti bug. Il

tempo risparmiato nella fase di sviluppo viene perso moltiplicato nella fase di

manutenzione e correzione. Il risultato netto è che il team va più lento, non

più veloce.

Il Lean thinking ci insegna a ottimizzare il sistema nel suo insieme, non le

singole parti. Questo significa che a volte è meglio investire tempo extra

nell’architettura, nei test automatizzati e nella documentazione, perché questi

investimenti pagheranno dividendi enormi nel lungo periodo.

L’ecosistema Lean

È importante capire che il Lean thinking non opera in isolamento. È parte di

un ecosistema più ampio che include metodologie agili, pratiche DevOps, e

approcci come il Domain-Driven Design. Tutti questi approcci condividono

alcuni principi fondamentali: focus sul valore per il cliente, collaborazione

stretta, adattabilità al cambiamento e miglioramento continuo.

Nel lavoro quotidiano con framework come Django o FastAPI, i principi Lean

si integrano naturalmente con l’architettura MVC/MVT. La separazione delle

responsabilità tipica di questi pattern è, in sostanza, un’applicazione del

principio Lean di eliminazione degli sprechi: ogni componente ha una

responsabilità specifica e non duplica funzionalità presenti altrove.

Il viaggio nel pensiero Lean inizia con una trasformazione mentale: da "come

posso fare di più?" a "come posso creare più valore con meno spreco?". Questa

semplice inversione di prospettiva può rivoluzionare il vostro approccio allo

sviluppo software.

Nel prossimo capitolo, esploreremo i principi fondamentali che guidano

questa trasformazione, fornendo gli strumenti concettuali per riconoscere il

valore e identificare gli sprechi nel vostro lavoro quotidiano.

Cosa abbiamo imparato in questo capitolo

• Il Lean thinking nasce dal Toyota Production System negli anni '50,

rivoluzionando la produzione industriale

8 - L’ecosistema Lean | Daniele Teti

• Il Lean non è una metodologia rigida ma una filosofia basata su

miglioramento continuo e rispetto per le persone

• I tre pilastri fondamentali sono: Valore (definito dal cliente), Flow

(eliminare interruzioni), Miglioramento continuo (Kaizen)

• La distinzione cruciale: essere occupati ≠ essere produttivi. Il paradosso

della velocità dimostra che fare meno cose simultaneamente porta a finire

più velocemente

• Il Lean si integra naturalmente con pratiche Agile, DevOps e pattern

architetturali come MVC/MVT

• La trasformazione mentale chiave: da "fare di più" a "creare più valore con

meno spreco"

Il Testo Prosegue Nella Versione Completa del Libro

Daniele Teti | Cosa abbiamo imparato in questo capitolo - 9

	Lean Thinking per sviluppatori software impegnati
	Table of Contents
	Introduzione
	Storico delle Revisioni
	Capitolo 1: Le origini e la filosofia LEAN
	La rivoluzione silenziosa di Toyota
	Dal metallo al codice: il salto evolutivo
	Metodologia, framework o filosofia?
	Il concetto rivoluzionario di valore
	I tre pilastri del pensiero Lean
	La differenza tra essere occupati ed essere produttivi
	Il paradosso della velocità
	L’ecosistema Lean
	Cosa abbiamo imparato in questo capitolo

