

A Collection of Laravel Tutorials

Mario Bašić

This book is for sale at http://leanpub.com/laravelista-collection

This version was published on 2018-05-02

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and
many iterations to get reader feedback, pivot until you have the right book and build traction once
you do.

© 2017 - 2018 Mario Bašić

http://leanpub.com/laravelista-collection
http://leanpub.com/
http://leanpub.com/manifesto

Contents

Getting Started . 1

Elementary Laravel . 2

Laravel on Windows with Homestead . 29

Laravel on Windows with Laragon . 51

Configure Laravel 5 for Shared Hosting . 64

Getting Started

Homestead or Laragon, pick one and start building.

Elementary Laravel
Only the basics in the simplest way possible. Everything you need to create a website.

View Source Code
Source code for this tutorial is available here1.

Installation

We have to install Laravel before we can start using it, so let’s do that now.

Published at: 17. October, 2016.

Welcome to my new course called Elementary Laravel. In this course, we will build a simple business
website with Laravel 5.3. The idea is to teach you how to build a website with Laravel by using the
least amount of steps necessary and provide youwith references to expand the knowledge you obtain
from this course.

Don’t bother yourself with questions like: “Is this the best practice?” or “Should I be doing this-this
way?” etc. Everybody starts somewhere and I think that this is the best starting point for learning
Laravel. By the end of this course, you will have a working business website and basic knowledge
about Laravel.

Requirements

These are the tools that you will need for this tutorial:

• PHP2

• Composer3

• A text editor or an IDE. I suggest using Atom4.
• A Web browser. Chrome5 preferred.

Installation

If you haven’t already, download the Laravel installer using Composer:
1https://github.com/laravelista/elementary-laravel
2http://php.net/
3https://getcomposer.org/
4https://atom.io/
5https://www.google.com/chrome/index.html

https://github.com/laravelista/elementary-laravel
http://php.net/
https://getcomposer.org/
https://atom.io/
https://www.google.com/chrome/index.html
https://github.com/laravelista/elementary-laravel
http://php.net/
https://getcomposer.org/
https://atom.io/
https://www.google.com/chrome/index.html

Elementary Laravel 3

Installing Laravel Installer

composer global require "laravel/installer"

To create a fresh Laravel installation we will use this command:

Creating a fresh Laravel installation

laravel new website

This command will create a directory called website containing a fresh Laravel installation.

To see how our newly installed Laravel application looks like we will use the built-in Local
development server. To start a development server at http://localhost:8000 run this command:

Starting a development server

php artisan serve

Now open your browser to that URL and you will see this screen:

Laravel installed

View changes in this commit
d49ab3224cee877d9a201a0cf973e079883176006.

6https://github.com/laravelista/elementary-laravel/commit/d49ab3224cee877d9a201a0cf973e07988317600

https://github.com/laravelista/elementary-laravel/commit/d49ab3224cee877d9a201a0cf973e07988317600
https://github.com/laravelista/elementary-laravel/commit/d49ab3224cee877d9a201a0cf973e07988317600

Elementary Laravel 4

Improve your skills!
Instead of using the built-in PHP development server, you should really learn how to install
and configure Homestead7. If you are on Windows, I already have a course on Homestead
on Windows and Laragon on Windows. If you are on a Mac, take a look at Valet8.

You now have Laravel installed and ready to go.

Routing

Routes are the entry points to your application, so it is only logical to learn about them first.

Published at: 17. October, 2016.

Routes are the main entry points for your Laravel application. With routes, we define URLs that are
accessible on our website.

If you need an about page, you probably want it to be accessible at /about URL. Routes define what
URLs are accessible and what happens when a route is triggered. Think of them as an index for your
website. When you want to locate something, you just have to take a look at the routes file.

URL structure

For our business website, we will have a structure like this:

• GET / - Our home page.
• GET /about - The about page.
• GET /contact - Contact page that has a contact form.
• POST /contact - When contact form is submitted, data will be sent to this route.

If you don’t know already what GET and POST mean, think of them this way. GET is used for getting
a web page. POST is used to send data to a web page. While this isn’t the exact definition, for the
purpose of this tutorial it will do.

Improve your skills!
If you are thinking of starting a career in web development, you should learn more about
HTTP methods: Method definitions9, HTTP Methods: GET vs. POST10 and Using HTTP
Methods for RESTful Services11.

7https://laravel.com/docs/5.3/homestead
8https://laravel.com/docs/5.3/valet
9https://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html
10http://www.w3schools.com/tags/ref_httpmethods.asp
11http://www.restapitutorial.com/lessons/httpmethods.html

https://laravel.com/docs/5.3/homestead
https://laravel.com/docs/5.3/valet
https://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html
http://www.w3schools.com/tags/ref_httpmethods.asp
http://www.restapitutorial.com/lessons/httpmethods.html
http://www.restapitutorial.com/lessons/httpmethods.html
https://laravel.com/docs/5.3/homestead
https://laravel.com/docs/5.3/valet
https://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html
http://www.w3schools.com/tags/ref_httpmethods.asp
http://www.restapitutorial.com/lessons/httpmethods.html

Elementary Laravel 5

Defining our routes

To define the routes for our website, in your text editor open the routes file routes/web.php.

You should see the default route which you can see if you visit http://localhost:8000 in your
browser and a comment describing this routes file.

Since we want to keep the route / for our home page, we only need to change the view that
is being returned from that route closure. Change the line return view('welcome'); to return

view('home');.

Now to create the rest of our routes, add this bellow that route:

Adding routes to the routes file

Route::get('about', function() {

return view('about');

});

Route::get('contact', function() {

return view('contact');

});

Route::post('contact', function() {

//

});

Save the changes and open your browser to http://localhost:8000. You should get an error now
saying View [home] not found.. This means that Laravel has not found the home view file that we
specified in our / route. Our next step is to create that view file and any other view file that we
specified in our routes file.

View changes in this commit
4f504843665c9e1d0cd8d41e0eb60259daaeaabc12.

Views

Views contain the HTML served by your application and separate your application logic from your
presentation logic.

12https://github.com/laravelista/elementary-laravel/commit/4f504843665c9e1d0cd8d41e0eb60259daaeaabc

https://github.com/laravelista/elementary-laravel/commit/4f504843665c9e1d0cd8d41e0eb60259daaeaabc
https://github.com/laravelista/elementary-laravel/commit/4f504843665c9e1d0cd8d41e0eb60259daaeaabc

Elementary Laravel 6

Published at: 24. October, 2016.

Views are files located in resources/viewswith .blade.php extension. Views contain HTMLwhich
is served by your application.

For our business website we need to create the views that we have specified in our routes file.

Create View Files

Create the following files in the resources/views directory:

• home.blade.php

• about.blade.php

• contact.blade.php

If you try to view the home page now, you will see a blank page. That is also true for all other routes
that we have defined.

Bootstrap Home Page

Good, now we will add HTML to our resources/views/home.blade.php view. We will be using
Bootstrap13 to quickly get started with some basic page design. Open the file and add the following
inside it:

Bootstrapping Bootstrap

<!DOCTYPE html>

<html lang="en">

<head>

<meta charset="utf-8">

<meta http-equiv="X-UA-Compatible" content="IE=edge">

<meta name="viewport" content="width=device-width, initial-scale=1">

<title>Home page</title>

<!-- Latest compiled and minified CSS -->

<link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7\

/css/bootstrap.min.css" integrity="sha384-BVYiiSIFeK1dGmJRAkycuHAHRg32OmUcww7on3\

RYdg4Va+PmSTsz/K68vbdEjh4u" crossorigin="anonymous">

</head>

<body>

<h1>Hello, world!</h1>

13http://getbootstrap.com

http://getbootstrap.com/
http://getbootstrap.com/

Elementary Laravel 7

<!-- jQuery (necessary for Bootstrap's JavaScript plugins) -->

<script src="https://ajax.googleapis.com/ajax/libs/jquery/1.12.4/jquery.min.\

js"></script>

<!-- Latest compiled and minified JavaScript -->

<script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/js/bootstrap.mi\

n.js" integrity="sha384-Tc5IQib027qvyjSMfHjOMaLkfuWVxZxUPnCJA7l2mCWNIpG9mGCD8wGN\

IcPD7Txa" crossorigin="anonymous"></script>

</body>

</html>

Save the changes and open your browser to /. Hit F5 to refresh the page if needed. You should see
Hello, world! displayed on the page. Excellent! Now you can use Bootstrap on this page to create
your home page.

Improve your skills!
Bootstrap is the fastest way to get started with a newwebsite. It contains almost everything
needed to design a website and it also looks good by default. I suggest that you read:Getting
started, CSS and Components pages from its website14.

This is how I have made the home page to look using Bootstrap. I have used a Jumbotron15 example
as a starting point.

