& Full source code included

Learn how to build and launch
a real-world Saas application
in just a few weeks.

Building Saa$
with Laravel

By Max Kostinevich

Sample: Building SaaS with Laravel

Introduction

In this book you’ll learn how to design, build and launch a real-world SaaS
application using Laravel framework. This book will be useful to solopreneurs,
bootstrappers and indie makers who wanted to launch their SaaS business.

I’m going to explain step-by-step each stage of project development - from
designing wireframes to deployment.

You’ll learn how to:

« Convert your idea to wireframes

« Design database

« Convert HTML template to Laravel views

« Organize project routes

« Accept payments through Stripe and collect fees

« Distribute payments using Stripe Connect

« Send email notifications

« Install and use Laravel Horizon to manage queues
« Work with 3rd-party API to convert currencies

« Build master administration panel to manage the project
« Deploy the application

| also included the list of tips and advices which will be useful to you when you
decide to launch you SaaS.

Learn more about this book at maxkostinevich.com/books/laravel-saas

What we are going to build

The project we’re going to develop in this book is called PayMe.

2 Max Kostinevich

https://maxkostinevich.com/books/laravel-saas

Sample: Building SaaS with Laravel

PayMe is a checkout payment solution to accept payments online for free-
lancers, digital artists and small agencies.

The idea of the project is pretty simple: the Seller (e.g. freelance designer)
registers on PayMe, connects their Stripe Account, creates a payment form
where he can enter service description, amount, and choose a currency. When
the payment form is created, it becomes available via unique URL, which
then could be shared with the Customer. When the Customer pays via the
payment form, the paid amount is automatically transferred to Seller’s Stripe
Account.

You may see an example of payment form on the following screenshot:

Max Kostinevich
Laravel 101

Payment Description

Test Payment

0000 0000 0000 0000

DDAYY a CcvC

Pay 19.99 USD

Powered by Stripe

As our main goal is to validate our idea and build MVP (minimum-viable-
product) as soon as possible and spend as less time as we can, we’re not going
to implement any subscription-based features. Instead of this, we’re going to
collect some fee (e.g. percent or fixed price) on each payment made through
our app, which will be deducted automatically from the Seller’s account. You
can see the payment flow on the diagram below:

Max Kostinevich 3

Sample: Building SaaS with Laravel

PayMe's Earnings Seller's Earnings

A

$10.00

Y

$1.23
Application Fee

i -$0.59 Stripe Fees

Y

$8.18 Net

On the example above, the Customer paid $10 to the Seller. From this amount
we collected $1.23 as a fee for our application. Additional $0.59 have been
deducted by Stripe as their own fee. As a result, the seller earned $8.18 net
amount ($10 - $1.23 - $0.59 = $8.18).

PayMe demo could be found using the links below:

o Livedemo

« Sample payment form

4 Max Kostinevich

https://payme.rocks/
https://payme.rocks/p/5d11eba50345e

Sample: Building SaaS with Laravel

Prerequisites

The project we are going to develop in this book is designed for beginner
developers, however | assume that you’re familiar with Laravel framework and
know how to work with Controllers, Models, and run Artisan Commands.

We’re going to use Laravel 5.8.

If you’re absolutely new to Laravel, I'd recommend you to check some video
courses first, for example:

e Laracasts
« Codecourse
« Udemy

As we’re a going to use Stripe Connect and Stripe API to handle payments and
payouts, you’ll need to have a Stripe Account. Currently Stripe is available in
34+ countries, so if you’re living in a country where Stripe isn’t yet supported -
don’t worry, you still will be able to create development account with Stripe.

Getting the source code

The source code of the PayMe project is included to your purchase. Be sure to
carefully read the README for installation instructions.

Disclaimer

The source code is provided for learning purposes without warranty of any
kind. You’re free to use provided source code (or any parts of it) as you’'d like.
Redistribution (i.e. reselling) or sharing (e.g. via public GitHub repository) is
not allowed without prior written permission.

Max Kostinevich 5

https://laracasts.com/
https://codecourse.com/
https://www.udemy.com/
https://stripe.com/connect
https://stripe.com
https://stripe.com/global

Sample: Building SaaS with Laravel

Working with the source code

For your convenience, all important steps in the source code are marked by
git tags.

