

[image: A Collection of Laravel Tutorials]

 A Collection of Laravel Tutorials

 Mario Bašić

 This book is for sale at http://leanpub.com/laravelista-collection

 This version was published on 2018-05-02

 [image: publisher's logo]

 * * * * *

 This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and many iterations to get reader feedback, pivot until you have the right book and build traction once you do.

 * * * * *

© 2017 - 2018 Mario Bašić

 Table of Contents

 	
 Getting Started

 	
 Elementary Laravel

 	
 Laravel on Windows with Homestead

 	
 Laravel on Windows with Laragon

 	
 Configure Laravel 5 for Shared Hosting

 Guide

 	
 Begin Reading

Getting Started

Homestead or Laragon, pick one and start building.

Elementary Laravel

 Only the basics in the simplest way possible. Everything you need to create a website.

 View Source Code

 Source code for this tutorial is available here.

Installation

 We have to install Laravel before we can start using it, so let’s do that now.

 Published at: 17. October, 2016.

Welcome to my new course called Elementary Laravel. In this course, we will build a simple business website with Laravel 5.3. The idea is to teach you how to build a website with Laravel by using the least amount of steps necessary and provide you with references to expand the knowledge you obtain from this course.

Don’t bother yourself with questions like: “Is this the best practice?” or “Should I be doing this-this way?” etc. Everybody starts somewhere and I think that this is the best starting point for learning Laravel. By the end of this course, you will have a working business website and basic knowledge about Laravel.

Requirements

These are the tools that you will need for this tutorial:

 	PHP

 	Composer

 	A text editor or an IDE. I suggest using Atom.

 	A Web browser. Chrome preferred.

Installation

If you haven’t already, download the Laravel installer using Composer:

 Installing Laravel Installer

composer global require "laravel/installer"

To create a fresh Laravel installation we will use this command:

 Creating a fresh Laravel installation

laravel new website

This command will create a directory called website containing a fresh Laravel installation.

To see how our newly installed Laravel application looks like we will use the built-in Local development server. To start a development server at http://localhost:8000 run this command:

 Starting a development server

php artisan serve

Now open your browser to that URL and you will see this screen:

 [image: Laravel installed]
 Laravel installed

 View changes in this commit

 d49ab3224cee877d9a201a0cf973e07988317600.

 Improve your skills!

 Instead of using the built-in PHP development server, you should really learn how to install and configure Homestead. If you are on Windows, I already have a course on Homestead on Windows and Laragon on Windows. If you are on a Mac, take a look at Valet.

 You now have Laravel installed and ready to go.

Routing

 Routes are the entry points to your application, so it is only logical to learn about them first.

 Published at: 17. October, 2016.

Routes are the main entry points for your Laravel application. With routes, we define URLs that are accessible on our website.

If you need an about page, you probably want it to be accessible at /about URL. Routes define what URLs are accessible and what happens when a route is triggered. Think of them as an index for your website. When you want to locate something, you just have to take a look at the routes file.

URL structure

For our business website, we will have a structure like this:

 	
GET / - Our home page.

 	
GET /about - The about page.

 	
GET /contact - Contact page that has a contact form.

 	
POST /contact - When contact form is submitted, data will be sent to this route.

If you don’t know already what GET and POST mean, think of them this way. GET is used for getting a web page. POST is used to send data to a web page. While this isn’t the exact definition, for the purpose of this tutorial it will do.

 Improve your skills!

 If you are thinking of starting a career in web development, you should learn more about HTTP methods: Method definitions, HTTP Methods: GET vs. POST and Using HTTP Methods for RESTful Services.

Defining our routes

To define the routes for our website, in your text editor open the routes file routes/web.php.

You should see the default route which you can see if you visit http://localhost:8000 in your browser and a comment describing this routes file.

Since we want to keep the route / for our home page, we only need to change the view that is being returned from that route closure. Change the line return view('welcome'); to return view('home');.

Now to create the rest of our routes, add this bellow that route:

 Adding routes to the routes file

Route::get('about', function() {
 return view('about');
});

Route::get('contact', function() {
 return view('contact');
});

Route::post('contact', function() {
 //
});

Save the changes and open your browser to http://localhost:8000. You should get an error now saying View [home] not found.. This means that Laravel has not found the home view file that we specified in our / route. Our next step is to create that view file and any other view file that we specified in our routes file.

 View changes in this commit

 4f504843665c9e1d0cd8d41e0eb60259daaeaabc.

Views

 Views contain the HTML served by your application and separate your application logic from your presentation logic.

 Published at: 24. October, 2016.

Views are files located in resources/views with .blade.php extension. Views contain HTML which is served by your application.

For our business website we need to create the views that we have specified in our routes file.

Create View Files

Create the following files in the resources/views directory:

 	home.blade.php

 	about.blade.php

 	contact.blade.php

If you try to view the home page now, you will see a blank page. That is also true for all other routes that we have defined.

Bootstrap Home Page

Good, now we will add HTML to our resources/views/home.blade.php view. We will be using Bootstrap to quickly get started with some basic page design. Open the file and add the following inside it:

 Bootstrapping Bootstrap

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <meta http-equiv="X-UA-Compatible" content="IE=edge">
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <title>Home page</title>

 <!-- Latest compiled and minified CSS -->
 <link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7\
/css/bootstrap.min.css" integrity="sha384-BVYiiSIFeK1dGmJRAkycuHAHRg32OmUcww7on3\
RYdg4Va+PmSTsz/K68vbdEjh4u" crossorigin="anonymous">
 </head>
 <body>
 <h1>Hello, world!</h1>

 <!-- jQuery (necessary for Bootstrap's JavaScript plugins) -->
 <script src="https://ajax.googleapis.com/ajax/libs/jquery/1.12.4/jquery.min.\
js"></script>
 <!-- Latest compiled and minified JavaScript -->
 <script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/js/bootstrap.mi\
n.js" integrity="sha384-Tc5IQib027qvyjSMfHjOMaLkfuWVxZxUPnCJA7l2mCWNIpG9mGCD8wGN\
IcPD7Txa" crossorigin="anonymous"></script>
 </body>
</html>

Save the changes and open your browser to /. Hit F5 to refresh the page if needed. You should see Hello, world! displayed on the page. Excellent! Now you can use Bootstrap on this page to create your home page.

 Improve your skills!

 Bootstrap is the fastest way to get started with a new website. It contains almost everything needed to design a website and it also looks good by default. I suggest that you read: Getting started, CSS and Components pages from its website.

This is how I have made the home page to look using Bootstrap. I have used a Jumbotron example as a starting point.

 [image: Home page]
 Home page

Feel free to change the page however you like it.

 View changes in this commit

 8a5128154e3cc0db6f02780029538ca3ec18f52b.

Use Helpers

There are a few things that we can do to improve our page. First, if you look at the home.blade.php file you can notice that for defining links to our other routes we use About. While this will work, it is much better to use a Laravel helper function url('/about') which creates a full URL to the route.

Change all links so that they use the Laravel url helper. For example, change Home to Home. Do this for all links.

 View changes in this commit

 2df2d0ae2172affda92c9142753c44814b651752.

Before you start copying the HTML from our home page to other pages, ask yourself Is there a way to reuse sections of our homepage on other pages to avoid copying the code?

As you may have noticed {{ }} is used to echo a value in the view. There will be more talk about this in the next tutorial.

Blade templates

 Blade is a templating engine provided with Laravel and unlike other templating engines it does not restrict you from using plain PHP code in your views.

 Published at: 02. November, 2016.

In my opinion one of the best parts of Laravel is the Blade templating engine. It already comes with Laravel and has everything you need and more. It enables you to work with templates and layouts, display data, use control structures, include subviews, use stacks, inject services in views and if that is still not enough you can easily extend it to do whatever you desire.

The purpose of this tutorial is not to teach you everything that Blade can do, but to teach you about templates, layouts, sections, subviews and basic data presentation.

 Improve your skills!

 Learn more about Blade templates by reading the documentation. It is very important to know what you can do with it.

In our previous tutorial I have left you with a question to ask yourself: Is there a way to reuse sections of our home page on other pages to avoid copying the code?

The answer is yes, there is and it is called Blade templates.

Layouts

When building your templates you should start from the most outer shell and those are the HTML tags html, head and body. We will extract a part of the HTML from our resources/views/home.blade.php file that is common for all other pages and place it in resources/views/layouts/default.blade.php.