14http://getbootstrap.com/
15http://getbootstrap.com/examples/jumbotron/

http://getbootstrap.com/
http://getbootstrap.com/examples/jumbotron/
http://getbootstrap.com/
http://getbootstrap.com/examples/jumbotron/

Elementary Laravel 8

Home page

Feel free to change the page however you like it.

View changes in this commit
8a5128154e3cc0db6f02780029538ca3ec18f52b16.

Use Helpers

There are a few things that we can do to improve our page. First, if you look at the home.blade.php
file17 you can notice that for defining links to our other routes we use About.
While this will work, it is much better to use a Laravel helper function url('/about')which creates
a full URL to the route.

Change all links so that they use the Laravel url helper. For example, change Home

to Home. Do this for all links.

View changes in this commit
2df2d0ae2172affda92c9142753c44814b65175218.

Before you start copying the HTML from our home page to other pages, ask yourself Is there a way
to reuse sections of our homepage on other pages to avoid copying the code?

16https://github.com/laravelista/elementary-laravel/commit/8a5128154e3cc0db6f02780029538ca3ec18f52b
17https://github.com/laravelista/elementary-laravel/blob/8a5128154e3cc0db6f02780029538ca3ec18f52b/resources/views/home.blade.php
18https://github.com/laravelista/elementary-laravel/commit/2df2d0ae2172affda92c9142753c44814b651752

https://github.com/laravelista/elementary-laravel/commit/8a5128154e3cc0db6f02780029538ca3ec18f52b
https://github.com/laravelista/elementary-laravel/blob/8a5128154e3cc0db6f02780029538ca3ec18f52b/resources/views/home.blade.php
https://github.com/laravelista/elementary-laravel/blob/8a5128154e3cc0db6f02780029538ca3ec18f52b/resources/views/home.blade.php
https://github.com/laravelista/elementary-laravel/commit/2df2d0ae2172affda92c9142753c44814b651752
https://github.com/laravelista/elementary-laravel/commit/8a5128154e3cc0db6f02780029538ca3ec18f52b
https://github.com/laravelista/elementary-laravel/blob/8a5128154e3cc0db6f02780029538ca3ec18f52b/resources/views/home.blade.php
https://github.com/laravelista/elementary-laravel/commit/2df2d0ae2172affda92c9142753c44814b651752

Elementary Laravel 9

As you may have noticed {{ }} is used to echo a value in the view. There will be more talk about
this in the next tutorial.

Blade templates

Blade is a templating engine provided with Laravel and unlike other templating engines it does not
restrict you from using plain PHP code in your views.

Published at: 02. November, 2016.

In my opinion one of the best parts of Laravel is the Blade templating engine. It already comes with
Laravel and has everything you need and more. It enables you to work with templates and layouts,
display data, use control structures, include subviews, use stacks, inject services in views and if that
is still not enough you can easily extend it to do whatever you desire.

The purpose of this tutorial is not to teach you everything that Blade can do, but to teach you about
templates, layouts, sections, subviews and basic data presentation.

Improve your skills!
Learn more about Blade templates by reading the documentation19. It is very important to
know what you can do with it.

In our previous tutorial I have left you with a question to ask yourself: Is there a way to reuse sections
of our home page on other pages to avoid copying the code?

The answer is yes, there is and it is called Blade templates.

Layouts

When building your templates you should start from the most outer shell and those are the HTML
tags html, head and body.Wewill extract a part of theHTML from our resources/views/home.blade.php
file that is common for all other pages and place it in resources/views/layouts/default.blade.php.

What I want you to do now is to move this:

19https://laravel.com/docs/5.3/blade

https://laravel.com/docs/5.3/blade
https://laravel.com/docs/5.3/blade

Elementary Laravel 10

Extracting a layout page

<!DOCTYPE html>

<html lang="en">

<head>

<meta charset="utf-8">

<meta http-equiv="X-UA-Compatible" content="IE=edge">

<meta name="viewport" content="width=device-width, initial-scale=1">

<title>Home page</title>

<!-- Latest compiled and minified CSS -->

<link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7\

/css/bootstrap.min.css" integrity="sha384-BVYiiSIFeK1dGmJRAkycuHAHRg32OmUcww7on3\

RYdg4Va+PmSTsz/K68vbdEjh4u" crossorigin="anonymous">

<style>

body {

padding-bottom: 20px;

}

.navbar {

margin-bottom: 0px;

border-radius: 0;

}

</style>

</head>

<body>

<!-- jQuery (necessary for Bootstrap's JavaScript plugins) -->

<script src="https://ajax.googleapis.com/ajax/libs/jquery/1.12.4/jquery.min.\

js"></script>

<!-- Latest compiled and minified JavaScript -->

<script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/js/bootstrap.mi\

n.js" integrity="sha384-Tc5IQib027qvyjSMfHjOMaLkfuWVxZxUPnCJA7l2mCWNIpG9mGCD8wGN\

IcPD7Txa" crossorigin="anonymous"></script>

</body>

</html>

to a new file in resources/views/layouts/default.blade.php. So that you home.blade.php file
now only contains:

Elementary Laravel 11

Content of the home page file

<nav class="navbar navbar-inverse">

<div class="container">

<div class="navbar-header">

<button type="button" class="navbar-toggle collapsed" data-toggle="collaps\

e" data-target="#navbar" aria-expanded="false" aria-controls="navbar">

Toggle navigation

</button>

Elementary Laravel

</div>

<div id="navbar" class="navbar-collapse collapse">

<ul class="nav navbar-nav navbar-right">

Home

About

Contact

</div><!--/.navbar-collapse -->

</div>

</nav>

<!-- Main jumbotron for a primary marketing message or call to action -->

<div class="jumbotron">

<div class="container">

<h1>Hello, world!</h1>

<p>This is a template for a simple marketing or informational website. It in\

cludes a large callout called a jumbotron and three supporting pieces of content\

. Use it as a starting point to create something more unique.</p>

<p>Learn more »\

</p>

</div>

</div>

<div class="container">

<!-- Example row of columns -->

<div class="row">

<div class="col-md-4">

<h2>Heading</h2>

<p>Donec id elit non mi porta gravida at eget metus. Fusce dapibus, tellus\

ac cursus commodo, tortor mauris condimentum nibh, ut fermentum massa justo sit\

Elementary Laravel 12

amet risus. Etiam porta sem malesuada magna mollis euismod. Donec sed odio dui.\

</p>

<p>View details »</p>

</div>

<div class="col-md-4">

<h2>Heading</h2>

<p>Donec id elit non mi porta gravida at eget metus. Fusce dapibus, tellus\

ac cursus commodo, tortor mauris condimentum nibh, ut fermentum massa justo sit\

amet risus. Etiam porta sem malesuada magna mollis euismod. Donec sed odio dui.\

</p>

<p>View details »</p>

</div>

<div class="col-md-4">

<h2>Heading</h2>

<p>Donec sed odio dui. Cras justo odio, dapibus ac facilisis in, egestas e\

get quam. Vestibulum id ligula porta felis euismod semper. Fusce dapibus, tellus\

ac cursus commodo, tortor mauris condimentum nibh, ut fermentum massa justo sit\

amet risus.</p>

<p>View details »</p>

</div>

</div>

<hr>

<footer>

<p>© 2016 Elementary Laravel</p>

</footer>

</div> <!-- /container -->

Now that we have created our first layout template in layouts/default.blade.php, we must tell
our view home.blade.php to extend upon that layout. We do that by adding

Extending a page with a layout

@extends('layouts.default')

at the top of the file home.blade.php. There is one more step before we continue. We have to tell
our layout where to display the HTML from the page we want.

Sections

Sections are used to tell the layout where we want the content of a section to be displayed.

Go to our layouts/default.blade.php file and just bellow the opening body tag place the following:

Elementary Laravel 13

Defining a section for content

@yield('content')

and now in home.blade.php wrap all content bellow @extends('layouts.default') in a section
block:

Populating content section

@section('content')

{{-- Place wrapped content instead of this Blade comment --}}

@stop

If you take a look at http://localhost:8000 you should see that everything looks the same. That
is the point, but can you notice how much cleaner our home view looks now?

Subviews

We can make it even cleaner by using subviews to extract our navigation to a subview which we
will include in our default layout template.

Create a new file in resources/views/layouts/partials/navbar.blade.php and move our navbar
from home.blade.php to that file.

Creating a navbar partial

<nav class="navbar navbar-inverse">

<div class="container">

<div class="navbar-header">

<button type="button" class="navbar-toggle collapsed" data-toggle="colla\

pse" data-target="#navbar" aria-expanded="false" aria-controls="navbar">

Toggle navigation

</button>

Elementary Laravel

</div>

<div id="navbar" class="navbar-collapse collapse">

<ul class="nav navbar-nav navbar-right">

Home

About

Contact

Elementary Laravel 14

</div><!--/.navbar-collapse -->

</div>

</nav>

Good, now we have to tell our layout to include that subview. Go to layouts/default.blade.php

and just above @yield('content') place the following:

Including navbar partial

@include('layouts.partials.navbar')

Save the changes and if you look at the browser and hit refresh it should still look the same, but our
home view file is even cleaner now. Awesome!