You can easily switch between specific tags by using git checkout command.
For example, to switch to tag step-2.1, just type in your terminal:

git checkout step-2.1

To list all available tags, just type the following command:

git tag -n

You’ll see the list of all available tags:

(master -> origin) X git tag -n

.0 Provision new Laravel app
Initial setup

Add guzzle

Add assets compilation and static pages
Add auth pages

Update email verification page
Add Dashboard

Add user settings page

Add payments form crud

Add payment form

Accepting payments

Managing payments

Add stats to the dashboard
Notifications

small changes

Master Admin

ol
.0
ol
.2
.0
ol
.2
=
b
L5
.6
o
.8
el
.0

During the book you may see the following notes:

Related tag: step-x.x

That means that the section or chapter has a related tag in the app source

6 Max Kostinevich

Sample: Building SaaS with Laravel

code.

Workspace setup

There are no strict requirements which tools to use for local development, you
will be fine with Homestead or Valet. I'd recommend to avoid XAMPP, WAMP
and similar software.

Personally, | use the following setup:

Docker with installed Nginx, PHP 7, Redis and MySQL
Ngrok to expose local server to internet over secure tunnel
PHPStorm as my main IDE

Notepad++ for quick edits

« Cmder as my main command-line tool

If you’re new to Docker and haven’t worked with it before, | recorded a short
video explaining how to get started with Docker for Laravel development, you
can watch it here.

| also created a ready-to-go Docker template, which is available on the
Github.

Also, if you haven’t worked with Ngrok before, | would recommend you to try
it out! Ngrok allows you expose your local server to the internet over a secure
tunnel. This tool is super-useful for testing OAuth integrations, webhooks,
3rd-party API calls and so on.

About the author

Max Kostinevich is a solutions consultant and web-developer. Max have over
10 years of extensive experience in eCommerce and Saa$S consulting and de-

Max Kostinevich 7

https://laravel.com/docs/5.8/homestead
https://laravel.com/docs/5.8/valet
https://www.docker.com/
https://ngrok.com/
https://www.jetbrains.com/phpstorm/
https://notepad-plus-plus.org/
https://cmder.net/
https://www.youtube.com/watch?v=DNyQX00X_cg
https://github.com/laravel-101/Laravel-Docker-Template
https://ngrok.com/
https://maxkostinevich.com/

Sample: Building SaaS with Laravel

velopment, and have worked with dozens of companies worldwide, including
multinational companies on the Inc. 5000.

Contact the author

If you have any questions, ideas, suggestions, or want to report an error, please
email me at hello@maxkostinevich.com

For most recent updates, please follow me on Twitter: maxkostinevich

8 Max Kostinevich

mailto:hello@maxkostinevich.com
https://twitter.com/maxkostinevich

Sample: Building SaaS with Laravel

Chapter 1. Planning our app

Detailed plan is the key to successful results. However, when planning the MVP,
it’simportant to keep your requirements list as simple as possible, just because
you can easily got drown in all your notes, ideas, and wanted features.

So first, we need to clearly define what our project does and extract most
essential features of our project and write them down in project specification
file. Based on this file we can create wireframes to get better idea of how our
project will looks like.

Designing wireframes

So what the wireframing is? Wireframing is the process of transforming app
spec into graphicc representation at the structural level. You may think about
wireframing as about low-level design where you focus on features and layout
instead of high-level details. Wireframes helps us to get better idea of how our
project may looks like, how all features will work together and how long the
development process may take before we even write a single line of code.

When designing wireframes it’s important to not to focus too much on small
details. It’s a good idea to ask yourself - how it may looks like and how it should
work?’

Usually wireframing takes a few iterations before we get clear idea of what we
are going to build.

| recommend to make some initial wireframing on paper, as this is most quick-
est way to do this. Then you may create digital copy of your wireframes. There
are several tools which | use for wireframing:

« Sneakpeekit - just a print template for wireframes on the paper

Max Kostinevich 9

http://sneakpeekit.com/

Sample: Building SaaS with Laravel

+ Balsamiq - a great tool allowing to quickly create wireframes and mock-
ups

« UX-App - a web-based application allowing to create interactive wire-
frames

For PayMe | created interactive wireframes using UX App, see the image below.
You can also find these wireframes here.

© Payme e @rPaymwe 0 = QPaymwe -

e PayMe e 9 PayMe

nnnnnnnnnnnnnnnn

This is the final version of wireframes for PayMe. Before creating these wire-
frames in UX App, | spent some time to make a few versions on paper.

After we have our wireframes on file, we can proceed to the next step - designing

10 Max Kostinevich

https://balsamiq.com/
https://www.ux-app.com/
https://www.ux-app.com/device/view?s=MKVE7438&l=1&pg=197339

Sample: Building SaaS with Laravel

database.