What I want you to do now is to move this:

 Extracting a layout page

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <meta http-equiv="X-UA-Compatible" content="IE=edge">
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <title>Home page</title>

 <!-- Latest compiled and minified CSS -->
 <link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7\
/css/bootstrap.min.css" integrity="sha384-BVYiiSIFeK1dGmJRAkycuHAHRg32OmUcww7on3\
RYdg4Va+PmSTsz/K68vbdEjh4u" crossorigin="anonymous">
 <style>
 body {
 padding-bottom: 20px;
 }
 .navbar {
 margin-bottom: 0px;
 border-radius: 0;
 }
 </style>
 </head>
 <body>

 <!-- jQuery (necessary for Bootstrap's JavaScript plugins) -->
 <script src="https://ajax.googleapis.com/ajax/libs/jquery/1.12.4/jquery.min.\
js"></script>
 <!-- Latest compiled and minified JavaScript -->
 <script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/js/bootstrap.mi\
n.js" integrity="sha384-Tc5IQib027qvyjSMfHjOMaLkfuWVxZxUPnCJA7l2mCWNIpG9mGCD8wGN\
IcPD7Txa" crossorigin="anonymous"></script>
 </body>
</html>

to a new file in resources/views/layouts/default.blade.php. So that you home.blade.php file now only contains:

 Content of the home page file

<nav class="navbar navbar-inverse">
 <div class="container">
 <div class="navbar-header">
 <button type="button" class="navbar-toggle collapsed" data-toggle="collaps\
e" data-target="#navbar" aria-expanded="false" aria-controls="navbar">
 Toggle navigation

 </button>
 Elementary Laravel
 </div>
 <div id="navbar" class="navbar-collapse collapse">
 <ul class="nav navbar-nav navbar-right">
 Home
 About
 Contact

 </div><!--/.navbar-collapse -->
 </div>
</nav>

<!-- Main jumbotron for a primary marketing message or call to action -->
<div class="jumbotron">
 <div class="container">
 <h1>Hello, world!</h1>
 <p>This is a template for a simple marketing or informational website. It in\
cludes a large callout called a jumbotron and three supporting pieces of content\
. Use it as a starting point to create something more unique.</p>
 <p>Learn more »\
</p>
 </div>
</div>

<div class="container">
 <!-- Example row of columns -->
 <div class="row">
 <div class="col-md-4">
 <h2>Heading</h2>
 <p>Donec id elit non mi porta gravida at eget metus. Fusce dapibus, tellus\
 ac cursus commodo, tortor mauris condimentum nibh, ut fermentum massa justo sit\
 amet risus. Etiam porta sem malesuada magna mollis euismod. Donec sed odio dui.\
 </p>
 <p>View details »</p>
 </div>
 <div class="col-md-4">
 <h2>Heading</h2>
 <p>Donec id elit non mi porta gravida at eget metus. Fusce dapibus, tellus\
 ac cursus commodo, tortor mauris condimentum nibh, ut fermentum massa justo sit\
 amet risus. Etiam porta sem malesuada magna mollis euismod. Donec sed odio dui.\
 </p>
 <p>View details »</p>
 </div>
 <div class="col-md-4">
 <h2>Heading</h2>
 <p>Donec sed odio dui. Cras justo odio, dapibus ac facilisis in, egestas e\
get quam. Vestibulum id ligula porta felis euismod semper. Fusce dapibus, tellus\
 ac cursus commodo, tortor mauris condimentum nibh, ut fermentum massa justo sit\
 amet risus.</p>
 <p>View details »</p>
 </div>
 </div>

 <hr>

 <footer>
 <p>© 2016 Elementary Laravel</p>
 </footer>
</div> <!-- /container -->

Now that we have created our first layout template in layouts/default.blade.php, we must tell our view home.blade.php to extend upon that layout. We do that by adding

 Extending a page with a layout

@extends('layouts.default')

at the top of the file home.blade.php. There is one more step before we continue. We have to tell our layout where to display the HTML from the page we want.

Sections

Sections are used to tell the layout where we want the content of a section to be displayed.

Go to our layouts/default.blade.php file and just bellow the opening body tag place the following:

 Defining a section for content

@yield('content')

and now in home.blade.php wrap all content bellow @extends('layouts.default') in a section block:

 Populating content section

@section('content')
 {{-- Place wrapped content instead of this Blade comment --}}
@stop

If you take a look at http://localhost:8000 you should see that everything looks the same. That is the point, but can you notice how much cleaner our home view looks now?

Subviews

We can make it even cleaner by using subviews to extract our navigation to a subview which we will include in our default layout template.

Create a new file in resources/views/layouts/partials/navbar.blade.php and move our navbar from home.blade.php to that file.

 Creating a navbar partial

<nav class="navbar navbar-inverse">
 <div class="container">
 <div class="navbar-header">
 <button type="button" class="navbar-toggle collapsed" data-toggle="colla\
pse" data-target="#navbar" aria-expanded="false" aria-controls="navbar">
 Toggle navigation

 </button>
 Elementary Laravel
 </div>
 <div id="navbar" class="navbar-collapse collapse">
 <ul class="nav navbar-nav navbar-right">
 Home
 About
 Contact

 </div><!--/.navbar-collapse -->
 </div>
 </nav>

Good, now we have to tell our layout to include that subview. Go to layouts/default.blade.php and just above @yield('content') place the following:

 Including navbar partial

@include('layouts.partials.navbar')

Save the changes and if you look at the browser and hit refresh it should still look the same, but our home view file is even cleaner now. Awesome!

There are more things that you can move into subviews if you think that you can benefit from it, but for this tutorial, this seems fine to me.

Data presentation

 The name of this chapter is misleading at best, I know.

If you have been following along, you may have noticed that in out default layout file the title tag is hardcoded to be Home page, but what about our other pages? Should the title bar not hold some other value instead of Home page?

There is a simple way of achieving this. Go to layouts/default.blade.php and replace the value of title to be:

 Defining a place for title section

@yield('title', 'Elementary Laravel')

This tells our template to place a section from our view called title here, but if it cannot find it then place the default value of Elementary Laravel.

Now to set the title in our view file, go to home.blade.php and create a new section just bellow the @extends('layouts.default') and above the @section('content'):

 Creating a title section

@section('title', 'Home page')

If you take a look at http://localhost:8000 you should see that everything looks the same. Great job!

Wrapping things up

Now we have a way to populate our other views about.blade.php and contact.blade.php. Copy the following to those files and change the title accordingly:

 Page skeleton

@extends('layouts.default')

@section('title', 'About page')

@section('content')
 {{-- Place content instead of this Blade comment --}}
@stop

I will quickly populate those pages with some Bootstrap. You can modify them however you want or you can copy the code from what I have done:

 about.blade.php

 [image: About page]
 About page

 contact.blade.php

 [image: Contact page]
 Contact page

 View changes in this commit

 00f0293ad4668f08f11ba67c890f892bddb579d8.

We now have a home and about pages complete. On our contact page, we surely want to have a contact form, which sends an email upon successful validation.

Forms

 Forms are an important part of any web application. I’ll show you a quick and easy way to create a form with helpers.

 Published at: 11. November, 2016.

We will now create a contact form. We will use normal HTML with some Laravel helpers in order to provide a better user experience.

 Improve your skills!

 To improve upon the form that we will create in this tutorial I advise you to take a look at Forms & HTML package. I have an in-depth tutorial about it called Laravel Forms & HTML so be sure to check it out.

Create the form

We will use basic Bootstrap styling to design the form. We will require from the user to enter his:

 	name

 	email

 	message (comment - We will cover at a later point)

 Improve your skills!

 It is very important to know how to build and design forms with Bootstrap, so I recommend reading the documentation about it.

In our contact.blade.php you will see a Blade comment {{-- Contact form goes here --}}. Replace that line with the following:

 Creating a contact form

<form method="POST" action="{{ url('/contact') }}">
 {{ csrf_field() }}
 <div class="form-group">
 <label for="name">Name</label>
 <input id="name" type="text" class="form-control" name="name" value="{{ \
old('name') }}" placeholder="Your name">
 </div>
 <div class="form-group">
 <label for="email">E-mail</label>
 <input id="email" type="email" class="form-control" name="email" value="\
{{ old('email') }}" placeholder="Your E-mail">
 </div>
 <div class="form-group">
 <label for="comment">Message</label>
 <textarea rows="10" id="comment" class="form-control" name="comment" pla\
ceholder="Your message">{{ old('comment') }}</textarea>
 </div>
 <button type="submit" class="btn btn-primary btn-lg">Send</button>
</form>

I will explain the helpers used here in the following chapter, but for now, save the changes and open your browser to http://localhost:8000/contact. You will see that the page looks like this now:

 [image: Contact with form]
 Contact with form

We have specified that we want to POST the data from the form to /contact URL. If you remember our routes file from a few tutorials ago, we have a route for that method:

 Adding a route for posting contact form

Route::post('contact', function() {
 //
});

If you press Send on the form now, you will get a blank page. That is because we are not returning anything from our route that handles form submission.

 View changes in this commit

 315057e9e97d0d34cde9a683cd00bd5e2dedfdff.

Helpers used

We have used two Laravel helpers in this form.

 Improve your skills!

 To learn more about all helpers that come with Laravel visit the documentation for Helpers.

 	old()

 	The old function retrieves an old input value flashed into the session. This will be very helpful in our next tutorials where we will tackle validation. What this does is it keeps the value that the user entered in the input field so that if the validation fails, the input entered by the user is preserved. He does not need to type it again.

 	csrf_field()

 	The csrf_field function generates an HTML hidden input field containing the value of the CSRF token. Laravel automatically generates a CSRF “token” for each active user session managed by the application. This token is used to verify that the authenticated user is the one actually making the requests to the application. Read more about this here.