There are more things that you can move into subviews if you think that you can benefit from it,
but for this tutorial, this seems fine to me.

Data presentation

The name of this chapter is misleading at best, I know.

If you have been following along, you may have noticed that in out default layout file the title tag
is hardcoded to be Home page, but what about our other pages? Should the title bar not hold some
other value instead of Home page?

There is a simple way of achieving this. Go to layouts/default.blade.php and replace the value
of title to be:

Defining a place for title section

@yield('title', 'Elementary Laravel')

This tells our template to place a section from our view called title here, but if it cannot find it
then place the default value of Elementary Laravel.

Now to set the title in our view file, go to home.blade.php and create a new section just bellow the
@extends('layouts.default') and above the @section('content'):

Elementary Laravel 15

Creating a title section

@section('title', 'Home page')

If you take a look at http://localhost:8000 you should see that everything looks the same. Great
job!

Wrapping things up

Now we have a way to populate our other views about.blade.php and contact.blade.php. Copy
the following to those files and change the title accordingly:

Page skeleton

@extends('layouts.default')

@section('title', 'About page')

@section('content')

{{-- Place content instead of this Blade comment --}}

@stop

I will quickly populate those pages with some Bootstrap. You can modify them however you want
or you can copy the code from what I have done:

about.blade.php20

20https://raw.githubusercontent.com/laravelista/elementary-laravel/00f0293ad4668f08f11ba67c890f892bddb579d8/resources/views/about.blade.
php

https://raw.githubusercontent.com/laravelista/elementary-laravel/00f0293ad4668f08f11ba67c890f892bddb579d8/resources/views/about.blade.php
https://raw.githubusercontent.com/laravelista/elementary-laravel/00f0293ad4668f08f11ba67c890f892bddb579d8/resources/views/about.blade.php
https://raw.githubusercontent.com/laravelista/elementary-laravel/00f0293ad4668f08f11ba67c890f892bddb579d8/resources/views/about.blade.php

Elementary Laravel 16

About page

contact.blade.php21

Contact page

21https://raw.githubusercontent.com/laravelista/elementary-laravel/00f0293ad4668f08f11ba67c890f892bddb579d8/resources/views/contact.
blade.php

https://raw.githubusercontent.com/laravelista/elementary-laravel/00f0293ad4668f08f11ba67c890f892bddb579d8/resources/views/contact.blade.php
https://raw.githubusercontent.com/laravelista/elementary-laravel/00f0293ad4668f08f11ba67c890f892bddb579d8/resources/views/contact.blade.php
https://raw.githubusercontent.com/laravelista/elementary-laravel/00f0293ad4668f08f11ba67c890f892bddb579d8/resources/views/contact.blade.php

Elementary Laravel 17

View changes in this commit
00f0293ad4668f08f11ba67c890f892bddb579d822.

We now have a home and about pages complete. On our contact page, we surely want to have a
contact form, which sends an email upon successful validation.

Forms

Forms are an important part of any web application. I’ll show you a quick and easy way to create a
form with helpers.

Published at: 11. November, 2016.

We will now create a contact form. We will use normal HTML with some Laravel helpers in order
to provide a better user experience.

Improve your skills!
To improve upon the form that we will create in this tutorial I advise you to take a look
at Forms & HTML23 package. I have an in-depth tutorial about it called Laravel Forms &
HTML so be sure to check it out.

Create the form

We will use basic Bootstrap styling to design the form. We will require from the user to enter his:

• name
• email
• message (comment - We will cover at a later point)

Improve your skills!
It is very important to know how to build and design forms with Bootstrap, so I recommend
reading the documentation24 about it.

In our contact.blade.php you will see a Blade comment {{-- Contact form goes here --}}.
Replace that line with the following:

22https://github.com/laravelista/elementary-laravel/commit/00f0293ad4668f08f11ba67c890f892bddb579d8
23https://laravelcollective.com/docs/5.3/html
24http://getbootstrap.com/css/#forms

https://github.com/laravelista/elementary-laravel/commit/00f0293ad4668f08f11ba67c890f892bddb579d8
https://laravelcollective.com/docs/5.3/html
http://getbootstrap.com/css/#forms
https://github.com/laravelista/elementary-laravel/commit/00f0293ad4668f08f11ba67c890f892bddb579d8
https://laravelcollective.com/docs/5.3/html
http://getbootstrap.com/css/#forms

Elementary Laravel 18

Creating a contact form
<form method="POST" action="{{ url('/contact') }}">

{{ csrf_field() }}

<div class="form-group">

<label for="name">Name</label>

<input id="name" type="text" class="form-control" name="name" value="{{ \

old('name') }}" placeholder="Your name">

</div>

<div class="form-group">

<label for="email">E-mail</label>

<input id="email" type="email" class="form-control" name="email" value="\

{{ old('email') }}" placeholder="Your E-mail">

</div>

<div class="form-group">

<label for="comment">Message</label>

<textarea rows="10" id="comment" class="form-control" name="comment" pla\

ceholder="Your message">{{ old('comment') }}</textarea>

</div>

<button type="submit" class="btn btn-primary btn-lg">Send</button>

</form>

I will explain the helpers used here in the following chapter, but for now, save the changes and open
your browser to http://localhost:8000/contact. You will see that the page looks like this now:

Contact with form

Elementary Laravel 19

We have specified that we want to POST the data from the form to /contact URL. If you remember
our routes file from a few tutorials ago, we have a route for that method:

Adding a route for posting contact form

Route::post('contact', function() {

//

});

If you press Send on the form now, you will get a blank page. That is because we are not returning
anything from our route that handles form submission.

View changes in this commit
315057e9e97d0d34cde9a683cd00bd5e2dedfdff25.

Helpers used

We have used two Laravel helpers in this form.

Improve your skills!
To learn more about all helpers that come with Laravel visit the documentation for
Helpers26.

old()

The old function retrieves an old input value flashed into the session. This will be very helpful
in our next tutorials where we will tackle validation. What this does is it keeps the value that
the user entered in the input field so that if the validation fails, the input entered by the user
is preserved. He does not need to type it again.

csrf_field()

The csrf_field function generates an HTML hidden input field containing the value of the
CSRF token. Laravel automatically generates a CSRF “token” for each active user session
managed by the application. This token is used to verify that the authenticated user is the
one actually making the requests to the application. Read more about this here27.

A quick recap of this tutorial:

25https://github.com/laravelista/elementary-laravel/commit/315057e9e97d0d34cde9a683cd00bd5e2dedfdff
26https://laravel.com/docs/5.3/helpers
27https://laravel.com/docs/5.3/csrf

https://github.com/laravelista/elementary-laravel/commit/315057e9e97d0d34cde9a683cd00bd5e2dedfdff
https://laravel.com/docs/5.3/helpers
https://laravel.com/docs/5.3/csrf
https://github.com/laravelista/elementary-laravel/commit/315057e9e97d0d34cde9a683cd00bd5e2dedfdff
https://laravel.com/docs/5.3/helpers
https://laravel.com/docs/5.3/csrf

Elementary Laravel 20

• I’ve shown you how to build a contact form
• You have learned about old and crsf_field helpers
• You have been given a lot of documentation to read in order to improve your skills
• The form can be submitted and we are returned a blank screen

What we are still missing is Validation. Are we going to blindly believe our users, that they have
entered a valid email address or that they have entered all fields that we require? Hell no! This is
where Laravel shines, the Validation.

Validation

Validation consists of two parts, validating the data from the user and displaying the errors
messages back to the user..

Published at: 28. November, 2016.

Out of the box, Laravel comes loaded with validation options28 and it is also very easy and quick to
implement it however you want. In the previous tutorial, we have left things off at a contact form.
We have created a contact form which submits its data to the URL we specified POST /contact and
it is being handled by our route.

Scenarios

This is what we want to happen when the user submits the contact form:

If the data entered passes validation, our application should:

• send us an email
• redirect the user to /contact page
• display success message to the user

If the data entered does not pass validation, our application should:

• redirect the user to the contact form with old input
• display errors messages telling the user what he did wrong

Validating data

Back to our routes/web.php file. Locate the route:
28https://laravel.com/docs/5.3/validation

https://laravel.com/docs/5.3/validation
https://laravel.com/docs/5.3/validation

Elementary Laravel 21

Empty contact POST route

Route::post('contact', function() {

//

});

First we have to tell our route to use dependency injection to inject the Request like so:

Injecting Request dependency

use Illuminate\Http\Request;

Route::post('contact', function(Request $request) {

// place code here

});

Now we can access the request, meaning that we can validate the data inside it. We will manually
build our Validator but we will also use the Automatic Redirection feature to automatically handle
the redirection and error processing if the validation fails.