Designing database

A good way to design database is to ask yourself the following questions:

« Which models may | need?
« Which attributes each models may need?
« How these models should be relate to one another?

It’s important to remember that our database structure may change during
the development process, and that’s totally fine. At that stage our main goal -
is to define starting point from which we can start building something.

For PayMe we can define 3 main models:

« Users (Sellers)
« Forms
« Payments (Sales)

In additional to default Laravel attributes, for each User (Seller) we’ll need to
store their connected Stripe Account ID, their profile picture, and company.

For Payment Forms we’ll need to store related User ID, UID (which will be used
in unique URL), service description, amount and currency.

For Payments we’ll need to store related Form ID, charge ID (Transaction ID
from Stripe), customer name and email, application fee we collected for that
payment, and receipt URL (which is automatically generated by Stripe).

We can also assume the following conditions:

« Each User can have multiple Forms
« Each User can have multiple Payments

Max Kostinevich 1

Sample: Building SaaS with Laravel

Each Form can have multiple Payments

Each Form relates to only one User

Each Payment relates to only one Form

Each Payment relates to only one User (the same as the owner of the
Form)

The Payment could be refunded to the customer

As you can see on the image below, the database structure is pretty simple:

e

id

avatar
user_id
company
form_id
password
) charge_id
stripe_account_id id
) customer_email
email_verified_at user_id
) customer_name
remember_token uid
amount
created_at description
currency
updated_at amount
application_fee_amount
deleted_at currency
) receipt_url
s_active
s_refunded
created_at
created_at
updated_at
updated_at

deleted_at

Please, note - payment model may not have a user_id, as we can get this ID
from the related Form model. However | decided to store related user_id in
Payments model too, as it will make it much easier to us to calculate statistics
and get the history of user payments.

Useful tools to design the database:

« QuickDatabaseDiagrams
« DBDiagram

12 Max Kostinevich

https://www.quickdatabasediagrams.com/
https://dbdiagram.io/home

Sample: Building SaaS with Laravel

e Lucidchart
e Draw.io

In the next chapter we’ll start building our app.

Max Kostinevich

13

http://lucidchart.com/
http://draw.io/

Sample: Building SaaS with Laravel

Chapter 2. Building our app

In this chapter we’re going to build our application from scratch.

After we have our wireframes and database design finished, we can start build-
ing our app.

There are no strict rules on how exactly to build the app, personally | prefer
the following sequence:

1. Create wireframes.

2. Design the database structure.

3. Prepare application plain HTML templates for each important page/lay-
out.

4. Install fresh Laravel application.

5. Convert plain HTML templates to Laravel views.

6. Start building main functionality.

For this book | will leave the creation of plain HTML templates behind the
scenes, as this is not the main focus of this book and the process is different
for each project. You may find all plain HTML templates in the source code
attached to the book.

Creating new app

Related tag: step-1.x

| assume that you already prepared your local environment. So let’s create a
new Laravel application by running the following command in our console:

laravel new payme

14 Max Kostinevich

Sample: Building SaaS with Laravel

Then let’s update our . env file and update database credentials and APP_URL
variable.

As | use Ngrok, my APP_URL variable looks as following:

APP_URL=https://payme.ngrok.io

| always force https protocol in my apps. To do this, we’ll just need to add
\URL: :forceScheme('https'); to boot() method in our app/Providers/
AppServiceProvider.php:

class AppServiceProvider extends ServiceProvider

{

//...
public function boot()
{
// Force SSL
\URL: :forceScheme('https');
+

As our app requires user registration and authentication, we need to enable
Laravel’s built-in authentication feature. To do this we’ll need just run php
artisan make:auth and php artisan migrateinourconsole.

After we enabled authentication, we can also enable Laravel’s built-in email
verification feature. This feature will force newly registered users to verify their
email addresses. To do this, we’ll need to make just a few things:

1. Make sure that our User model implements I1luminate\Contracts\
Auth\MustVerifyEmail contract:

Max Kostinevich 15

https://ngrok.com/
https://laravel.com/docs/5.8/authentication
https://laravel.com/docs/5.8/verification
https://laravel.com/docs/5.8/verification

Sample: Building SaaS with Laravel

<?php
namespace App;

use Illuminate\Notifications\Notifiable;
use Illuminate\Contracts\Auth\MustVerifyEmail;
use Illuminate\Foundation\Auth\User as Authenticatable;

class User extends Authenticatable implements MustVerifyEmail

{

use Notifiable;