A quick recap of this tutorial:

 	I’ve shown you how to build a contact form

 	You have learned about old and crsf_field helpers

 	You have been given a lot of documentation to read in order to improve your skills

 	The form can be submitted and we are returned a blank screen

What we are still missing is Validation. Are we going to blindly believe our users, that they have entered a valid email address or that they have entered all fields that we require? Hell no! This is where Laravel shines, the Validation.

Validation

 Validation consists of two parts, validating the data from the user and displaying the errors messages back to the user..

 Published at: 28. November, 2016.

Out of the box, Laravel comes loaded with validation options and it is also very easy and quick to implement it however you want. In the previous tutorial, we have left things off at a contact form. We have created a contact form which submits its data to the URL we specified POST /contact and it is being handled by our route.

Scenarios

This is what we want to happen when the user submits the contact form:

If the data entered passes validation, our application should:

 	send us an email

 	redirect the user to /contact page

 	display success message to the user

If the data entered does not pass validation, our application should:

 	redirect the user to the contact form with old input

 	display errors messages telling the user what he did wrong

Validating data

Back to our routes/web.php file. Locate the route:

 Empty contact POST route

Route::post('contact', function() {
 //
});

First we have to tell our route to use dependency injection to inject the Request like so:

 Injecting Request dependency

use Illuminate\Http\Request;
Route::post('contact', function(Request $request) {
 // place code here
});

Now we can access the request, meaning that we can validate the data inside it. We will manually build our Validator but we will also use the Automatic Redirection feature to automatically handle the redirection and error processing if the validation fails.

Place this code inside our POST route:

 Validating Request data

\Validator::make($request->all(), [
 'name' => 'required|string',
 'email' => 'required|email',
 'comment' => 'required|string'
])->validate();

// normal code execution with successful validation.
// send email or do whatever you want here,
// redirect user back and notify him of our success

Now let me explain. From the Validation documentation:

“If you would like to create a validator instance manually but still take advantage of the automatic redirection offered by the ValidatesRequest trait, you may call the validate method on an existing validator instance. If validation fails, the user will automatically be redirected or, in the case of an AJAX request, a JSON response will be returned.”

As you can see, we are specifying parameter names and validation rules for each.

 Improve your skills!

 To understand and know which other validation rules exist, read the documentation on Available Validation Rules.

 View changes in this commit

 dbc88e6ccae9f8c8b0c92e9b19edb7e3cefd8949.

Displaying errors

If you try to submit the form now with no data, you will be redirected back to out /contact page and it will seem like nothing happened, but in fact, the validation was triggered and it failed because it did not pass our validation rules. required validation rule means that the field under inspection must have some data in it. If you populate all fields in our contact form correctly and submit the form you should get a blank page again.

The smart thing to do here is to provide the user some information on why the validation has failed. In the Validation documentation under Displaying The Validation Errors is this snippet:

 Displaying validation errors

@if (count($errors) > 0)
 <div class="alert alert-danger">

 @foreach ($errors->all() as $error)
 {{ $error }}
 @endforeach

 </div>
@endif

This snippet loops through all the errors (if any) in the session and displays them in an unordered list (Twitter Bootstrap styling, but you can modify it however you want). Place this snippet just above the form tag in resources/views/contact.blade.php.

Now if you try to submit the form with no data, you should get a page which looks like this:

 [image: Failed Validation]
 Failed Validation

 Try messing around with different values to see how it works.

 View changes in this commit

 62b5b9d7defe9366a97e69c1772371ddfa786350.

The validation is now working. We are successfully validating the data and displaying errors to the user. We still have to process what happens if the validation is successful.

Follow the happy path

We want to redirect the user to the contact form (empty) and display a success message signaling that everything went ok.

In resources/views/contact.blade.php, just bellow our validation code place the following:

 Redirecting to the contact page with a success message

return redirect('/contact')->with([
 'success_message' => 'Your message has been sent!'
]);

This code redirects the user to the /contact page. It also flashes session data with a variable called success_message. That variable will be available on our page.

Now to catch that variable on our contact page, we have to add this block of code to the place where we want it to be displayed:

 Displaying the success message

@if (session('success_message'))
 <div class="alert alert-success">
 {{ session('success_message') }}
 </div>
@endif

Add this code just above the form tag in contact.blade.php. If you populate the form now with data and submit it, you will be presented with this nice little green alert box:

 [image: Success Message]
 Success Message

 View changes in this commit

 8c4b2c8d534a7d101951fae2f04e6b2cce129fae.

Our contact form is now working, the only thing left is actually sending the email :)

Mail

 Laravel provides a clean and simple API over the popular SwiftMailer library, allowing you to quickly get started sending mail.

 Published at: 11. December, 2016.

Laravel 5.3 comes with a new feature called Mailables where each type of email sent by your application is represented as a “mailable” class. In the previous tutorial we have hooked our contact form with validation and upon successful validation, presented the user with a “success” message. In this tutorial, we will simulate sending an actual email from our contact form.

Mail & Local Development

 Improve your skills!

 Laravel comes with drivers for many local and cloud-based services for sending emails. Check the documentation to see how to use a specific driver.

Since we are in the development phase in our application, we don’t want to actually send emails to live email addresses. To avoid doing so we will use the Log Driver.

Go to your local .env file and set a key/value for MAIL_DRIVER=log. Comment out all other keys that start with MAIL_. By doing so, all emails sent from our application will be written in the log file and not actually sent.

Mailables

Mailabes are stored in app/Mail.

Generate a new Mailable class

To create a new Mailable enter this command:

 Creating a Mailable

php artisan make:mail FeedbackReceived

This command will create a new file app/Mail/FeedbackReceived.php.

 View changes in this commit

 0469b561877cd6eb80667264d10480ade0792b26.

There are a few things that we need to configure in our new Mailable class:

 	Sender

 	View

 	Data

Configuring the Sender

First, we need to configure who the email is going to be “from”. We do that by setting the from method inside the build method of the FeedbackReceived class.

 Configuring the sender

public function build()
{
 return $this
 ->from('you@company.com')
 ->view('emails.contact');
}

You can change the from field to anything you want or which represents your business.

Configuring the View

In the code above, we have configured the sender and specified which template should be used when rendering the email’s contents. We will now create a blank template file as specified.

Create a new folder in resources/views called emails and inside it create a file called contact.blade.php. Place the following code inside:

 Writing Email body

<h1>Thank you for contacting us! Your message has been received.</h1>

Setting the Data

So far, we are only sending the generic confirmation message to the user who has submitted the contact form. It would be nice if we could address the user by his name and display the message that he has sent us.

To do so, we have to set public properties on our FeedbackReceived class for name and comment:

 Setting class properties

public $name;
public $comment;

public function __construct($name, $comment)
{
 $this->name = $name;
 $this->comment = $comment;
}

Once the data has been set to a public property, it will be automatically available in our view as a variable. Let’s modify our view template to include these variables:

 Expanding the Email body with comment from Class property

<h1>Thank you for contacting us {{ $name }}! Your message has been received.</h1>

<p>{{ $comment }}</p>

Sending Mail

To send the actual email that we have configured in the previous chapter, we have to open the file routes/web.php and replace the TODO comment in Route::post('contact') with the following:

 Sending Mail

Mail::to($request->get('email'))->send(new FeedbackReceived($request->get('name'\
), $request->get('comment')));

Don’t forget to add the use statements above the route:

 Adding use statements

use App\Mail\FeedbackReceived;
use Illuminate\Support\Facades\Mail;

Now if you populate the contact form with data that passes validation, the email will be logged in storage/logs/laravel.log.

Check that log file to see if the email is logged there.

 View changes in this commit

 300445c0dc40d7e3099ee5602acfc98979b9a85a.

Congratulations! This marks the completion of the course Elementary Laravel. Thank you for reading this far.

By completing this course you will have a basic “elementary” understanding on how to use Laravel to create simple websites. The code for this course is available on Github and you are more than welcome to fork it, improve it and contribute to it.

Laravel on Windows with Homestead

 If you are getting started with Laravel and are using Windows, this is the right starting point for you. We will cover everything from installing PHP & Git to using Homestead virtual machine and creating your first blank Laravel application.

Prepare for modern PHP applications

 In this introductory tutorial, we will be installing the absolute basic software that is required to run modern PHP frameworks like Laravel.

 Published at: 12. March, 2016.

So, you have heard about Laravel and want to learn how to use it? Are you using Windows? Then this is the right starting point for you. In this tutorial, we will install some basic software that you will need on your PC.

These are the tools that you will be needing:

 	
Git + Git Bash (2.7.0)

 	
PHP (7.0.3 - VC14 x64 Thread Safe)

 I’m running Microsoft Windows 10 x64, that is why I’m using the x64 version of PHP. If you are on an x86 (32bit) Windows then you should use an x86 version of PHP.

Install PHP on Windows

First, we need to download PHP zip file from the website mentioned above. Unzip that file a place its content in C:\tools\php directory. Now inside that folder, you will find a file called php.ini-development. Copy/paste that file and rename it to php.ini.

There are somethings that we will need to enable inside that file, so grab your favorite text editor (I prefer Sublime Text, but you can use notepad as well) and open that file:

 	On line :368 change max_execution_time = 30 to max_execution_time = 300. You will thank me for this later.