Place this code inside our POST route:

Validating Request data

\Validator::make($request->all(), [

'name' => 'required|string',

'email' => 'required|email',

'comment' => 'required|string'

])->validate();

// normal code execution with successful validation.

// send email or do whatever you want here,

// redirect user back and notify him of our success

Now let me explain. From the Validation documentation29:

“If you would like to create a validator instance manually but still take advantage of the automatic
redirection offered by the ValidatesRequest trait, you may call the validatemethod on an existing
validator instance. If validation fails, the user will automatically be redirected or, in the case of an
AJAX request, a JSON response will be returned.”

As you can see, we are specifying parameter names and validation rules for each.

29https://laravel.com/docs/5.3/validation#automatic-redirection

https://laravel.com/docs/5.3/validation#automatic-redirection
https://laravel.com/docs/5.3/validation#automatic-redirection

Elementary Laravel 22

Improve your skills!
To understand and know which other validation rules exist, read the documentation on
Available Validation Rules30.

View changes in this commit
dbc88e6ccae9f8c8b0c92e9b19edb7e3cefd894931.

Displaying errors

If you try to submit the form now with no data, you will be redirected back to out /contact page
and it will seem like nothing happened, but in fact, the validation was triggered and it failed because
it did not pass our validation rules. required validation rule means that the field under inspection
must have some data in it. If you populate all fields in our contact form correctly and submit the
form you should get a blank page again.

The smart thing to do here is to provide the user some information on why the validation has failed.
In the Validation documentation under Displaying The Validation Errors32 is this snippet:

Displaying validation errors

@if (count($errors) > 0)

<div class="alert alert-danger">

@foreach ($errors->all() as $error)

{{ $error }}

@endforeach

</div>

@endif

This snippet loops through all the errors (if any) in the session and displays them in an unordered list
(Twitter Bootstrap styling, but you can modify it however you want). Place this snippet just above
the form tag in resources/views/contact.blade.php.

Now if you try to submit the form with no data, you should get a page which looks like this:

30https://laravel.com/docs/5.3/validation#available-validation-rules
31https://github.com/laravelista/elementary-laravel/commit/dbc88e6ccae9f8c8b0c92e9b19edb7e3cefd8949
32https://laravel.com/docs/5.3/validation#quick-displaying-the-validation-errors

https://laravel.com/docs/5.3/validation#available-validation-rules
https://github.com/laravelista/elementary-laravel/commit/dbc88e6ccae9f8c8b0c92e9b19edb7e3cefd8949
https://laravel.com/docs/5.3/validation#quick-displaying-the-validation-errors
https://laravel.com/docs/5.3/validation#available-validation-rules
https://github.com/laravelista/elementary-laravel/commit/dbc88e6ccae9f8c8b0c92e9b19edb7e3cefd8949
https://laravel.com/docs/5.3/validation#quick-displaying-the-validation-errors

Elementary Laravel 23

Failed Validation

Try messing around with different values to see how it works.

View changes in this commit
62b5b9d7defe9366a97e69c1772371ddfa78635033.

The validation is now working. We are successfully validating the data and displaying errors to the
user. We still have to process what happens if the validation is successful.

Follow the happy path

We want to redirect the user to the contact form (empty) and display a success message signaling
that everything went ok.

In resources/views/contact.blade.php, just bellow our validation code place the following:

33https://github.com/laravelista/elementary-laravel/commit/62b5b9d7defe9366a97e69c1772371ddfa786350

https://github.com/laravelista/elementary-laravel/commit/62b5b9d7defe9366a97e69c1772371ddfa786350
https://github.com/laravelista/elementary-laravel/commit/62b5b9d7defe9366a97e69c1772371ddfa786350

Elementary Laravel 24

Redirecting to the contact page with a success message

return redirect('/contact')->with([

'success_message' => 'Your message has been sent!'

]);

This code redirects the user to the /contact page. It also flashes session data with a variable called
success_message. That variable will be available on our page.

Now to catch that variable on our contact page, we have to add this block of code to the place where
we want it to be displayed:

Displaying the success message

@if (session('success_message'))

<div class="alert alert-success">

{{ session('success_message') }}

</div>

@endif

Add this code just above the form tag in contact.blade.php. If you populate the form now with
data and submit it, you will be presented with this nice little green alert box:

Success Message

Elementary Laravel 25

View changes in this commit
8c4b2c8d534a7d101951fae2f04e6b2cce129fae34.

Our contact form is now working, the only thing left is actually sending the email :)

Mail

Laravel provides a clean and simple API over the popular SwiftMailer library, allowing you to
quickly get started sending mail.

Published at: 11. December, 2016.

Laravel 5.3 comes with a new feature called Mailables35 where each type of email sent by your
application is represented as a “mailable” class. In the previous tutorial we have hooked our contact
form with validation and upon successful validation, presented the user with a “success” message.
In this tutorial, we will simulate sending an actual email from our contact form.

Mail & Local Development

Improve your skills!
Laravel comes with drivers for many local and cloud-based services for sending emails.
Check the documentation36 to see how to use a specific driver.

Since we are in the development phase in our application, we don’t want to actually send emails to
live email addresses. To avoid doing so we will use the Log Driver.

Go to your local .env file and set a key/value for MAIL_DRIVER=log. Comment out all other keys that
start with MAIL_. By doing so, all emails sent from our application will be written in the log file and
not actually sent.

Mailables

Mailabes are stored in app/Mail.

Generate a new Mailable class

To create a new Mailable enter this command:
34https://github.com/laravelista/elementary-laravel/commit/8c4b2c8d534a7d101951fae2f04e6b2cce129fae
35https://laravel.com/docs/5.3/mail
36https://laravel.com/docs/5.3/mail

https://github.com/laravelista/elementary-laravel/commit/8c4b2c8d534a7d101951fae2f04e6b2cce129fae
https://laravel.com/docs/5.3/mail
https://laravel.com/docs/5.3/mail
https://github.com/laravelista/elementary-laravel/commit/8c4b2c8d534a7d101951fae2f04e6b2cce129fae
https://laravel.com/docs/5.3/mail
https://laravel.com/docs/5.3/mail

Elementary Laravel 26

Creating a Mailable

php artisan make:mail FeedbackReceived

This command will create a new file app/Mail/FeedbackReceived.php.

View changes in this commit
0469b561877cd6eb80667264d10480ade0792b2637.

There are a few things that we need to configure in our new Mailable class:

• Sender
• View
• Data

Configuring the Sender

First, we need to configure who the email is going to be “from”. We do that by setting the from

method inside the build method of the FeedbackReceived class.

Configuring the sender

public function build()

{

return $this

->from('you@company.com')

->view('emails.contact');

}

You can change the from field to anything you want or which represents your business.

Configuring the View

In the code above, we have configured the sender and specified which template should be used when
rendering the email’s contents. We will now create a blank template file as specified.

Create a new folder in resources/views called emails and inside it create a file called con-

tact.blade.php. Place the following code inside:

37https://github.com/laravelista/elementary-laravel/commit/0469b561877cd6eb80667264d10480ade0792b26

https://github.com/laravelista/elementary-laravel/commit/0469b561877cd6eb80667264d10480ade0792b26
https://github.com/laravelista/elementary-laravel/commit/0469b561877cd6eb80667264d10480ade0792b26

Elementary Laravel 27

Writing Email body

<h1>Thank you for contacting us! Your message has been received.</h1>

Setting the Data

So far, we are only sending the generic confirmation message to the user who has submitted the
contact form. It would be nice if we could address the user by his name and display the message
that he has sent us.

To do so, we have to set public properties on our FeedbackReceived class for name and comment :

Setting class properties

public $name;

public $comment;

public function __construct($name, $comment)

{

$this->name = $name;

$this->comment = $comment;

}

Once the data has been set to a public property, it will be automatically available in our view as a
variable. Let’s modify our view template to include these variables:

Expanding the Email body with comment from Class property

<h1>Thank you for contacting us {{ $name }}! Your message has been received.</h1>

<p>{{ $comment }}</p>

Sending Mail

To send the actual email that we have configured in the previous chapter, we have to open the file
routes/web.php and replace the TODO comment in Route::post('contact') with the following:

Sending Mail

Mail::to($request->get('email'))->send(new FeedbackReceived($request->get('name'\

), $request->get('comment')));

Don’t forget to add the use statements above the route:

Elementary Laravel 28

Adding use statements

use App\Mail\FeedbackReceived;

use Illuminate\Support\Facades\Mail;

Now if you populate the contact form with data that passes validation, the email will be logged in
storage/logs/laravel.log.