/]

2. Make sure that users table have email_verified_at column (it’s in-
cluded by default).

3. After that we can pass the verify option to the Auth: : routes method
to activate email verification routes:

Auth::routes(['verify' => true]);

For email testing on local development | use Mailhog which catches all email
sent by our app to it’s own local tiny SMTP server with a web-based Ul. Mailhog
is included by default to my Docker template. To use Mailhog we’ll need to
update email settings in our .env file:

MAIL_DRIVER=smtp
MAIL_HOST=mailhog
MAIL_PORT=1025

Next, we can copy our HTML templates into /resources/views/_HTML folder.
This step is not necessary and it’s just my personal preference as I’d like to

16 Max Kostinevich

https://github.com/mailhog/MailHog
https://github.com/laravel-101/Laravel-Docker-Template

Sample: Building SaaS with Laravel

keep these files at one place. After we convert our HTML templates to Laravel
views, we’ll remove this folder.

At this stage we can also install some libraries which we’ll use later. | usually
install Guzzle, which helps us to make HTTP requests (e.g. API calls). To install
this library, just run the following command in your console:

composer require guzzlehttp/guzzle

Another useful package | usually install is a Laravel Horizon. Horizon helps us
to manage our Redis queues by providing web-based Ul. If you’re not familiar
with queues or Horizon - don’t worry’ we’ll talk about it a little bit later. To
install horizon just run the following command in your console:

composer require laravel/horizon

After that we can install Horizon:

php artisan horizon:install

And create failed_jobs table (in this table Laravel will store all information
about our failed jobs) using the following command:

php artisan queue:failed-table

php artisan migrate

In order to use Horizon and Redis, we need update change QUEUE_CONNECTION
variable in our .env file:

QUEUE_CONNECTION=redis

That’s all, at the next step we’ll convert our HTML templates into Laravel views
and customize our authentication pages.

Max Kostinevich 17

http://docs.guzzlephp.org/en/stable/
https://laravel.com/docs/5.8/horizon
https://laravel.com/docs/5.8/queues

Sample: Building SaaS with Laravel

Deploying our app

At first attempt | wanted to make this chapter in the form of a step-by-step
tutorial about application deployment. However, as Ul of some tools may
change and deployment process might be a little bit different depending
on your preferred workflow, | decided to give a quick overview of popular
deployment options and provice you a few useful link where you can learn
more.

There are a number of tools and deployment options we can use to deploy our
application. For example, some of popular choices are:

« Laravel Forge - Server management and deployments via Git;

Envoyer - Zero-downtime deployments;

Ploi.io - Server management, zero-downtime deployments and auto-
backups;

PaaS and managed hosting (e.g. Heroku and Cloudways);
Containerized hosting and deployment (e.g. Docker);

Serverless deployment through Laravel Vapor;

Personally, | prefer to use DigitalOcean for hosting, Forge for server manage-
ment and Envoyer for zero-downtime deployments. If a short period of down-
time isn’t crucial to your app, you may use Forge without Envoyer for deploy-
ment.

If you want to learn more about Forge and Envoyer, | would recommend you
to check these awesome series on Laracasts:

« Learn Forge
« Learn Envoyer

Another great tool for deployment and server management is Ploi, created
by Dennis Smink. Ploi includes all features Forge and Envoyer has, and cost a

18 Max Kostinevich

https://forge.laravel.com/
https://envoyer.io/
https://ploi.io/
https://www.heroku.com/
https://www.cloudways.com/
https://vapor.laravel.com/
https://www.digitalocean.com/
https://laracasts.com/series/learn-laravel-forge
https://laracasts.com/series/envoyer
https://twitter.com/dennis_smink

Sample: Building SaaS with Laravel

little bit less than Forge and Envoyer in total.

If you’re beginner and do not know a lot about server management, you may
take a look at Cloudways, they offer easy-to-use managed hosting platform
for Laravel apps.

Laravel Vapor - is entire tool in Laravel eco-system, it allows you to host Laravel
application in Serverless infrastructure. Serverless approach have it’s own
pros and cons, and out of scope of this book.

Regardless of tools you choose, deployment process includes the following
steps:

« Setup git repository;

» Provision new server;

« Create new database;

« Configure DNS records and setup SSL certificates;

+ Prepare deployment recipe;

« Get all required APl keys and prepare . env file for production;

« Createdaemon and queue worker (if your app uses queues like beanstalk
or redis);

It’s also a good idea to keep deployment instructions in Readme file of your
project.