 	On line :724 uncomment ; extension_dir = "ext" (Remove ; from the start of the line)

 	On line :837 under section Dynamic Extensions you will find a list of extension. We need to uncomment a few of those:

 	extension=php_curl.dll

 	extension=php_fileinfo.dll

 	extension=php_gd2.dll

 	extension=php_mbstring.dll

 	extension=php_mysqli.dll

 	extension=php_openssl.dll

 	extension=php_pdo_mysql.dll

 	extension=php_pdo_sqlite.dll

Now we have configured PHP for Laravel and other modern PHP applications.

We still have to tell Windows where to find this PHP installation. And we do so by adding the absolute path of the folder we installed PHP to our System Path Environment Variable.

Open Control Panel and go to Control Panel\System and Security\System\Advanced system settings\Advanced\Environment Variables and under System variables locate Path press Edit. Here add a new value pointing to your PHP installation folder that contains php.ini file. In my case, I would add C:\tools\php-7.0.3-Win32-VC14-x64. Press Ok to all and close open windows.

 [image: Control Panel System]
 Control Panel System

 [image: Advanced system properties]
 Advanced system properties

 [image: Environment variables]
 Environment variables

 [image: Path system variables]
 Path system variables

To test that everything works at this point. Open Command Prompt cmd and type php -v. You should get something like this:

 Checking PHP version

$ php -v
PHP 7.0.3 (cli) (built: Feb 2 2016 14:38:29) (ZTS)
Copyright (c) 1997-2016 The PHP Group
Zend Engine v3.0.0, Copyright (c) 1998-2016 Zend Technologies

 [image: php version output]
 php version output

Great, now we can move on. If you are having problems at this point, leave me a comment bellow and I will help you out.

Install Composer

Go to the download page for Composer and download the Windows installer. It will install the latest version and configure everything on your system.

You can verify that everything is working by typing composer --version in the terminal.

 Checking Composer version

$ composer --version
Composer version 1.0-dev (72cd6afdfce16f36a9fd786bc1b2f32b851e764f) 2015-12-28 1\
7:35:19

Install Git and Git Bash

If you are building a modern PHP application or planning to use Laravel you should really learn how to use Git, because without it, over time you will get yourself in a big mess.

The installation is pretty simple, just download the latest version of Git and complete the installation with these options:

 	Use MinTTY (the default terminal of MSys2)

 	Checkout WIndows-style, commit Unix-style line endings

 	Use Git and optional Unix tools from the Windows Command Prompt

 	Enable file system caching

 [image: Git Components]
 Git Components

 [image: Git Terminal Emulator]
 Git Terminal Emulator

 [image: Git Line ending Checkout style]
 Git Line ending Checkout style

 [image: Git Environment variables]
 Git Environment variables

 [image: Git File System Caching]
 Git File System Caching

To test that everything is working, find Git Bash under Programs, right-click on it and click Run as Administrator. Type git --version and you should get:

 Checking Git version

$ git --version
git version 2.7.0.windows.2

You can customize the appearance of the terminal by going to options and changing the font family, font size, transparency, full screen and many other options.

 I’m using Fira Code, 11pt, medium transparency, scrollbar turned off and xterm-256color terminal.

Install Node.js

You will be needing node.js to install NPM modules and use Elixir.

Go to node.js website and download the latest stable version (v5.5.0). The installation is pretty straight forward, just follow the installer. You can verify your installation by typing node -v.

Repositories location & text editor

Because of path length limitation on Windows, I suggest that you place all of your repositories in the root of your drive C:\repositories. This solves many issues with npm

For you text editor or IDE I suggest using Sublime Text 3 or PHPStorm. However, you are free to use anything you want.

 You are now ready to move on to the next tutorial.

 Important!

 When I say “use the terminal” or “type in terminal” in future tutorials, that means to use Git Bash program we installed in this tutorial. Everything you do from this point on in terminal, you should be done in Git Bash console.

Getting started with Homestead

 Your own local virtual server for running PHP applications with lots of extra software in case your projects requires it.

 Published at: 12. March, 2016.

 What is Homestead and why all the fuss about it?

Taken from official Laravel documentation on Homestead:

 Laravel Homestead is an official, pre-packaged Vagrant box that provides you a wonderful development environment without requiring you to install PHP, HHVM, a web server, and any other server software on your local machine.

In the simplest way; everything you need (development server related) to start working on your Laravel application is already included in Homestead. You just need to set it up and you are good to go.

Virtualbox provides you with an ability to manage virtual machines. Vagrant is used for automating the virtual machine creation process. Homestead is a Vagrant box. You tell Vagrant to use the Homestead box to create a virtual machine using Virtualbox and voila everything is up and running.

Let’s start from the start :)

 Important!

 When I say “use the terminal” or “type in terminal”, that means to use Git Bash program we installed in the previous tutorial. Everything you do from this point on in terminal, you should be doing in Git Bash console.

Install Virtualbox

Visit the official Virtualbox download page and download the latest version (At the time of writing this tutorial the latest version is 5.0.14). Once downloaded run the setup.

 For reference I’m running Microsoft Windows 10 x64.

Leave all the defaults on this step.

 [image: Features]
 Features

And complete the setup by pressing next to everything as usual :) This will disable your network connection for a few seconds so keep that in mind if you are doing something online like reading this tutorial.

Also, be sure to download and install VirtualBox Extension Pack from the same download page. The extension Pack version must match Virtualbox version.

Now that we have installed Virtualbox and the Extension Pack we will proceed to Vagrant, but before we do, be sure to restart your PC.

Install Vagrant

Go to the Vagrant download page and download the latest version (1.8.1).

Once downloaded, complete the setup by pressing next to everything.

To test that everything is working run vagrant -v from the terminal.

 Checking Vagrant version

$ vagrant -v
Vagrant 1.8.1

Install The Homestead Vagrant Box

Run the following command in the terminal to download the latest Homestead box:

 Adding Homestead vagrant box

vagrant box add laravel/homestead

 This command should take some time depending on your download speed.

You now have Vagrant installed.

Install Homestead

To install Homestead clone the repository in your Home (~/) directory with the following command:

 Cloning Homestead repository

cd ~

git clone https://github.com/laravel/homestead.git

Navigate to that directory and run bash init.sh to create necessary files. You should get an output similar to this:

 Initializing Homestead

$./init.sh

Homestead initialized!

This means that the Homestead.yaml file has been placed in the ~/.homestead hidden directory along with two other files (You can open those files with any text editor to see what they are for).

Now open Homestead.yaml. This file is the file in which you will be making any future changes. You can:

 	change virtual machine settings

 	set your SSH key

 	add folders

 	add Nginx sites

 	add databases and more…

For start, change folders to point to the directory where you keep your repositories, like so:

 Setting the path to your repositories folder

folders:
 - map: C:/repositories
 to: /home/vagrant/repositories

 There will be more talk about this file later when we will create a blank Laravel application.

Daily usage

In order to avoid navigating to C:\repositories\homestead directory every time you want to start the virtual machine, you can add a simple Bash alias to your Bash profile.

Go to ~/ and check if you have a hidden file there called .bash_profile. If you don’t have that file create it and place the following inside it:

 Adding Bash aliases and functions

Some shortcuts for easier navigation & access
alias ..="cd .."
alias vm="ssh vagrant@127.0.0.1 -p 2222"

Homestead shortcut
function homestead() {
 (cd /c/repositories/homestead && vagrant $*)
}

Save the file and restart your terminal for the changes to take effect.

Now is the time to finally start Homestead. Now, you must open Git Bash (terminal) as an administrator (Right click -> run as administrator). Start homestead by typing homestead up in your terminal. Vagrant will boot the virtual machine and automatically configure your shared folders and Nginx sites.

Your first Laravel application

 Learn how to create a blank Laravel application and serve it locally with Homestead on your PC for development purposes.

 Published at: 12. March, 2016.

To sum things up, so far we have installed the necessary software on our host PC, Virtualbox, Vagrant and got Homestead up and running. Now we will create a blank Laravel application, configure Homestead to serve it and change the hosts file so that we have a custom domain for our application.

 This process you will have to do every time you create a new Laravel application so try to remember it.

Repositories root directory

As mentioned in the previous tutorial you need to have a repositories folder where you keep all your repositories/applications. In .homestead/Homestead.yaml you have a line:

 Repositories folder location

folders:
 - map: C:/repositories
 to: /home/vagrant/repositories

Navigate to that folder and follow the instructions bellow.

Install Laravel via installer

First, we have to download the Laravel installer by typing the command bellow in terminal:

 Installing Laravel installer

composer global require "laravel/installer"

This command will download the Laravel installer and create an executable that you can call upon.

To be able to use laravel installer from the terminal we first have to add composer bin directory to our path. We do that by going to Control Panel\System and Security\System\Advanced system settings\Advanced\Environment Variables and under System variables locate Path press Edit. Here add a new value pointing to the composer bin directory. For reference mine is C:\Users\Mario\AppData\Roaming\Composer\vendor\bin.

To create a directory containing a fresh Laravel installation with all dependencies installed use this command in your repositories root directory:

 Creating a new Laravel project

laravel new myblog

 This method of installation is much faster than installing via Composer.