Check that log file to see if the email is logged there.

View changes in this commit
300445c0dc40d7e3099ee5602acfc98979b9a85a38.

Congratulations! This marks the completion of the course Elementary Laravel. Thank you for
reading this far.

By completing this course you will have a basic “elementary” understanding on how to use Laravel
to create simple websites. The code for this course is available on Github and you are more than
welcome to fork it, improve it and contribute to it.

38https://github.com/laravelista/elementary-laravel/commit/8c4b2c8d534a7d101951fae2f04e6b2cce129fae

https://github.com/laravelista/elementary-laravel/commit/8c4b2c8d534a7d101951fae2f04e6b2cce129fae
https://github.com/laravelista/elementary-laravel/commit/8c4b2c8d534a7d101951fae2f04e6b2cce129fae

Laravel on Windows with Homestead
If you are getting started with Laravel and are using Windows, this is the right starting point for
you. We will cover everything from installing PHP & Git to using Homestead virtual machine and

creating your first blank Laravel application.

Prepare for modern PHP applications

In this introductory tutorial, we will be installing the absolute basic software that is required to run
modern PHP frameworks like Laravel.

Published at: 12. March, 2016.

So, you have heard about Laravel and want to learn how to use it? Are you using Windows? Then
this is the right starting point for you. In this tutorial, we will install some basic software that you
will need on your PC.

These are the tools that you will be needing:

• Git + Git Bash39 (2.7.0)
• PHP40 (7.0.3 - VC14 x64 Thread Safe)

I’m running Microsoft Windows 10 x64, that is why I’m using the x64 version of PHP.
If you are on an x86 (32bit) Windows then you should use an x86 version of PHP.

Install PHP on Windows

First, we need to download PHP zip file from the website mentioned above. Unzip that file a place
its content in C:\tools\php directory. Now inside that folder, you will find a file called php.ini-

development. Copy/paste that file and rename it to php.ini.

There are somethings that we will need to enable inside that file, so grab your favorite text editor (I
prefer Sublime Text, but you can use notepad as well) and open that file:

• On line :368 change max_execution_time = 30 to max_execution_time = 300. You will
thank me for this later.

39http://www.git-scm.com/
40http://windows.php.net/

http://www.git-scm.com/
http://windows.php.net/
http://www.git-scm.com/
http://windows.php.net/

Laravel on Windows with Homestead 30

• On line :724 uncomment ; extension_dir = "ext" (Remove ; from the start of the line)
• On line :837 under section Dynamic Extensions you will find a list of extension. We need
to uncomment a few of those:

– extension=php_curl.dll
– extension=php_fileinfo.dll
– extension=php_gd2.dll
– extension=php_mbstring.dll
– extension=php_mysqli.dll
– extension=php_openssl.dll
– extension=php_pdo_mysql.dll
– extension=php_pdo_sqlite.dll

Now we have configured PHP for Laravel and other modern PHP applications.

We still have to tell Windows where to find this PHP installation. And we do so by adding the
absolute path of the folder we installed PHP to our System Path Environment Variable.

Open Control Panel and go to Control Panel\System and Security\System\Advanced system

settings\Advanced\Environment Variables and under System variables locate Path press Edit.
Here add a new value pointing to your PHP installation folder that contains php.ini file. In my
case, I would add C:\tools\php-7.0.3-Win32-VC14-x64. Press Ok to all and close open windows.

Control Panel System

Laravel on Windows with Homestead 31

Advanced system properties

Laravel on Windows with Homestead 32

Environment variables

Laravel on Windows with Homestead 33

Path system variables

To test that everything works at this point. Open Command Prompt cmd and type php -v. You should
get something like this:

Laravel on Windows with Homestead 34

Checking PHP version

$ php -v

PHP 7.0.3 (cli) (built: Feb 2 2016 14:38:29) (ZTS)

Copyright (c) 1997-2016 The PHP Group

Zend Engine v3.0.0, Copyright (c) 1998-2016 Zend Technologies

php version output

Great, now we can move on. If you are having problems at this point, leave me a comment bellow
and I will help you out.

Install Composer

Go to the download page for Composer41 and download the Windows installer. It will install the
latest version and configure everything on your system.

You can verify that everything is working by typing composer --version in the terminal.

Checking Composer version

$ composer --version

Composer version 1.0-dev (72cd6afdfce16f36a9fd786bc1b2f32b851e764f) 2015-12-28 1\

7:35:19

Install Git and Git Bash

If you are building a modern PHP application or planning to use Laravel you should really learn
how to use Git, because without it, over time you will get yourself in a big mess.

The installation is pretty simple, just download the latest version of Git42 and complete the
installation with these options:

• Use MinTTY (the default terminal of MSys2)
• Checkout WIndows-style, commit Unix-style line endings

41https://getcomposer.org/download/
42http://www.git-scm.com/download/win

https://getcomposer.org/download/
http://www.git-scm.com/download/win
https://getcomposer.org/download/
http://www.git-scm.com/download/win

Laravel on Windows with Homestead 35

• Use Git and optional Unix tools from the Windows Command Prompt
• Enable file system caching

Git Components

Laravel on Windows with Homestead 36

Git Terminal Emulator

Laravel on Windows with Homestead 37

Git Line ending Checkout style

Laravel on Windows with Homestead 38

Git Environment variables

Laravel on Windows with Homestead 39

Git File System Caching

To test that everything is working, findGit Bash under Programs, right-click on it and click Run as
Administrator. Type git --version and you should get:

Checking Git version

$ git --version

git version 2.7.0.windows.2

You can customize the appearance of the terminal by going to options and changing the font family,
font size, transparency, full screen and many other options.

I’m using Fira Code, 11pt, medium transparency, scrollbar turned off and xterm-
256color terminal.

Install Node.js

You will be needing node.js to install NPM modules and use Elixir43.

Go to node.js website44 and download the latest stable version (v5.5.0). The installation is pretty
straight forward, just follow the installer. You can verify your installation by typing node -v.

43https://laravel.com/docs/5.2/elixir
44https://nodejs.org/en/

https://laravel.com/docs/5.2/elixir
https://nodejs.org/en/
https://laravel.com/docs/5.2/elixir
https://nodejs.org/en/

Laravel on Windows with Homestead 40

Repositories location & text editor

Because of path length limitation on Windows, I suggest that you place all of your repositories in
the root of your drive C:\repositories. This solves many issues with npm

For you text editor or IDE I suggest using Sublime Text 345 or PHPStorm46. However, you are free
to use anything you want.

You are now ready to move on to the next tutorial.

Important!
When I say “use the terminal” or “type in terminal” in future tutorials, that means to use
Git Bash program we installed in this tutorial. Everything you do from this point on in
terminal, you should be done in Git Bash console.

Getting started with Homestead

Your own local virtual server for running PHP applications with lots of extra software in case your
projects requires it.

Published at: 12. March, 2016.

What is Homestead and why all the fuss about it?

Taken from official Laravel documentation47 on Homestead:

Laravel Homestead is an official, pre-packaged Vagrant box that provides you a wonderful
development environment without requiring you to install PHP, HHVM, a web server, and any
other server software on your local machine.

In the simplest way; everything you need (development server related) to start working on your
Laravel application is already included in Homestead. You just need to set it up and you are good to
go.

Virtualbox provides you with an ability to manage virtual machines. Vagrant is used for automating
the virtual machine creation process. Homestead is a Vagrant box. You tell Vagrant to use the
Homestead box to create a virtual machine using Virtualbox and voila everything is up and running.

45http://www.sublimetext.com/3
46https://www.jetbrains.com/phpstorm/
47https://laravel.com/docs/5.2/homestead#introduction

http://www.sublimetext.com/3
https://www.jetbrains.com/phpstorm/
https://laravel.com/docs/5.2/homestead#introduction
http://www.sublimetext.com/3
https://www.jetbrains.com/phpstorm/
https://laravel.com/docs/5.2/homestead#introduction

Laravel on Windows with Homestead 41

Let’s start from the start :)

Important!
When I say “use the terminal” or “type in terminal”, that means to use Git Bash program
we installed in the previous tutorial. Everything you do from this point on in terminal, you
should be doing in Git Bash console.

Install Virtualbox

Visit the official Virtualbox download page and download the latest version (At the time of writing
this tutorial the latest version is 5.0.14). Once downloaded run the setup.

For reference I’m running Microsoft Windows 10 x64.

Leave all the defaults on this step.

Features

And complete the setup by pressing next to everything as usual :) This will disable your network
connection for a few seconds so keep that in mind if you are doing something online like reading
this tutorial.

Laravel on Windows with Homestead 42

Also, be sure to download and install VirtualBox Extension Pack from the same download page. The
extension Pack version must match Virtualbox version.

Now that we have installed Virtualbox and the Extension Pack we will proceed to Vagrant, but
before we do, be sure to restart your PC.

