DANIELE TETI

LEAN
THINKING

PER SVILUPPATORI
SOFTWARE IMPEGNATI

DALLE FABBRICHE GIAPPONESI ALLO
SVILUPPO SOFTWARE:
| 5 PASSI NECESSARI PER ELIMINARE GLI
SPRECHI E PRODURRE PIU VALORE

Lean Thinking per sviluppatori
software impegnati

Daniele Teti

Version 2.0, 11 novembre 2025

Table of Contents

Introduzione

Storico delle Revisioni

Capitolo 1: Le origini e la filosofia LEAN
La rivoluzione silenziosa di Toyota
Dal metallo al codice: il salto evolutivo
Metodologia, framework o filosofia?
Il concetto rivoluzionario di valore
I tre pilastri del pensiero Lean
La differenza tra essere occupati ed essere produttivi
I1 paradosso della velocita
L’ecosistema Lean

Cosa abbiamo imparato in questo capitolo

0 00 I 0 O O Ul ke W e

Introduzione

Questo libro e per voi se:

» Lavorate a tempo pieno come sviluppatori e avete poco tempo per studiare

metodologie complesse

Volete risultati pratici e immediati, non teorie astratte

» Cercate modi per lavorare meglio senza aggiungere ore alla vostra giornata

Siete stanchi di sprecare tempo in processi inefficienti e volete soluzioni

concrete

Immaginate di entrare in una fabbrica Toyota degli anni '50. Quello che
vedreste non sono solo operai che montano automobili, ma un ecosistema
dove ogni movimento ha un senso, ogni azione aggiunge valore e ogni spreco
viene eliminato senza pieta. Questo ¢ il cuore del pensiero Lean: un approccio
rivoluzionario che ha trasformato I'industria manifatturiera e che oggi puo

rivoluzionare il modo in cui sviluppiamo software.

Ma cosa significa davvero "pensare Lean"? Non € semplicemente seguire una
metodologia o applicare qualche strumento di project management. Il Lean
thinking e una filosofia profonda che cambia il modo in cui vediamo il lavoro,
il valore e il miglioramento continuo. E come indossare un nuovo paio di
occhiali: improvvisamente iniziate a vedere sprechi che prima erano invisibili,
opportunita di miglioramento che sembravano impossibili e modi piu efficaci

di creare valore per i vostri utenti.

Nel mondo dello sviluppo software, dove la complessita cresce
esponenzialmente e le richieste del mercato cambiano continuamente, i
principi Lean offrono una bussola per navigare in questa tempesta. Che
sviluppiate web application con Django, API REST con FastAPI, microservizi, o
applicazioni data-driven, i principi sono universali ma le applicazioni possono

essere sorprendentemente specifiche e pratiche.
Perché questo libro e diverso:

Questo libro é pensato specificamente per sviluppatori che lavorano a tempo

Daniele Teti | Introduzione - 1

pieno. Ogni capitolo é strutturato per essere letto in 20-30 minuti, con esempi
che potete applicare immediatamente nel vostro lavoro quotidiano. Non
troverete teorie astratte, ma esempi concreti in Python, scenari realistici e
soprattutto un approccio pragmatico che potete iniziare ad applicare da

domani mattina - anche se avete solo 15 minuti al giorno da dedicarci.

I1 Lean non € solo un metodo, ma un modo di pensare. E la
o differenza tra seguire delle regole e comprendere il perché

dietro ogni azione.

Nei prossimi capitoli esploreremo le origini del pensiero Lean, partendo dalle
fabbriche Toyota per arrivare alle moderne software house. Scopriremo i
principi fondamentali e come questi si traducono in pratiche quotidiane per
uno sviluppatore. Vedremo esempi specifici in Python, analizzeremo strumenti
pratici come Kanban e Value Stream Mapping, e soprattutto svilupperemo quel

mindset Lean che fa la differenza tra un programmatore e un vero problem

solver.
Non serve adottare tutto in blocco: puoi iniziare con piccoli
(2 . . . N . T .
O passi. Il viaggio Lean € un percorso di miglioramento continuo,
w

non una destinazione finale.

L’obiettivo di questo libro non é solo insegnarvi cosa fare, ma aiutarvi a
sviluppare quella sensibilita per riconoscere gli sprechi, quella capacita di
vedere il flusso del valore e quella disciplina nel miglioramento continuo che

caratterizzano 1 migliori team di sviluppo del mondo.