Now you have a directory called myblog and inside it, your first Laravel application. Here are a few tips when working on Windows. Navigate to your app and open it using Sublime Text like so:

 Opening the folder using Sublime Text

cd myblog

subl .

 If your system can’t find subl you need to add it to your path. The procedure is the same as the above. Add C:\Program Files\Sublime Text 3 to your Path.

Now open the file called .env. This file contains all configuration options for your application and by default is not included in version control.

 	change DB_HOST=127.0.0.1 to your Homestead machine IP address. By default that is 192.168.10.10. This will enable you to run migrations and tinker with your application from the host PC without the need to ssh into Homestead.

 	change DB_DATABASE=homestead to something more meaningful like myblog.

 That’s it! Now we have to tell Homestead about our brand new application.

Add application to Homestead

To add a new Nginx site to Homestead we need to open ~/.homestead/Homestead.yaml and add a new site for myblog.app and create a database myblog:

 Adding application to Homestead

sites:
 - map: myblog.app
 to: /home/vagrant/repositories/myblog/public

databases:
 - myblog

Save the changes and type homestead provision in the terminal (remember you must run Git Bash as an Administrator every time your work with Homestead). This command will preserve all changes: sites, databases, custom modifications and update it with new sites and databases. Very useful.

There is one more step before you can access your brand new blog and that is adding our custom domain myblog.app to point to our Homestead machine IP 192.168.10.10.

The Hosts file

The hosts file will redirect requests for your Homestead sites into your Homestead machine. On Windows, it is located at C:\Windows\System32\drivers\etc\hosts. The lines you add to this file will look like the following:

 Updating hosts file

192.168.10.10 myblog.app

There are a few glitches here. In order to save changes to the hosts file, you must open it as an administrator. That means opening the terminal as an administrator navigating to C:\Windows\System32\drivers\etc and opening the file hosts using Sublime Text. You will be doing that a lot.

So to save you and myself time, I have created a shortcut for that.

The shortcut

Go to Desktop and create a new shortcut (right click -> new -> shortcut). When asked for the location of the item paste "C:\Program Files\Sublime Text 3\subl.exe" c:\windows\system32\drivers\etc\hosts and press Next. Now type the name for this shortcut Edit Hosts and press Finish.

Now right click on the shortcut and go to Properties -> Shortcut -> Advanced and check the box saying Run as Administrator. This opens the hosts file as an administrator so that you can save changes.

 [image: Advanced properties]
 Advanced properties

 [image: Run as Administrator]
 Run as Administrator

Cut that shortcut (Ctrl+X or right click -> cut) and using the File Explorer navigate to C:\ProgramData\Microsoft\Windows\Start Menu\Programs and paste it there. It will require you to confirm that you are an administrator.

Once you have done all of this, it is easy now to edit the hosts file. Press the Windows key on your keyboard and start typing Edit Hosts. The shortcut that we have just created will show. Press Enter and add this line at the bottom:

 Updating hosts file

192.168.10.10 myblog.app

Save the file and you are done.

 Sublime Text must be closed before you run this shortcut. Otherwise, if Sublime is opened in normal mode you cannot save changes to the hosts file.

Once you have added the domain to your hosts file, you can access the site via your web browser:

 Accessing the website in the browser

http://myblog.app

 [image: Laravel]
 Laravel

Now you have your first Laravel application running on Homestead. This tutorial concludes the course Laravel on Windows.

Laravel on Windows with Laragon

 Another approach to getting started with Laravel on Windows is by using Laragon. Laragon offers you a fast, powerful and Isolated Development Environment. It is portable, very flexible and doesn’t affect your operating system.

Hello Laragon

 In this tutorial, I will tell you about Laragon which is an alternative to Homestead and we will also cover the entire process of installation.

 Published at: 04. April, 2016.

So, what is Laragon and you should use it over Homestead on Windows. In my previous course called Laravel on Windows I’ve got a few comments saying that I should mention Laragon as an alternative to Homestead for users that are unable to perform the steps in the tutorial (by landjea) and because it is less hassle to set up things natively and having to worry about crap associated with VM’s (by Matthew Rath).

I’ve taken those comments into consideration, took some time to explore Laragon and have come up with this cource where I will explain what Laragon is when you should use it and what are its features.

As stated on the official website, Laragon is a fast, powerful and Isolated Development Environment. It is portable and very flexible.

 Installing Laragon is effortless & doesn’t affect your OS (Windows). You can move Laragon folder around (to another disk, to another laptop, sync to Cloud,…) and it still works.

To even more simplify this, Laragon is a WAMP (Windows, Apache, MySQL, PHP); Widows web development environment. It does not affect your operating system. You install it as a software, start it up, do your programming and when finished you just exit.

 When to use Laragon over Homestead?

This is difficult to answer because it depends on many factors. Since Homestead is the officially supported way of running Laravel I would recommend using it, but if for some reason you can’t (don’t have administrator rights or unable to run a VM) the next best thing is Laragon.

 You can always use php artisan serve and SQLite database to avoid using Homestead or Laragon if you wish. This assumes that you have PHP installed on your OS.

This introduction is long enough, let’s move on to the fun stuff.

Features

One thing that I find lacking on the Laragon website is the summary of current features. On the official website, you have the download link and the link to the forum. No install instructions or anything similar can be found on the front page.

It took me some time, to summarize all the features from the Announcements category on the Forum and even more time to find out how to use some features.

 Don’t worry, as it turns out it is all very simple.

Software and services that you get with Laragon 1.0.7 are:

 	Cmder

 	Git

 	Node.js

 	NPM

 	SSH

 	Putty

 	PHP 7 & 5.6 (Easily switchable with one click)

 	Activate/deactivate PHP extensions on the fly

 	xDebug

 	Composer

 	Apache

 	MariaDB/MySQL

 	phpMyAdmin

 	Full Lumen and Laravel support

 	Auto create virtual hosts

 	Mail Catcher - Laragon will show a small window on the bottom right of your screen and help you quickly view content of the generated email

 	Mail Sender - You can use mail() function to send mail to the Internet easily and effortlessly

 	Mail Analyzer: Analyze what happens when an email is sent and show helpful information to make sure that your email configurations are correct.

 	ngrok - allows connections from the Internet to the local server

Useful shortcuts

Global hotkey to open shell (cmder): CTRL+ALT+T

Shell shortcuts:

 Useful shortcuts

e -> open notepad++
e. -> open explorer
ll -> list current dir with full information
vi -> if you love vim

Now that we know what Laragon is and what are its features we can move on to installation.

Installation

The installation is very simple, just click the download button on the official website and follow the installer.

You can choose where to put the Laragon folder (Later you can move this folder where ever you want, but I suggest placing it in the root of any drive):

 [image: Installation Directory]
 Installation Directory

Be sure to enable Auto create virtual hosts feature:

 [image: Auto enable virtual hosts]
 Auto enable virtual hosts

Great, now the installation is complete, but don’t start Laragon yet.

Auto create virtual hosts

Once the installation has completed, you have to decide if you want to use the Auto create virtual hosts feature or not. If you want to use it, you must run Laragon as an administrator. If not, you can run it as a normal user but then that feature will not work.

This feature converts project folder name in C:\laragon\www\ to a friendly domain name. If your projects folder is called superawesomewebsite then Laragon will create a local domain which you can access at http://superawesomewebsite.dev

Now let’s run Laragon as an administrator. You should see a screen like this:

 [image: Start screen]
 Start screen

Switch PHP versions

Before we click on Start All button, you can decide which version of PHP you want to be used. Go to Menu -> PHP -> Version and choose the one you want. I prefer to use PHP 7 :)

Now click on Start All and you should get Apache and MySQL running.

 [image: All services started]
 All services started

 You now have Laragon installed and running.

Your first Laravel application

 Learn how to create a blank Laravel application and serve it locally with Laragon on your PC for development purposes.

 Published at: 04. April, 2016.

In the previous tutorial, we have installed Laragon and started its services. I am running Laragon as an administrator so that the *auto create virtual hosts feature is enabled*. In this tutorial, I will show you two ways on how to start a brand new Laravel 5 application.

First, using the GUI of Laragon and then using the shell (cmder).

Repositories root directory

To find out where Laragon stores its projects click on Root button on the GUI (Graphical User Interface). It will open File Explorer on repositories root directory. You can see the full path in the path bar above: C:\laragon\www; if you left the default installation folder of Laragon during the installation.

 This is the location where you should place your existing projects if you have any yet.

Install Laravel via GUI

Now, this is the easiest way of installing Laravel 4, 5 or Lumen I have ever seen. Click on Menu -> Laravel -> Create project -> Laravel 5.

 [image: Install Laravel 5]
 Install Laravel 5

You will be asked for the project name. Enter the name and confirm. A command line window will open and the installation of Laravel will begin.

 I have entered laravel5 as project name, but you can choose how you want to name your projects. In future reference, you can replace laravel5 with the project name you entered.

Once completed you will see a message:

 Laragon message

Run Laragon as Administrator to get beautiful URL:
http://laravel5.dev"

Before you visit that URL, be sure to press reload on Laragon GUI for changes to take effect. If you visit the URL http://laravel5.dev in your browser you will see a welcome screen of Laravel 5.