When going to production, do not forget to setup auto-backups. | also recom-
mend to setup some app monitoring tools to be notified when any error occur.
For example, you may use Bugsnag or Sentry, both tools provide a free plan.

Max Kostinevich 19

https://www.bugsnag.com/
https://sentry.io/

Sample: Building SaaS with Laravel

Chapter 3. Useful tips

In this chapter I’ll share my thoughts and useful tips about making and running
Sofware-as-a-Service applications.

Types of SaaS

| would distinct two different types of SaaS: - Standalone Saas$ - This is type
of SaaS, which is not depending on any other service.

- Extensions for other products - This type of SaaS depends on another
product or service. For example - Shopify Apps, Apps for Quickbooks,
Apps for Salesforce, etc. (e.g. Shopify Apps, Apps for Quickbooks, etc)

Both of types have their own pros and cons. For example, making a standalone
SaaS gives you more freedom and flexibility, as you’re not depending on other
product. On other side, it could be harder to get your first users of standalone
Saa$, as many established products have their own marketplace where devel-
opers like you can publish extensions (plugins or apps) for that big product.
Making an extension for established product usually requires you to follow
some design guidelines, rules, and marketplace terms. However, it gives you
an access to existing and loyal customers who might be happy to use your
extension (and pay you!).

Thoughts on pricing and customer retention

There are several tips about pricing | would like to share:

« If you’re planning to charge pretty small amount for your SaaS
(e.g. $3/mo), it’s a good idea to offer yearly package, as it will gives you

20 Max Kostinevich

Sample: Building SaaS with Laravel

more money on inital period, which you can re-invest to marketing.

« To get more money on inital period, you may also offer a lifetime deal to
your first X customers.

« Providing a reasonable trial period may increase your conversion rate.
In most cases, 7-14 days is enough to try a product and make a decision.

« Be careful with the free plan, as it may increase amount of support
requests you need to handle.

« Be proactive with your first customers, try to follow-up with each sign-up
and get a quick feedback about your product.

If you’re willing to learn more about different aspects of running Saa$, | would
recommend to join SaaS Club by Omer Khan. SaaS Club provides a lot of useful
resources, such as group coaching sessions, a huge content library, access to
private community and expert master classes.

Thoughts on legal aspects

If you’re active on Twitter, you probably heard about Reilly Chase and his story.
So if you’re working on your project while keeping your daily job, it’s a good
idea to get a legal advice and consult your lawyer to make sure you do not
violate the terms of your employment contract.

You may also consider to create a new company for your new project. De-
pending on your requirements, there are several services allowing you to open
company remotely. Most of popular options are:

« Stripe Atlas - for US-based company;
« e-Residency - for Estonian company;

Before opening a company, it’s a good idea to consult with your accountant
regarding allimportant questions (e.g. Tax/VAT handling, local law compliance,

Max Kostinevich 21

https://saasclub.io/
https://twitter.com/_rchase_/status/1082421530934554624
https://stripe.com/atlas
https://e-resident.gov.ee/

Sample: Building SaaS with Laravel

etc).

Recommended books

There are a lot of books about making and running software projects, I'll just
share my Top-3:

« Rework by Jason Fried and David Heinemeier Hansson
« Making ideas happen by Scott Belsky
« Start Small, Stay Small by Rob Walling

22 Max Kostinevich

https://www.amazon.com/Rework/dp/B003BLGD06/
https://www.amazon.com/Making-Ideas-Happen-Overcoming-Obstacles/dp/1591844118/
https://www.amazon.com/Start-Small-Stay-Developers-Launching/dp/0615373968

Sample: Building SaaS with Laravel

Afterword

Thank you for reading this book, | hope you found it useful!

If you have any questions, found a typo or just want to provide a feedback,
feel free to shoot me a tweet at maxkostinevich or email me at hello@maxko
stinevich.com

— Max Kostinevich

Max Kostinevich 23

https://twitter.com/maxkostinevich
mailto:hello@maxkostinevich.com
mailto:hello@maxkostinevich.com

	Introduction
	What we are going to build
	Prerequisites
	Getting the source code
	Working with the source code
	Workspace setup
	About the author
	Contact the author

	Chapter 1. Planning our app
	Designing wireframes
	Designing database

	Chapter 2. Building our app
	Creating new app
	Deploying our app

	Chapter 3. Useful tips
	Types of SaaS
	Thoughts on pricing and customer retention
	Thoughts on legal aspects
	Recommended books

	Afterword