Preparatevi a cambiare il vostro modo di vedere il codice, i processi e
soprattutto il valore che create ogni giorno. Il viaggio verso il pensiero Lean

inizia ora.

Gli esempi e i casi d’'uso presentati sono basati su principi
consolidati e best practices. Gli scenari descritti rappresentano

o situazioni tipiche incontrate nell’applicazione dei principi LEAN
e SOLID nello sviluppo software, non necessariamente eventi
singoli verificabili nei dettagli specifici presentati.

2 - Introduzione | Daniele Teti

Storico delle Revisioni

Version Data

e

2.0

1.0

11 novembre 2025

26 ottobre 2025

Modifiche

Conversione completa formattazione da
Markdown ad AsciiDoc (titoli, code blocks,
tabelle)

Completamento esempi Python con

implementazione metodi mancanti

Correzione tabelle con wunita esplicite e

formattazione migliorata

Rimozione anglicismi italianizzati (buildate

- compilate, ecc.)

Sostituzione checkbox con liste puntate

standard

Conversione diagrammi e sequenze lunghe

in tabelle leggibili

Aggiunta sezioni "Cosa Abbiamo Imparato"

alla fine di ogni capitolo

Correzione liste di definizioni in appendice

con formattazione coerente

Miglioramento gerarchia visiva con

intestazioni appropriate

Aggiunta tool Kanban open source (Wekan,

Taiga, Kanboard, Focalboard)

Chiarificazione metriche con linguaggio

naturale italiano

Prima edizione del libro

Daniele Teti | Storico delle Revisioni - 3

Capitolo 1: Le origini e la filosofia LEAN

La rivoluzione silenziosa di Toyota

Era il 1950 quando Taiichi Ohno, un ingegnere giapponese della Toyota, si
trovava di fronte a un problema apparentemente impossibile. Il Giappone del
dopoguerra aveva risorse limitate, mercati piccoli e frammentati, e doveva
competere con i giganti americani dell’lautomobile che producevano centinaia

di migliaia di auto identiche.

La soluzione tradizionale sarebbe stata copiare il modello americano della
produzione di massa. Invece, Ohno fece qualcosa di rivoluzionario: ribalto
completamente la prospettiva. Invece di concentrarsi sulla massimizzazione
della produzione, si concentro sulla minimizzazione degli sprechi. Invece di
produrre grandi lotti di auto sperando di venderle, decise di produrre solo

quello che i clienti volevano, quando lo volevano.

Nacque cosi il Toyota Production System (TPS), che in seguito sarebbe
diventato il fondamento del pensiero Lean. Ma la vera rivoluzione non era
negli strumenti o nelle tecniche: era in un modo completamente nuovo di

pensare al lavoro e al valore.

Ohno capi che il vero nemico non era la concorrenza, ma lo
o spreco. Ogni minuto sprecato, ogni movimento inutile, ogni

difetto era un’opportunita persa di creare valore per il cliente.

Dal metallo al codice: il salto evolutivo

Potreste chiedervi: cosa c’entra una fabbrica di automobili con lo sviluppo
software? La risposta € piu profonda di quanto possiate immaginare. Sia
nell’assemblaggio di un’auto che nella scrittura di codice, stiamo trasformando
materie prime (componenti fisici o requisiti logici) in prodotti finiti che devono

soddisfare bisogni specifici dei clienti.

Mary e Tom Poppendieck furono i primi a riconoscere questo parallelismo nel

loro libro pionieristico "Lean Software Development". Osservarono che molti

4 - La rivoluzione silenziosa di Toyota | Daniele Teti

dei "sprechi" identificati da Toyota esistevano anche nello sviluppo software,

spesso in forme ancora piu insidiose.

Considerate questo esempio: in una fabbrica, quando una macchina si rompe,
tutti se ne accorgono immediatamente. Nel software, quando un pezzo di
codice &€ mal progettato o difficile da mantenere, il "guasto” puo rimanere
nascosto per mesi o anni, accumulando debito tecnico come una malattia

silenziosa.