 [image: Laravel 5 Welcome]
 Laravel 5 Welcome

That’s it! You project is now located in C:\laragon\www\laravel5 folder. You can use any text editor or IDE to open it and start working on your brand new Laravel 5 application.

Install Laravel via shell

If for some reason you don’t want to use the GUI to create a Laravel 5 project, you can always use the shell aka Terminal.

On the Laragon GUI click on Terminal to open the Cmder shell which points to your repositories root directory. Or there is a global keyboard shortcut mentioned in the previous tutorial CTRL+ALT+T which opens the same Cmder shell.

In shell type:

 Installing Laravel project using Composer

composer create-project laravel/laravel your-project-name --prefer-dist

to create a new Laravel project. This is mentioned in the official Laravel documentation under Installation.

Now you have your first Laravel application running on Laragon.

Remote access using ngrok

 Enable your friends and clients to access your application over the Internet, while working on it locally.

 Published at: 18. April, 2016.

Let’s dive right into this tutorial. What do we want to do?

We want to expose our local application to the Internet so that our clients or friends can view what we are working on or the current progress of the project while it is still not on production server.

 Secure tunnels to localhost - ngrok

Some of the benefits of using ngrok from their website:

 	Demo without deploying

 	Simplify mobile device testing

 	Build webhook integrations with ease

 	Run personal cloud services from your own private network

 This is a really nice feature that Laragon has out-of-the-box.

Remote Access

Let’s continue where we left off in the previous tutorial. We have created a blank Laravel application on http://laravel5.dev domain and all Laragon services are running.

On the Laragon GUI click on Terminal to open the Cmder shell Or use the shortcut CTRL+ALT+T which opens the same Cmder shell.

In shell type:

 Enabling remote access using ngrok

ngrok http laravel5.dev:80

You will get an output similar to this one:

 [image: ngrok output]
 ngrok output

Take a note of this line:

 Obtaining remote access URL

Forwarding http://1a1aed8f.ngrok.io -> laravel5.dev:80

In my case this is http://1a1aed8f.ngrok.io, but your output will be different, so keep that in mind and write it down somewhere. You will need it for the next step.

Now go to the Laragon GUI and click on Menu -> Apache -> http-vhosts.conf and add the domain from ngrok to ServerAlias of laravel5.dev virtualhost entry.

 Keep in mind that if you have named your project differently than laravel5, use your project name instead.

Now my virtual host entry looks like this:

 Virtual host entry for Apache

<VirtualHost *:80> #laragon magic!
 DocumentRoot "C:/laragon/www/laravel5/public/"
 ServerName laravel5.dev
 ServerAlias *.laravel5.dev 1a1aed8f.ngrok.io
</VirtualHost>

One last thing before this starts working is to restart Apache. You do that by going to the Laragon GUI and clicking on Menu -> Apache -> Reload or just click on Reload on the GUI screen next to the Apache service.

You can now access your local application over the Internet using the given URL from ngrok. In my case, this is http://1a1aed8f.ngrok.io.

 [image: ngrok remote]
 ngrok remote

 The URL will be changed each time you run ngrok.

Quickstart

 	Run ngrok for project ngrok http project.dev:80.

 	Add URL given from ngrok to ServerAlias of that project in Apache http-vhosts.conf file (Menu -> Apache -> http-vhosts.conf).

 	Reload Apache (Menu -> Apache -> Reload).

 	Send given ngrok URL to friend, client etc…

This was a nice and simple tutorial on a thing that is usually very complicated to do, but thanks to Laragon it was a breeze.

Configure Laravel 5 for Shared Hosting

 There are a few things that you have to change in Laravel to make it work on shared hosting. The most important thing is to change the public path and correctly bootstrap the application.

 Published at: 29. July, 2016.

 View Source Code

 Source code for this tutorial is available here.

I recently had to build a website that would be used on shared hosting. At first, I went with a standard HTML index.html file and then create a file called contact.php to handle the contact form submit action. The website can be found at studio-renata.hr as soon as they move the website to the server that has PHP 5.6 version.

As I started coding the website the number of lines started to grow and I had a lot of duplicating syntax for stuff like images, containers etc.. Somehow I got over it and was feeling happy with it, but then I had to deal with validating the contact form using AJAX. As you can guess I did a quick research and found out that Laravel can run on shared hosting, but with a few limitations:

 	There is no console (artisan)

 	You cannot use Composer to install/update

 	You cannot use Git to version your application

That being said, there are a few requirements that your server needs to have in order for Laravel to work:

 	PHP >= 5.5.9

 	OpenSSL PHP Extension

 	PDO PHP Extension

 	Mbstring PHP Extension

 	Tokenizer PHP Extension

 To be honest, I haven’t even checked that my shared hosting server has mentioned PHP extensions, but since it all works I guess that it does.

In this tutorial, I will show you how to configure your Laravel application to be able to run on shared hosting. You can view the code for this tutorial on GitHub.

Moving Files

I have a fresh installation of Laravel on my PC. To see how to install Laravel see the official documentation or check out these great courses on my website for Homestead on Windows or Laragon.

 View changes in this commit

 0546e265b7187312bb360b93edbfc91a8e969942.

First, we will organize our application folder structure to better match our needs. The default folder structure looks like this:

 [image: Default folder structure]
 Default folder structure

We will rename folder /public to public_html

 You can rename it to whatever you need, but remember to use that name in future code changes in this tutorial.

and create a new directory called laravel_project.

 You can name this folder whatever you want, but remember to use it in future code references.

Move all files and folders to laravel_project directory except public_html/ and .git(if you have created it) folder.

Now, your root folder structure should look like this:

 [image: New folder structure 1]
 New folder structure 1

and inside laravel_project should look like this:

 [image: New folder structure 2]
 New folder structure 2

 View changes in this commit

 6dec090ae1ca11673ee15d7898280becebd46038.

Update Bootstrap Files Location

Since index.php file inside public_html/ directory is the first file that will be loaded by the HTTP server, we have to adjust the paths to autoload.php and app.php files located in /laravel_project/bootstrap/, to match our new folder structure.

Open file public_html/index.php and change:

 	
line 22 require __DIR__.'/../bootstrap/autoload.php'; to require __DIR__.'/../laravel_project/bootstrap/autoload.php';

 	
line 36 $app = require_once __DIR__.'/../bootstrap/app.php'; to $app = require_once __DIR__.'/../laravel_project/bootstrap/app.php';

That is all that you have to change in public_html folder.

 View changes in this commit

 158c72d065db262ff7139bac9f51178cc5a082a1.

Change public_path in Application

So, this party at first seems very scary, but it really isn’t. We have created a new class which extends the main Laravel application class and overwrite the publicPath method to return the path to our new public_html folder. Then we use that class to create a new Laravel application. This way our public_path works everywhere in our application including console (which you can still use in development).

Create a new file in laravel_project/app/ called Application.php and paste the following code inside:

 Extending the Application class

<?php namespace App;

/**
 * Extend Laravel main application class to change public_path.
 *
 * See here for more info:
 * http://stackoverflow.com/questions/31758901/laravel-5-change-public-path
 */
class Application extends \Illuminate\Foundation\Application
{

 /**
 * Get the path to the public / web directory.
 *
 * @return string
 */
 public function publicPath()
 {
 return $this->basePath . DIRECTORY_SEPARATOR . '..' . DIRECTORY_SEPARATO\
R . 'public_html';
 }

}

Now in laravel_project/bootstrap/app.php change:

$app = new Illuminate\Foundation\Application(
 realpath(__DIR__.'/../')
);

to

 Using the new Application class

$app = new App\Application(
 realpath(__DIR__.'/../')
);

This instantiates a new Laravel application using our Application class. Before we can tests if our new folder structure works, there is one more step to complete if you plan on using php artisan serve to test the site.

 View changes in this commit

 ee254ae1497c739e930c94cd6b85a2c5e25ecf10.

Make php artisan serve work

This is very simple. Open file laravel_project/server.php and change:

if ($uri !== '/' && file_exists(__DIR__.'/public'.$uri)) {
 return false;
}

require_once __DIR__.'/public/index.php';

to

 Updating the path to index.php

if ($uri !== '/' && file_exists(__DIR__.'/../public_html'.$uri)) {
 return false;
}

require_once __DIR__.'/../public_html/index.php';

Save changes and run

 Serving the application

cd laravel_project
php artisan serve

You should get output similar to this one:

 Development server started

$ php artisan serve
Laravel development server started on http://localhost:8000/

If you open your browser on http://localhost:8000 you should see a standard Laravel Hello page.

 [image: Hello Laravel]
 Hello Laravel

You can now compress your application, upload it to your shared hosting and extract. It should work now.

 View changes in this commit

 81fd608afe4b551b480640848c28804a5dcc2005.

This concludes this tutorial.