Install Vagrant

Go to the Vagrant download page48 and download the latest version (1.8.1).

Once downloaded, complete the setup by pressing next to everything.

To test that everything is working run vagrant -v from the terminal.

Checking Vagrant version

$ vagrant -v

Vagrant 1.8.1

Install The Homestead Vagrant Box

Run the following command in the terminal to download the latest Homestead box:

Adding Homestead vagrant box

vagrant box add laravel/homestead

This command should take some time depending on your download speed.

You now have Vagrant installed.

Install Homestead

To install Homestead clone the repository in yourHome (∼/) directorywith the following command:

Cloning Homestead repository

cd ~

git clone https://github.com/laravel/homestead.git

Navigate to that directory and run bash init.sh to create necessary files. You should get an output
similar to this:

48https://www.vagrantup.com/downloads.html

https://www.vagrantup.com/downloads.html
https://www.vagrantup.com/downloads.html

Laravel on Windows with Homestead 43

Initializing Homestead

$./init.sh

Homestead initialized!

This means that the Homestead.yaml file has been placed in the ∼/.homestead hidden directory
along with two other files (You can open those files with any text editor to see what they are for).

Now open Homestead.yaml. This file is the file in which you will be making any future changes.
You can:

• change virtual machine settings
• set your SSH key
• add folders
• add Nginx sites
• add databases and more…

For start, change folders to point to the directory where you keep your repositories, like so:

Setting the path to your repositories folder

folders:

- map: C:/repositories

to: /home/vagrant/repositories

There will be more talk about this file later when we will create a blank Laravel
application.

Daily usage

In order to avoid navigating to C:\repositories\homestead directory every time you want to start
the virtual machine, you can add a simple Bash alias to your Bash profile.

Go to∼/ and check if you have a hidden file there called .bash_profile. If you don’t have that file
create it and place the following inside it:

Laravel on Windows with Homestead 44

Adding Bash aliases and functions

Some shortcuts for easier navigation & access

alias ..="cd .."

alias vm="ssh vagrant@127.0.0.1 -p 2222"

Homestead shortcut

function homestead() {

(cd /c/repositories/homestead && vagrant $*)

}

Save the file and restart your terminal for the changes to take effect.

Now is the time to finally start Homestead. Now, you must open Git Bash (terminal) as an
administrator (Right click -> run as administrator). Start homestead by typing homestead up

in your terminal. Vagrant will boot the virtual machine and automatically configure your shared
folders and Nginx sites.

Your first Laravel application

Learn how to create a blank Laravel application and serve it locally with Homestead on your PC for
development purposes.

Published at: 12. March, 2016.

To sum things up, so far we have installed the necessary software on our host PC, Virtualbox, Vagrant
and got Homestead up and running. Now we will create a blank Laravel application, configure
Homestead to serve it and change the hosts file so that we have a custom domain for our application.

This process you will have to do every time you create a new Laravel application so try to remember
it.

Repositories root directory

As mentioned in the previous tutorial you need to have a repositories folder where you keep all your
repositories/applications. In .homestead/Homestead.yaml you have a line:

Laravel on Windows with Homestead 45

Repositories folder location

folders:

- map: C:/repositories

to: /home/vagrant/repositories

Navigate to that folder and follow the instructions bellow.

Install Laravel via installer

First, we have to download the Laravel installer by typing the command bellow in terminal:

Installing Laravel installer

composer global require "laravel/installer"

This command will download the Laravel installer and create an executable that you can call upon.

To be able to use laravel installer from the terminal we first have to add composer bin directory
to our path. We do that by going to Control Panel\System and Security\System\Advanced

system settings\Advanced\Environment Variables and under System variables locate Path

press Edit. Here add a new value pointing to the composer bin directory. For reference mine is
C:\Users\Mario\AppData\Roaming\Composer\vendor\bin.

To create a directory containing a fresh Laravel installation with all dependencies installed use this
command in your repositories root directory:

Creating a new Laravel project

laravel new myblog

This method of installation is much faster than installing via Composer.

Now you have a directory called myblog and inside it, your first Laravel application.Here are a few
tips when working on Windows. Navigate to your app and open it using Sublime Text like so:

Opening the folder using Sublime Text

cd myblog

subl .

Laravel on Windows with Homestead 46

If your system can’t find subl you need to add it to your path. The procedure is the same
as the above. Add C:\Program Files\Sublime Text 3 to your Path.

Now open the file called .env. This file contains all configuration options for your application and
by default is not included in version control.

• change DB_HOST=127.0.0.1 to your Homestead machine IP address. By default that is
192.168.10.10. This will enable you to run migrations and tinker with your application from
the host PC without the need to ssh into Homestead.

• change DB_DATABASE=homestead to something more meaningful like myblog.

That’s it! Now we have to tell Homestead about our brand new application.

Add application to Homestead

To add a new Nginx site to Homestead we need to open∼/.homestead/Homestead.yaml and add a
new site for myblog.app and create a database myblog:

Adding application to Homestead

sites:

- map: myblog.app

to: /home/vagrant/repositories/myblog/public

databases:

- myblog

Save the changes and type homestead provision in the terminal (remember you must run Git
Bash as an Administrator every time your work with Homestead). This command will preserve
all changes: sites, databases, custom modifications and update it with new sites and databases. Very
useful.

There is one more step before you can access your brand new blog and that is adding our custom
domain myblog.app to point to our Homestead machine IP 192.168.10.10.

The Hosts file

The hosts file will redirect requests for your Homestead sites into your Homestead machine. On
Windows, it is located at C:\Windows\System32\drivers\etc\hosts. The lines you add to this file
will look like the following:

Laravel on Windows with Homestead 47

Updating hosts file

192.168.10.10 myblog.app

There are a few glitches here. In order to save changes to the hosts file, you must open
it as an administrator. That means opening the terminal as an administrator navigating to
C:\Windows\System32\drivers\etc and opening the file hosts using Sublime Text. You will be
doing that a lot.

So to save you and myself time, I have created a shortcut for that.

The shortcut

Go to Desktop and create a new shortcut (right click -> new -> shortcut). When asked for the location
of the item paste "C:\Program Files\Sublime Text 3\subl.exe" c:\windows\system32\drivers\etc\hosts

and press Next. Now type the name for this shortcut Edit Hosts and press Finish.

Now right click on the shortcut and go to Properties -> Shortcut -> Advanced and check the box
saying Run as Administrator. This opens the hosts file as an administrator so that you can save
changes.

Laravel on Windows with Homestead 48

Advanced properties

Laravel on Windows with Homestead 49

Run as Administrator

Cut that shortcut (Ctrl+X or right click -> cut) and using the File Explorer navigate to C:\ProgramData\Microsoft\Windows\Start
Menu\Programs and paste it there. It will require you to confirm that you are an administrator.

Once you have done all of this, it is easy now to edit the hosts file. Press the Windows key on your
keyboard and start typing Edit Hosts. The shortcut that we have just created will show. Press Enter
and add this line at the bottom:

Updating hosts file

192.168.10.10 myblog.app

Save the file and you are done.

Sublime Text must be closed before you run this shortcut. Otherwise, if Sublime is opened
in normal mode you cannot save changes to the hosts file.

Once you have added the domain to your hosts file, you can access the site via your web browser:

Accessing the website in the browser

http://myblog.app

Laravel on Windows with Homestead 50

Laravel

Now you have your first Laravel application running on Homestead. This tutorial concludes the
course Laravel on Windows.

Laravel on Windows with Laragon
Another approach to getting started with Laravel on Windows is by using Laragon. Laragon offers

you a fast, powerful and Isolated Development Environment. It is portable, very flexible and
doesn’t affect your operating system.

Hello Laragon

In this tutorial, I will tell you about Laragon which is an alternative to Homestead and we will also
cover the entire process of installation.

Published at: 04. April, 2016.

So, what is Laragon and you should use it over Homestead on Windows. In my previous course called
Laravel onWindows I’ve got a few comments saying that I should mention Laragon as an alternative
to Homestead for users that are unable to perform the steps in the tutorial (by landjea49) and because
it is less hassle to set up things natively and having to worry about crap associated with VM’s (by
Matthew Rath50).

I’ve taken those comments into consideration, took some time to explore Laragon and have come
up with this cource where I will explain what Laragon is when you should use it and what are its
features.

As stated on the official website51, Laragon is a fast, powerful and Isolated Development Environ-
ment. It is portable and very flexible.

Installing Laragon is effortless & doesn’t affect your OS (Windows). You can move Laragon folder
around (to another disk, to another laptop, sync to Cloud,…) and it still works.

To even more simplify this, Laragon is a WAMP (Windows, Apache, MySQL, PHP); Widows web
development environment. It does not affect your operating system. You install it as a software, start
it up, do your programming and when finished you just exit.