Nel mondo del software, questo si manifesta spesso in forme specifiche:
moduli mal strutturati con centinaia di linee, dipendenze tight-coupled tra
interfaccia utente e business logic, query SQL hardcoded che rendono
impossibile P'evoluzione del database. Tutti sprechi che funzionano

nell’immediato ma costano enormemente nel lungo periodo.

Metodologia, framework o filosofia?

Prima di addentrarci nei dettagli, € fondamentale chiarire cosa non é il Lean
thinking. Non e una metodologia rigida con passi predefiniti da seguire. Non &
un framework con ruoli e cerimonie specifiche. E qualcosa di pit profondo:

una filosofia, un modo di vedere il mondo del lavoro.

Pensate alla differenza tra imparare le regole del poker e sviluppare l'intuito
del giocatore esperto. Le regole le potete memorizzare in un’ora, ma l'intuito si
sviluppa attraverso anni di pratica consapevole. Il Lean thinking e piu simile
all’intuito del giocatore esperto: una sensibilita sviluppata che vi permette di

"sentire” quando qualcosa non sta funzionando nel vostro processo di

sviluppo.
I1 Lean thinking non sostituisce metodologie come Scrum o
(,) Kanban, ma le potenzia. E come avere una lente di
- ingrandimento che vi permette di vedere opportunita di

miglioramento in qualsiasi processo stiate usando.

Daniele Teti | Metodologia, framework o filosofia? - 5

I1 concetto rivoluzionario di valore

La prima domanda che il pensiero Lean ci insegna a porci non e "come
possiamo fare questo piu velocemente?" ma "dovremmo proprio farlo?".
Questa distinzione é cruciale. Tradizionalmente, nel software come in altri
settori, ci concentriamo sull’efficienza: fare le cose nel modo giusto. Il Lean

thinking ci spinge verso l’efficacia: fare le cose giuste.

Ma cosa determina se qualcosa e "giusto"? La risposta e il valore per il cliente
finale. Non quello che noi sviluppatori pensiamo sia importante, non quello
che il management richiede, ma quello per cui il cliente & disposto a pagare o

che risolve un suo problema reale.

Facciamo un esempio concreto. Immaginate di stare sviluppando un’API REST
con FastAPI o Django. Potreste passare settimane a implementare un sistema
di logging sofisticatissimo con 15 livelli di dettaglio, serializzazione JSON
personalizzata, e rotazione automatica dei file. Dal punto di vista tecnico é
magnifico, mostra la vostra competenza e vi da soddisfazione personale. Ma se
I'utente finale non ha mai bisogno di consultare questi log dettagliati, state

creando valore o spreco?

La risposta Lean e chiara: se non aggiunge valore per il cliente finale, & spreco,

indipendentemente da quanto sia tecnicamente elegante.

I tre pilastri del pensiero Lean
I1 Lean thinking si regge su tre pilastri fondamentali:

Rispetto per le persone: Non parliamo di cortesia formale, ma di un rispetto
profondo per lintelligenza e la creativita di ogni membro del team. Nel
contesto software, questo significa riconoscere che il programmatore junior
potrebbe avere I’insight che risolve un problema su cui il senior architect si sta

scervellando da giorni.

Miglioramento continuo (Kaizen): Non esiste il software perfetto, non
esistono processi perfetti. Esiste solo il miglioramento costante, incrementale,

guidato dall’osservazione e dalla sperimentazione. Una riflessione comune tra

6 - Il concetto rivoluzionario di valore | Daniele Teti

sviluppatori esperti e che "il codice perfetto € quello che non abbiamo ancora

scritto”.

Focus a lungo termine: Le decisioni non vengono prese solo in base ai
risultati del trimestre corrente, ma considerando I'impatto a lungo termine
sulla qualita del prodotto, sulla soddisfazione del team e sulla sostenibilita del

processo di sviluppo.

Attenzione a non confondere il Lean thinking con l’approccio
° "quick and dirty". Il Lean non significa tagliare la qualita per
andare piu veloci, ma eliminare tutto cio che non aggiunge

valore per andare piu veloci mantenendo la qualita.

La differenza tra essere occupati ed essere
produttivi

Una delle illuminazioni piu potenti del pensiero Lean riguarda la distinzione
tra essere occupati e essere produttivi. Nell’industria software, e facile cadere
nella trappola dell’attivismo: meeting continui, refactoring infiniti, aggiunta di

feature "per sicurezza", over-engineering di soluzioni semplici.