OEBPS/images/leanpub_warning.png

OEBPS/images/leanpub_pencil.png

OEBPS/images/leanpub_info-circle.png

OEBPS/images/leanpub_github.png

OEBPS/images/leanpub_key.png

OEBPS/images/leanpub_code-fork.png

OEBPS/images/tutorials----configure-laravel-5-for-shared-hosting----default-structure.png
Date modified

2072016
2072016
2072016
2072016
2072016
2072016
2072016
2072016
2072016
2072016
2072016
2072016
2072016
2072016
2072016
2072016
2072016
2072016
2072016
2072016
2072016
2072016

1352
1307
1307
1307
1307
1307
1307
1307
1307
1300
1300
1307
1307
1307
1307
1307
1307
1307
1307
1307
1351
1307

Type
File folder

File folder

File folder

File folder

File folder

File folder

File folder

File folder

File folder

File folder

ENV File
EXAMPLE File
Tert Document
Tert Document
File

JSON File
LOCK File
I5File

JSON File

XML File

MD File

PHP File

Size

%8
%8
%8
%8
2K8
2K8

1n1K8
%8
%8
2K8
%8
%8

OEBPS/images/courses----laravel-on-windows-with-laragon----p2----install-laravel.png
@ Loragon 10.7 160328 php-56.16 192168.10.1

Apache 2.4.17 started

ewisleok
MySQL 10.1.9 started

soo | [@weo | [Fosarese| [@remia

Database
Terminal (CTRL+ALT+T)
Root

<<No Project>>
routes.php

dir: config

dir: Controllers
dir logs

dir: public
Create project
Switch project

OEBPS/images/courses----laravel-on-windows-with-laragon----p2----laravel5.png
e‘i'mm x \Wh

€ > C A [laravelsdev

Laravel 5

OEBPS/images/courses----laravel-on-windows-with-laragon----p3----ngrok-output.png
ngrok by @inconshreveable

Tunnel Status
version
Region

Web Interface
Forwarding
Forwarding

Connections

HTTP Requests

GET /favicon.ico
GET /.

online
2.0.25/2.6.25

United States (us)

http://127.0.6.1:4040
http://1alaedsf.ngrok.io -> laravels.dev:ge

https://1a1aed8f.ngrok.io -> laravels.dev:ge
ttl opn rti rts pse poe
1 ° 0.0 6.08 8.94 8.94

404 Not Found
200 0K

OEBPS/images/courses----laravel-on-windows-with-laragon----p3----ngrok-remote.png
e‘i'mm x

X

€ & C # [1alaedsfngrokio

Laravel 5

OEBPS/images/courses----laravel-on-windows-with-laragon----p1----install-location.png
45 Setup - Laragon -

Where should Laragon be installed?

| setp il nstal Laragoninto the flowin foder

To e, cickNext 1 you would ke o eect diferent older,cck romse.
== Cr=-

Atleast 7284 MB of free disk space i required.

<ot [mes]

OEBPS/images/courses----laravel-on-windows-with-laragon----p1----auto-create-virtual-hosts.png
45 Setup - Laragon -

Advanced feature: Auto detect and create virtual hosts.
This useful feature wil save you 3 ot of me.

How itworks?
Puta folder to your Document Root, Laragon wil auto create correspond hostname.
For example, put wordpress in CYaragon i nordpess, youll get a beautful url:

hitp:/fworcpress.dev

This feature needs administrators riht to add hostname entries o your hosts fle.
You can change it later in Preferences.

Auto create virtual hosts.

EE e

OEBPS/images/courses----laravel-on-windows-with-laragon----p1----start-screen.png
@ Laragon 1.0.7 160328 php-5.6.16 192.168.10.1 - X

© Menu? &

ewisleok

Laravel, a ray of light, a stream of hope in the dark shadows.

B [[@] [S

OEBPS/images/courses----laravel-on-windows-with-laragon----p1----all-started.png
@ Laragon 1.0.7 160328 php-5.6.16 192.168.10.1 - x

© Menu? £

Apache 2.4.17 started 80 Reload
MySQL 10.1.9 started 3308

ewisleok

O stop & Web 4 Database &l Terminal [Root

OEBPS/images/leanpub-logo.png
[

Leanpub

OEBPS/images/courses----laravel-on-windows----p3----myblog.png
I L
N

/ [Laravel X\

€ C fi [)myblogapp

Laravel 5

OEBPS/images/title_page.png
.0
L4

LARAVELISTA

s A COLLECTION OF

s L ARAVEL TUTORIALS ¢
. ~ .
1

- Q + v »

+ MARIO BASIC

OEBPS/images/tutorials----configure-laravel-5-for-shared-hosting----welcome.png
oooooooooo

Laravel 5

OEBPS/images/tutorials----configure-laravel-5-for-shared-hosting----new-structure-1.png
Date modified

20720161352
207.2016. 1647
207.2016.1307
207.2016.1307
207.2016.1307

Type Size

File folder
File folder
File folder
Tert Document %8
Tert Document %8

OEBPS/images/tutorials----configure-laravel-5-for-shared-hosting----new-structure-2.png
Date modified

2072016
2072016
2072016
2072016
2072016
2072016
2072016
2072016
2072016
2072016
2072016
2072016
2072016
2072016
2072016
2072016
2072016
2072016

1307
1307
1307
1307
1307
1307
1307
1300
1300
1307
1307
1307
1307
1307
1307
1307
1351
1307

Type
File folder
File folder
File folder
File folder
File folder
File folder
File folder
File folder
ENV File
EXAMPLE File
File

JSON File
LOCK File
I5File

JSON File
XML File

MD File

PHP File

Size

%8
%8
2K8
2K8

1n1K8
%8
%8
2K8
%8
%8

OEBPS/images/courses----laravel-on-windows----p1----php----control-panel-system.png
L System

<« v 4 = Control Panel > System and Security » System

Control Panel Home . . .
View basic information about your computer

9 Device Manager Windows edition

9 Remote settings Windows 10 Home

© System protection © 2015 Microsoft Corporation. All rights reserved.

€ Advanced system settings

OEBPS/images/courses----laravel-on-windows----p1----php----advanced-system-properties.png
System Properties
Computer Name Hardware Advanced System Protection Remote

You must be logged on as an Administrator to make most of these changes.
Performance

Visual effects, processor scheduling, memory usage, and virtual

memory

User Profiles

Desktop settings related to your sign-in

Settings...

Startup and Recovery

System startup, system failure, and debugging information

Settings...

Environment Variables...

OK Cancel Apply

OEBPS/images/courses----laravel-on-windows----p1----php----environment-variables.png
Environment Variables

User variables for Mario

Variable
PATH
TEMP
T™MP

Value

C:\Users\Mario\AppData\Roaming\npm
%USERPROFILE%\AppData\Local\Temp
%USERPROFILE%\AppData\Local\Temp

New... Edit... Delete
System variables
Variable Value
ComSpec C:\WINDOWS\system32\cmd.exe
FP_NO_HOST_CHECK NO
NUMBER_OF_PROCESSORS 4
oS Windows_NT

PATHEXT
PROCESSOR_ARCHITECTURE
PROCESSOR_IDENTIFIER

C:\Python27\,C:\Python27\Scripts;C:\Program Files (x86)\Intel\i...
.COM;.EXE;.BAT;.CMD;.VBS;.VBE;.JS;.JSE;. WSF;.WSH;.MSC
AMD64

Intel64 Family 6 Model 61 Stepping 4, Genuinelntel

New... Edit...

OK

Delete

Cancel

OEBPS/images/courses----elementary-laravel----p4----contact.png
Contact we value all feedback.

Feel free to contact us if you have any questions, suggestions or praises.

OEBPS/images/courses----elementary-laravel----p5----contact.png
Contact we value all feedback.

Feel free to contact us if you have any questions, suggestions or praises.

Name

E-mail

Message

OEBPS/images/courses----elementary-laravel----p6----failed-validation.png
Contact we value all feedback.

Feel free to contact us if you have any questions, suggestions or praises.
« The name field is required.
« The email field is required.
« The comment field is required.

E-mail

Message

OEBPS/images/courses----elementary-laravel----p6----success_message.png
Contact we value all feedback.

Feel free to contact us if you have any questions, suggestions or praises.

‘Your message has been sent!

E-mail

Message

OEBPS/images/courses----elementary-laravel----p1----laravel-installed.png
| arave

DOCUMENTATION LARACASTS, NEWS. FORGE GITHUB

OEBPS/images/courses----elementary-laravel----p3----home.png
Hello, world!

This is a template for a simple marketing or informational website. It includes a large callout called a jumbotron and three
supporting pieces of content. Use it as a starting point to create something more unique.

Learn more »

Heading

Donec id elit non mi porta gravida at eget metus. Fusce
dapibus, tellus ac cursus commodo, tortor mauris
‘condimentum nibh, ut fermentum massa justo sit amet
risus. Etiam porta sem malesuada magna mollis
euismod. Donec sed odio dui.

View details »

©2016 Elementary Laravel

Heading

Donec id elit non mi porta gravida at eget metus. Fusce
dapibus, tellus ac cursus commodo, tortor mauris
‘condimentum nibh, ut fermentum massa justo sit amet
risus. Etiam porta sem malesuada magna mollis
euismod. Donec sed odio dui.