When to use Laragon over Homestead?
49https://disqus.com/by/landjea/
50https://disqus.com/by/matthew_rath/
51https://laragon.org

https://disqus.com/by/landjea/
https://disqus.com/by/matthew_rath/
https://laragon.org/
https://disqus.com/by/landjea/
https://disqus.com/by/matthew_rath/
https://laragon.org/

Laravel on Windows with Laragon 52

This is difficult to answer because it depends on many factors. Since Homestead is the officially
supported way of running Laravel I would recommend using it, but if for some reason you can’t
(don’t have administrator rights or unable to run a VM) the next best thing is Laragon.

You can always use php artisan serve and SQLite database to avoid using Homestead or
Laragon if you wish. This assumes that you have PHP installed on your OS.

This introduction is long enough, let’s move on to the fun stuff.

Features

One thing that I find lacking on the Laragon website is the summary of current features. On the
official website, you have the download link and the link to the forum. No install instructions or
anything similar can be found on the front page.

It took me some time, to summarize all the features from the Announcements category52 on the
Forum and even more time to find out how to use some features.

Don’t worry, as it turns out it is all very simple.

Software and services that you get with Laragon 1.0.7 are:

• Cmder53

• Git
• Node.js
• NPM
• SSH
• Putty
• PHP 7 & 5.6 (Easily switchable with one click)
• Activate/deactivate PHP extensions on the fly
• xDebug
• Composer
• Apache
• MariaDB/MySQL
• phpMyAdmin
• Full Lumen and Laravel support
• Auto create virtual hosts

52https://forum.laragon.org/category/1/announcements
53http://cmder.net/

https://forum.laragon.org/category/1/announcements
http://cmder.net/
https://forum.laragon.org/category/1/announcements
http://cmder.net/

Laravel on Windows with Laragon 53

• Mail Catcher - Laragon will show a small window on the bottom right of your screen and
help you quickly view content of the generated email

• Mail Sender - You can use mail() function to send mail to the Internet easily and effortlessly
• Mail Analyzer: Analyze what happens when an email is sent and show helpful information
to make sure that your email configurations are correct.

• ngrok - allows connections from the Internet to the local server

Useful shortcuts

Global hotkey to open shell (cmder): CTRL+ALT+T

Shell shortcuts:

Useful shortcuts

e -> open notepad++

e. -> open explorer

ll -> list current dir with full information

vi -> if you love vim

Now that we know what Laragon is and what are its features we can move on to installation.

Installation

The installation is very simple, just click the download button on the official website54 and follow
the installer.

You can choose where to put the Laragon folder (Later you can move this folder where ever you
want, but I suggest placing it in the root of any drive):

54https://laragon.org

https://laragon.org/
https://laragon.org/

Laravel on Windows with Laragon 54

Installation Directory

Be sure to enable Auto create virtual hosts feature:

Laravel on Windows with Laragon 55

Auto enable virtual hosts

Great, now the installation is complete, but don’t start Laragon yet.

Auto create virtual hosts

Once the installation has completed, you have to decide if you want to use the Auto create virtual
hosts feature or not. If you want to use it, you must run Laragon as an administrator. If not, you
can run it as a normal user but then that feature will not work.

This feature converts project folder name in C:\laragon\www\ to a friendly domain name. If your
projects folder is called superawesomewebsite then Laragon will create a local domain which you
can access at http://superawesomewebsite.dev

Now let’s run Laragon as an administrator. You should see a screen like this:

Laravel on Windows with Laragon 56

Start screen

Switch PHP versions

Before we click on Start All button, you can decide which version of PHP you want to be used. Go
to Menu -> PHP -> Version and choose the one you want. I prefer to use PHP 7 :)

Now click on Start All and you should get Apache and MySQL running.

Laravel on Windows with Laragon 57

All services started

You now have Laragon installed and running.

Your first Laravel application

Learn how to create a blank Laravel application and serve it locally with Laragon on your PC for
development purposes.

Published at: 04. April, 2016.

In the previous tutorial, we have installed Laragon and started its services. I am running Laragon
as an administrator so that the *auto create virtual hosts feature is enabled*. In this tutorial, I will
show you two ways on how to start a brand new Laravel 5 application.

First, using the GUI of Laragon and then using the shell (cmder).

Repositories root directory

To find out where Laragon stores its projects click on Root button on the GUI (Graphical User
Interface). It will open File Explorer on repositories root directory. You can see the full path in

Laravel on Windows with Laragon 58

the path bar above: C:\laragon\www; if you left the default installation folder of Laragon during the
installation.

This is the location where you should place your existing projects if you have any yet.

Install Laravel via GUI

Now, this is the easiest way of installing Laravel 4, 5 or Lumen I have ever seen. Click on Menu ->

Laravel -> Create project -> Laravel 5.

Install Laravel 5

You will be asked for the project name. Enter the name and confirm. A command line window will
open and the installation of Laravel will begin.

I have entered laravel5 as project name, but you can choose how you want to name
your projects. In future reference, you can replace laravel5 with the project name you
entered.

Once completed you will see a message:

Laravel on Windows with Laragon 59

Laragon message

Run Laragon as Administrator to get beautiful URL:

http://laravel5.dev"

Before you visit that URL, be sure to press reload on Laragon GUI for changes to take effect. If you
visit the URL http://laravel5.dev in your browser you will see a welcome screen of Laravel 5.

Laravel 5 Welcome

That’s it! You project is now located in C:\laragon\www\laravel5 folder. You can use any text editor
or IDE to open it and start working on your brand new Laravel 5 application.

Install Laravel via shell

If for some reason you don’t want to use the GUI to create a Laravel 5 project, you can always use
the shell aka Terminal.

On the Laragon GUI click on Terminal to open the Cmder shell which points to your repositories
root directory.Or there is a global keyboard shortcut mentioned in the previous tutorial CTRL+ALT+T
which opens the same Cmder shell.

In shell type:

Laravel on Windows with Laragon 60

Installing Laravel project using Composer

composer create-project laravel/laravel your-project-name --prefer-dist

to create a new Laravel project. This is mentioned in the official Laravel documentation under
Installation55.

Now you have your first Laravel application running on Laragon.

Remote access using ngrok

Enable your friends and clients to access your application over the Internet, while working on it
locally.

Published at: 18. April, 2016.

Let’s dive right into this tutorial.What do we want to do?

We want to expose our local application to the Internet so that our clients or friends can view what
we are working on or the current progress of the project while it is still not on production server.

Secure tunnels to localhost - ngroka

ahttps://ngrok.com/

Some of the benefits of using ngrok from their website:

• Demo without deploying
• Simplify mobile device testing
• Build webhook integrations with ease
• Run personal cloud services from your own private network

This is a really nice feature that Laragon has out-of-the-box.

Remote Access

Let’s continue where we left off in the previous tutorial. We have created a blank Laravel application
on http://laravel5.dev domain and all Laragon services are running.

On the Laragon GUI click on Terminal to open the Cmder shell Or use the shortcut CTRL+ALT+T
which opens the same Cmder shell.

In shell type:
55https://laravel.com/docs/5.2/installation

https://laravel.com/docs/5.2/installation
https://ngrok.com/
https://ngrok.com/
https://laravel.com/docs/5.2/installation

Laravel on Windows with Laragon 61

Enabling remote access using ngrok

ngrok http laravel5.dev:80

You will get an output similar to this one:

ngrok output

Take a note of this line:

Obtaining remote access URL

Forwarding http://1a1aed8f.ngrok.io -> laravel5.dev:80

In my case this is http://1a1aed8f.ngrok.io, but your output will be different, so keep that in
mind and write it down somewhere. You will need it for the next step.

Now go to the Laragon GUI and click on Menu -> Apache -> http-vhosts.conf and add the
domain from ngrok to ServerAlias of laravel5.dev virtualhost entry.

Keep inmind that if you have named your project differently than laravel5, use your project
name instead.

Now my virtual host entry looks like this:

Laravel on Windows with Laragon 62

Virtual host entry for Apache

<VirtualHost *:80> #laragon magic!

DocumentRoot "C:/laragon/www/laravel5/public/"

ServerName laravel5.dev

ServerAlias *.laravel5.dev 1a1aed8f.ngrok.io

</VirtualHost>

One last thing before this starts working is to restart Apache. You do that by going to the Laragon
GUI and clicking on Menu -> Apache -> Reload or just click on Reload on the GUI screen next to
the Apache service.

You can now access your local application over the Internet using the given URL from ngrok. In my
case, this is http://1a1aed8f.ngrok.io.

ngrok remote

The URL will be changed each time you run ngrok.

Quickstart

1. Run ngrok for project ngrok http project.dev:80.

Laravel on Windows with Laragon 63

2. Add URL given from ngrok to ServerAlias of that project in Apache http-vhosts.conf file
(Menu -> Apache -> http-vhosts.conf).