I1 pensiero Lean ci insegna a distinguere tra movimento e progresso.
Movimento e scrivere mille righe di codice al giorno. Progresso é risolvere il

problema del cliente con dieci righe di codice perfettamente mirate.

Questa distinzione diventa particolarmente evidente nello sviluppo software.
Un approccio eccessivamente compatto puo sembrare piu efficiente, ma la
chiarezza e la manutenibilita del codice rappresentano un valore enorme a
lungo termine. Un modulo Python di 50 righe ben strutturate e leggibili e piu

produttivo di 200 righe di codice compatto ma incomprensibile.

Il paradosso della velocita

Uno dei paradossi piu interessanti del Lean thinking & che per andare piu
veloci, spesso dobbiamo prima rallentare. Questo concetto pu0 sembrare

controintuitivo, ma ha radici profonde nella teoria dei sistemi.

Daniele Teti | La differenza tra essere occupati ed essere produttivi - 7

Immaginate un team che rilascia feature velocemente ma con molti bug. Il
tempo risparmiato nella fase di sviluppo viene perso moltiplicato nella fase di
manutenzione e correzione. Il risultato netto € che il team va piu lento, non

piu veloce.

I1 Lean thinking ci insegna a ottimizzare il sistema nel suo insieme, non le
singole parti. Questo significa che a volte € meglio investire tempo extra
nell’architettura, nei test automatizzati e nella documentazione, perché questi

investimenti pagheranno dividendi enormi nel lungo periodo.

I’ecosistema Lean

E importante capire che il Lean thinking non opera in isolamento. E parte di
un ecosistema piu ampio che include metodologie agili, pratiche DevOps, e
approcci come il Domain-Driven Design. Tutti questi approcci condividono
alcuni principi fondamentali: focus sul valore per il cliente, collaborazione

stretta, adattabilita al cambiamento e miglioramento continuo.

Nel lavoro quotidiano con framework come Django o FastAPI, i principi Lean
si integrano naturalmente con l’architettura MVC/MVT. La separazione delle
responsabilita tipica di questi pattern e, in sostanza, un’applicazione del
principio Lean di eliminazione degli sprechi: ogni componente ha una

responsabilita specifica e non duplica funzionalita presenti altrove.

I1 viaggio nel pensiero Lean inizia con una trasformazione mentale: da "come
posso fare di piu?" a "come posso creare piu valore con meno spreco?". Questa
semplice inversione di prospettiva puo rivoluzionare il vostro approccio allo

sviluppo software.

Nel prossimo capitolo, esploreremo i principi fondamentali che guidano
questa trasformazione, fornendo gli strumenti concettuali per riconoscere il

valore e identificare gli sprechi nel vostro lavoro quotidiano.

Cosa abbiamo imparato in questo capitolo

* I1 Lean thinking nasce dal Toyota Production System negli anni '50,
rivoluzionando la produzione industriale

8 - L’ecosistema Lean | Daniele Teti

« I1 Lean non €& una metodologia rigida ma una filosofia basata su

miglioramento continuo e rispetto per le persone

« I tre pilastri fondamentali sono: Valore (definito dal cliente), Flow

(eliminare interruzioni), Miglioramento continuo (Kaizen)

* La distinzione cruciale: essere occupati # essere produttivi. Il paradosso
della velocita dimostra che fare meno cose simultaneamente porta a finire

piu velocemente

« I1 Lean si integra naturalmente con pratiche Agile, DevOps e pattern
architetturali come MVC/MVT

» La trasformazione mentale chiave: da "fare di piu" a "creare piu valore con

meno spreco”

Il Testo Prosegue Nella Versione Completa del Libro

Daniele Teti | Cosa abbiamo imparato in questo capitolo - 9

	Lean Thinking per sviluppatori software impegnati
	Table of Contents
	Introduzione
	Storico delle Revisioni
	Capitolo 1: Le origini e la filosofia LEAN
	La rivoluzione silenziosa di Toyota
	Dal metallo al codice: il salto evolutivo
	Metodologia, framework o filosofia?
	Il concetto rivoluzionario di valore
	I tre pilastri del pensiero Lean
	La differenza tra essere occupati ed essere produttivi
	Il paradosso della velocità
	L’ecosistema Lean
	Cosa abbiamo imparato in questo capitolo