View details »

Heading

Donec sed odio dui. Cras justo odio, dapibus ac facilisis
in, egestas eget quam. Vestibulum id liguia porta felis
euismod semper. Fusce dapibus, tellus ac cursus
commodo, tortor mauris condimentum nibh, ut
fermentum massa justo sit amet risus.

View details »

OEBPS/images/courses----elementary-laravel----p4----about.png
About we are a small company with big ambitions.

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Vivamus tristique varius
cursus. Curabitur in lacus nec leo tincidunt rutrum. Nullam et tortor a nulla lacinia
hendrerit eu vel nisl.

Lorem ipsum dolor it amet, consectetur adipiscing elit. Vivamus tristique varius cursus. Curabitur in lacus nec leo
tincidunt rutrum. Nullam et tortor a nulla lacinia hendrerit eu vel nisl. Donec vestibulum in mi viverra suscipit. Nam nec
nisl vel est vehicula molestie vel in tellus. Quisque congue. justo vitae pellentesque laoreet, arcu felis pharetra mauris,
eu tristique orci mi quis tellus. Aliquam ac euismod ex, id scelerisque purus. In eu vulputate lectus. Mauris pretium est
at neque interdum volutpat. Nam vel tempor metus, vitae commodo elit. In hac habitasse platea dictumst. Proin

bibendum euismod tellus. Phasellus porta lorem sit amet tortor blandit vestibulum. Nunc varius diam quis sem pretium
sagittis. Quisque eleifend, nunc at vestibulum porta, urna nulla accumsan turpis, nec aliquam urna lectus sit amet nisi.

Lorem ipsum dolor it amet, consectetur adipiscing elit. Vivamus tristique varius cursus. Curabitur in lacus nec leo
tincidunt rutrum. Nullam et tortor a nulla lacinia hendrerit eu vel nisl. Donec vestibulum in mi viverra suscipit. Nam nec
nisl vel est vehicula molestie vel in tellus. Quisque congue. justo vitae pellentesque laoreet, arcu felis pharetra mauris,
eu tristique orci mi quis tellus. Aliquam ac euismod ex, id scelerisque purus. In eu vulputate lectus. Mauris pretium est
at neque interdum volutpat. Nam vel tempor metus, vitae commodo elit. In hac habitasse platea dictumst. Proin

bibendum euismod tellus. Phasellus porta lorem sit amet tortor blandit vestibulum. Nunc varius diam quis sem pretium
sagittis. Quisque eleifend, nunc at vestibulum porta, urna nulla accumsan turpis, nec aliquam urna lectus sit amet nisi.

Company CEO

OEBPS/images/courses----laravel-on-windows----p3----shortcut----advanced.png
& something Properties

Compatibility Security Details Previous Versions
General Shortcut Options Font Layout Colors
something
Target type: Application
Target location: Sublime Text 3
Target: ‘3\subl .exe" c:\windows\system32\drivers\etc\hosts‘

Start in: ‘C:\WINDOWS\system32

Shortcut key: ‘None

Run: Normal window v
Comment: ‘ ‘
Open File Location Change Icon...
OK Cancel

Apply

OEBPS/images/courses----laravel-on-windows----p3----shortcut----administrator.png
Advanced Properties

Choose the advanced properties you want for this shortcut.

Run as administrator

This option allows you to run this shortcut as an administrator,
while protecting your computer from unauthorized activity.

Run in separate memory space

o

OEBPS/images/courses----laravel-on-windows----p1----git----git-line-ending-checkout-style.png
<% Git 2.7.02 Setup —

Configuring the line ending conversions 0\)
How should Git treat line endings in text files?

(® Checkout Windows-style, commit Unix-style line endings

Git will convert LF to CRLF when checking out text files. When committing
text files, CRLF will be converted to LF. For cross-platform projects,
this is the recommended setting on Windows ("core.autocrlf" is set to "true").

(O Checkout as-is, commit Unix-style line endings

Git will not perform any conversion when checking out text files. When
committing text files, CRLF will be converted to LF. For cross-platform projects,
this is the recommended setting on Unix ("core.autocrlf" is set to "input").

(O Checkout as-is, commit as-is

Git will not perform any conversions when checking out or committing
text files. Choosing this option is not recommended for cross-platform
projects ("core.autocrlf" is set to "false").

< Back Next > Cancel

OEBPS/images/courses----laravel-on-windows----p1----git----git-environment-variables.png
<% Git 2.7.02 Setup —

2

Adjusting your PATH environment 0\)
How would you like to use Git from the command line?

(O Use Git from Git Bash only
This is the safest choice as your PATH will not be modified at all. You will only be
able to use the Git command line tools from Git Bash.

(O Use Git from the Windows Command Prompt

This option is considered safe as it only adds some minimal Git wrappers to your
PATH to avoid cluttering your environment with optional Unix tools. You will be
able to use Git from both Git Bash and the Windows Command Prompt.

(® Use Git and optional Unix tools from the Windows Command Prompt

Both Git and the optional Unix tools will be added to your PATH.

Warning: This will override Windows tools like "find" and "sort". Only
use this option if you understand the implications.

< Back Next > Cancel

OEBPS/images/courses----laravel-on-windows----p1----git----git-file-system-caching.png
<% Git 2.7.02 Setup —

Configuring experimental performance tweaks
Which experimental performance tweaks would you like to enable?

Enable file system caching
File system data will be read in bulk and cached in memory for certain

operations ("core.fscache" is set to "true"). This provides a significant
performance boost (experimental).

< Back Next >

@,
¢0¢

Cancel

OEBPS/images/courses----laravel-on-windows----p2----virtualbox----setup-2.png
ﬂ Oracle VM VirtualBox 5.0.14 Setup

Custom Setup
Select the way you want features to be installed.

Click on the icons in the tree below to change the way features will be installed.

Orade VM VirtualBox 5.0.14
application,

This feature requires 1323kKE on
your hard drive. Ithas 3of 3
Qvlwmxpvﬂ’lﬂﬂ 250 subfeatures selected. The

< >

subfeatures require OKB on your ...

Location: C:\Program Files\OradeVirtualBox, o=

Version 5.0.14 Disk Usage < Back Cancel

OEBPS/images/courses----laravel-on-windows----p1----php----path-system-variables.png
User| Edit environment variable X

Val

PA C:\Python27\ ~ New

TE C:\Python27\Scripts

™ C:\Program Files (x86)\Intel\iCLS Client\ Edit
C:\Program Files\Inte\iCLS Client\
C:\Windows\system32
CAWindows Browse...
C:\Windows\System32\Wbem
C:\Windows\System32\WindowsPowerShell\v1.0\ Delete

~ | | C:\Program Files\Intel\Intel(R) Management Engine Compone... I
C:\Program Files (x86)\Intel\Intel(R) Management Engine Com...
C:\Program Files\Intel\Intel(R) Management Engine Compone... Move Up
C:\Program Files (x86)\Intel\Intel(R) Management Engine Com...

Syste | %SystemRoot%\system32 Move Down

; %SystemRoot% T
%SystemRoot%\System32\Wbem

Co %SYSTEMROOT%\System32\WindowsPowerShell\v1.0\

Fig C:\Program Files\nodejs\ Edit text...

N

03 C:\ProgramData\ComposerSetup\bin

kg C:\Users\Mario\AppData\Roaming\Composer\vendor\laravel\h...

i C:\Program Files\Sublime Text 3

PR C:\Program Files\Git\cmd

B C:\Program Files\Git\mingw64\bin v LY

OK Cancel
OK Cancel

OEBPS/images/courses----laravel-on-windows----p1----php----php-version-output.png
$ php -v

PHP 7.0.3 (cli) (built: Feb 2 2016 14:38:29) (ZTS)
Copyright (c) 1997-2016 The PHP Group

Zend Engine v3.0.0, Copyright (c) 1998-2016 Zend Technologies

OEBPS/images/courses----laravel-on-windows----p1----git----git-components.png
<% Git 2.7.02 Setup —

Select Components 03)
Which components should be installed?

Select the components you want to install; clear the components you do not want to
install. Click Next when you are ready to continue.

[Additional icons
[]0n the Desktop
indows Explorer integration
it Bash Here
it GUI Here

Associate .git* configuration files with the default text editor
Associate .sh files to be run with Bash
[JUse a TrueType font in all console windows

Current selection requires at least 184,8 MB of disk space.

< Back Next > Cancel

OEBPS/images/courses----laravel-on-windows----p1----git----git-terminal-emulator.png
<% Git 2.7.02 Setup —

“d

Configuring the terminal emulator to use with Git Bash 0\)
Which terminal emulator do you want to use with your Git Bash?

(® Use MinTTY (the default terminal of MSys2)

Git Bash will use MinTTY as terminal emulator, which sports a resizable window,
non-rectangular selections and a Unicode font. Windows console programs (such
as interactive Python) must be launched via “winpty" to work in MinTTY.

(O Use Windows' default console window

Git will use the default console window of Windows ("cmd.exe"), which works well
with Win32 console programs such as interactive Python or node.js, but has a
very limited default scroll-back, needs to be configured to use a Unicode font in
order to display non-ASCII characters correctly, and prior to Windows 10 its
window was not freely resizable and it only allowed rectangular text selections.

< Back Next > Cancel