3. Reload Apache (Menu -> Apache -> Reload).
4. Send given ngrok URL to friend, client etc…

This was a nice and simple tutorial on a thing that is usually very complicated to do, but thanks to
Laragon it was a breeze.

Configure Laravel 5 for Shared
Hosting
There are a few things that you have to change in Laravel to make it work on shared hosting. The

most important thing is to change the public path and correctly bootstrap the application.

Published at: 29. July, 2016.

View Source Code
Source code for this tutorial is available here56.

I recently had to build awebsite that would be used on shared hosting. At first, I went with a standard
HTML index.html file and then create a file called contact.php to handle the contact form submit
action. The website can be found at studio-renata.hr57 as soon as they move the website to the server
that has PHP 5.6 version.

As I started coding the website the number of lines started to grow and I had a lot of duplicating
syntax for stuff like images, containers etc.. Somehow I got over it and was feeling happy with it,
but then I had to deal with validating the contact form using AJAX. As you can guess I did a quick
research and found out that Laravel can run on shared hosting, but with a few limitations:

• There is no console (artisan)
• You cannot use Composer to install/update
• You cannot use Git to version your application

That being said, there are a few requirements that your server needs to have in order for Laravel to
work:

• PHP >= 5.5.9
• OpenSSL PHP Extension
• PDO PHP Extension
• Mbstring PHP Extension
• Tokenizer PHP Extension

56https://github.com/laravelista/configure-laravel-5-for-shared-hosting
57http://studio-renata.hr

https://github.com/laravelista/configure-laravel-5-for-shared-hosting
http://studio-renata.hr/
https://github.com/laravelista/configure-laravel-5-for-shared-hosting
http://studio-renata.hr/

Configure Laravel 5 for Shared Hosting 65

To be honest, I haven’t even checked that my shared hosting server has mentioned PHP
extensions, but since it all works I guess that it does.

In this tutorial, I will show you how to configure your Laravel application to be able to run on shared
hosting. You can view the code for this tutorial on GitHub58.

Moving Files

I have a fresh installation of Laravel on my PC. To see how to install Laravel see the official
documentation59 or check out these great courses on my website for Homestead on Windows or
Laragon.

View changes in this commit
0546e265b7187312bb360b93edbfc91a8e96994260.

First, we will organize our application folder structure to better match our needs. The default folder
structure looks like this:

58https://github.com/laravelista/configure-laravel-5-for-shared-hosting
59https://laravel.com/docs/5.2/installation
60https://github.com/laravelista/configure-laravel-5-for-shared-hosting/commit/0546e265b7187312bb360b93edbfc91a8e969942

https://github.com/laravelista/configure-laravel-5-for-shared-hosting
https://laravel.com/docs/5.2/installation
https://laravel.com/docs/5.2/installation
https://github.com/laravelista/configure-laravel-5-for-shared-hosting/commit/0546e265b7187312bb360b93edbfc91a8e969942
https://github.com/laravelista/configure-laravel-5-for-shared-hosting
https://laravel.com/docs/5.2/installation
https://github.com/laravelista/configure-laravel-5-for-shared-hosting/commit/0546e265b7187312bb360b93edbfc91a8e969942

Configure Laravel 5 for Shared Hosting 66

Default folder structure

We will rename folder /public to public_html

You can rename it to whatever you need, but remember to use that name in future code
changes in this tutorial.

and create a new directory called laravel_project.

You can name this folder whatever you want, but remember to use it in future code
references.

Move all files and folders to laravel_project directory except public_html/ and .git(if you have
created it) folder.

Now, your root folder structure should look like this:

Configure Laravel 5 for Shared Hosting 67

New folder structure 1

and inside laravel_project should look like this:

New folder structure 2

View changes in this commit
6dec090ae1ca11673ee15d7898280becebd4603861.

61https://github.com/laravelista/configure-laravel-5-for-shared-hosting/commit/6dec090ae1ca11673ee15d7898280becebd46038

https://github.com/laravelista/configure-laravel-5-for-shared-hosting/commit/6dec090ae1ca11673ee15d7898280becebd46038
https://github.com/laravelista/configure-laravel-5-for-shared-hosting/commit/6dec090ae1ca11673ee15d7898280becebd46038

Configure Laravel 5 for Shared Hosting 68

Update Bootstrap Files Location

Since index.php file inside public_html/ directory is the first file that will be loaded by the HTTP
server, we have to adjust the paths to autoload.php and app.php files located in /laravel_projec-

t/bootstrap/, to match our new folder structure.

Open file public_html/index.php and change:

• line 22 require __DIR__.'/../bootstrap/autoload.php'; to require __DIR__.'/../laravel_-

project/bootstrap/autoload.php';

• line 36 $app = require_once __DIR__.'/../bootstrap/app.php'; to $app = require_-

once __DIR__.'/../laravel_project/bootstrap/app.php';

That is all that you have to change in public_html folder.

View changes in this commit
158c72d065db262ff7139bac9f51178cc5a082a162.

Change public_path in Application

So, this party at first seems very scary, but it really isn’t. We have created a new class which extends
the main Laravel application class and overwrite the publicPath method to return the path to our
new public_html folder. Then we use that class to create a new Laravel application. This way
our public_path works everywhere in our application including console (which you can still use
in development).

Create a new file in laravel_project/app/ called Application.php and paste the following code
inside:

Extending the Application class

<?php namespace App;

/**

* Extend Laravel main application class to change public_path.

*

* See here for more info:

* http://stackoverflow.com/questions/31758901/laravel-5-change-public-path

*/

62https://github.com/laravelista/configure-laravel-5-for-shared-hosting/commit/158c72d065db262ff7139bac9f51178cc5a082a1

https://github.com/laravelista/configure-laravel-5-for-shared-hosting/commit/158c72d065db262ff7139bac9f51178cc5a082a1
https://github.com/laravelista/configure-laravel-5-for-shared-hosting/commit/158c72d065db262ff7139bac9f51178cc5a082a1

Configure Laravel 5 for Shared Hosting 69

class Application extends \Illuminate\Foundation\Application

{

/**

* Get the path to the public / web directory.

*

* @return string

*/

public function publicPath()

{

return $this->basePath . DIRECTORY_SEPARATOR . '..' . DIRECTORY_SEPARATO\

R . 'public_html';

}

}

Now in laravel_project/bootstrap/app.php change:

$app = new Illuminate\Foundation\Application(

realpath(__DIR__.'/../')

);

to

Using the new Application class

$app = new App\Application(

realpath(__DIR__.'/../')

);

This instantiates a new Laravel application using our Application class. Before we can tests if our
new folder structure works, there is one more step to complete if you plan on using php artisan

serve to test the site.

View changes in this commit
ee254ae1497c739e930c94cd6b85a2c5e25ecf1063.

Make php artisan serve work

This is very simple. Open file laravel_project/server.php and change:

63https://github.com/laravelista/configure-laravel-5-for-shared-hosting/commit/ee254ae1497c739e930c94cd6b85a2c5e25ecf10

https://github.com/laravelista/configure-laravel-5-for-shared-hosting/commit/ee254ae1497c739e930c94cd6b85a2c5e25ecf10
https://github.com/laravelista/configure-laravel-5-for-shared-hosting/commit/ee254ae1497c739e930c94cd6b85a2c5e25ecf10

Configure Laravel 5 for Shared Hosting 70

if ($uri !== '/' && file_exists(__DIR__.'/public'.$uri)) {

return false;

}

require_once __DIR__.'/public/index.php';

to

Updating the path to index.php

if ($uri !== '/' && file_exists(__DIR__.'/../public_html'.$uri)) {

return false;

}

require_once __DIR__.'/../public_html/index.php';

Save changes and run

Serving the application

cd laravel_project

php artisan serve

You should get output similar to this one:

Development server started

$ php artisan serve

Laravel development server started on http://localhost:8000/

If you open your browser on http://localhost:8000 you should see a standard Laravel Hello page.

Configure Laravel 5 for Shared Hosting 71

Hello Laravel

You can now compress your application, upload it to your shared hosting and extract. It should work
now.

View changes in this commit
81fd608afe4b551b480640848c28804a5dcc200564.

This concludes this tutorial.

64https://github.com/laravelista/configure-laravel-5-for-shared-hosting/commit/81fd608afe4b551b480640848c28804a5dcc2005

https://github.com/laravelista/configure-laravel-5-for-shared-hosting/commit/81fd608afe4b551b480640848c28804a5dcc2005
https://github.com/laravelista/configure-laravel-5-for-shared-hosting/commit/81fd608afe4b551b480640848c28804a5dcc2005

	Table of Contents
	Getting Started
	Elementary Laravel
	Laravel on Windows with Homestead
	Laravel on Windows with Laragon
	Configure Laravel 5 for Shared Hosting

