

Laravel in pratica
Una guida veloce per realizzare siti web di qualità

Francesco Lettera

Questo libro è in vendita presso http://leanpub.com/laravel_in_pratica

Questa versione è stata pubblicata il 2017-10-28

Questo è un libro di Leanpub. Leanpub permette ad autori ed editori un processo di pubblicazione
agile. La Pubblicazione Agile consite nel pubblicare un ebook in corso d’opera, utilizzando
strumenti leggeri e molte iterazioni per ottenere un feedback dai lettori, al fine di assicurare un
libro giusto e attraente una volta completato.

© 2013 - 2017 Francesco Lettera

http://leanpub.com/laravel_in_pratica
http://leanpub.com/
http://leanpub.com/manifesto

Twitta questo libro!
Per favore, aiuta Francesco Lettera diffondendo la parola a proposito di questo libro su Twitter!

Il tweet consigliato per questo libro è:

Ho appena comprato Laravel in Pratica

L’hashtag suggerito per questo libro è #laravel.

Scopri quello che gli altri hanno da dire sul libro cliccando su questo link per cercare questo
hashtag su Twitter:

#laravel

http://twitter.com
https://twitter.com/intent/tweet?text=Ho%20appena%20comprato%20Laravel%20in%20Pratica
https://twitter.com/search?q=%23laravel
https://twitter.com/search?q=%23laravel

Indice

Capitolo 3: l’approccio RESTful . 1
Gestiamo le categorie . 1
Un approccio RESTful per le categorie . 1
Cosa abbiamo imparato . 13
Download dell’applicazione . 13

Capitolo 3: l’approccio RESTful
Gestiamo le categorie

La tabella delle categorie sarà l’anello di congiunzione tra gli utenti della nostra intranet e i
documenti caricati dall’admin. Occupiamoci della tabella utilizzando il migration system di Laravel
che già conosciamo. Posizioniamoci con il prompt dei comandi in C:\wamp\www e digitiamo:

php artisan migrate:make create_categorie --create=categorie

Modifichiamo il metodo up(), come di consueto.

1 // app/database/migrations/2013_07_29_143818_create_categorie_table.php

2

3 public function up()

4 {

5 Schema::create('categorie', function(Blueprint $table)

6 {

7 $table->increments('id');

8 $table->string('nome_categoria');

9 $table->timestamps();

10 });

11 }

Poi ritorniamo sul nostro prompt di comandi e digitiamo:

php artisan migrate

Nel nostro db sarà quindi presente la nostra tabella categoria, tutta vuota e pronta per essere riempita.

Un approccio RESTful per le categorie

Gestire le risorse seguendo un approccio RESTful ci garantisce una serie di regole standard. Tali
regole saranno applicate per quasi tutte le parti del nostro progetto. Nel corso del libro, infatti,
gestiremo anche gli utenti con questo approccio, e le risorse. Laravel ci viene in aiuto perché ha già
concepito l’approccio RESTful per i suoi Controller. Dal nostro insostituibile prompt dei comandi
digitiamo (siamo sempre in C:\wamp\www):

php artisan controller:make CategorieController

E’ stato appena creato un nuovo file nella cartella app/controllers

Capitolo 3: l’approccio RESTful 2

1 class CategorieController extends \BaseController {

2

3 /**

4 * Display a listing of the resource.

5 *

6 * @return Response

7 */

8 public function index()

9 {

10 //

11 }

12

13 /**

14 * Show the form for creating a new resource.

15 *

16 * @return Response

17 */

18 public function create()

19 {

20 //

21 }

22

23 /**

24 * Store a newly created resource in storage.

25 *

26 * @return Response

27 */

28 public function store()

29 {

30 //

31 }

32

33 /**

34 * Display the specified resource.

35 *

36 * @param int $id

37 * @return Response

38 */

39 public function show($id)

40 {

41 //

42 }

Capitolo 3: l’approccio RESTful 3

43

44 /**

45 * Show the form for editing the specified resource.

46 *

47 * @param int $id

48 * @return Response

49 */

50 public function edit($id)

51 {

52 //

53 }

54

55 /**

56 * Update the specified resource in storage.

57 *

58 * @param int $id

59 * @return Response

60 */

61 public function update($id)

62 {

63 //

64 }

65

66 /**

67 * Remove the specified resource from storage.

68 *

69 * @param int $id

70 * @return Response

71 */

72 public function destroy($id)

73 {

74 //

75 }

76

77 }

Wow! Quanta roba. I metodi sono intuitivi, del resto sono ben commentati. Nulla ci vietava di creare
questo controller a mano, ma la forza di artisan è proprio quella di abbreviare alcuni aspetti comuni
della programmazione PHP. Un paio di ulteriori accorgimenti prima di procedere: creiamo un file
Categorie.php all’interno della cartella model.

Capitolo 3: l’approccio RESTful 4

1 // app/models/Categorie.php

2

3 class Categorie extends Eloquent {

4

5 protected $table = 'categorie';

6

7 }

Ho creato una classe che estende Eloquent. La utilizzeremo per le nostre query richiamate dal
Controller CategorieController.php.

Poi passiamo al capitano di rotta (routes.php) e indichiamogli che desideriamo utilizzare un
approccio RESTful:

1 // app/routes.php

2

3 Route::resource('categorie', 'CategorieController');

Questa singola dichiarazione crea una serie di regole di route che gestiranno i metodi RESTful del
nostro controller. Diamo un’occhiata a questa tabella:

METODO PERCORSO AZIONE NOME ROUTE

GET /categorie index categorie.index
GET /categorie/create index categorie.create
POST /categorie store categorie.store
GET /categorie/{id} show categorie.show
GET /categorie/{id}/edit edit categorie.edit
PUT/PATCH /categorie/{id} update categorie.update
DELETE /categorie/{id} destroy categorie.destroy

La tabella elenca tutti gli stati del controller RESTful. Avrai già notato che il percorso index è simile
al percorso store. In realtà la differenza sostanziale è nel metodo: il primo è GET, il secondo è POST.
Cioè Laravel riconosce se i dati provengono tramite GET o POST e reindirizza al metodo opportuno.
Ma diamo vita a questo controller.

Inserimento della categoria

Prima di tutto il form per inserire la categoria. Andrà nel metodo create():

Capitolo 3: l’approccio RESTful 5

1 // app/controllers/CategorieController.php

2

3 public function create()

4 {

5 $this->layout->content = View::make('categorie.create');

6 }

Poi creiamo la nostra view. Già sappiamo come fare:

1 // app/views/categorie/create.blade.php

2

3 @section('content')

4

5 {{ Form::open(array('url' => 'categorie', 'method' => 'POST')) }}

6 <div class="row">

7 <div class="col-lg-3">

8 <div class="form-group">

9 {{ Form::label('nome_categoria', 'Nome categoria') }}

10 {{ Form::text('nome_categoria', '', array('class'=>'form-control')) }}

11 </div>

12 </div>

13 </div>

14

15 <div class="row">

16 <div class="col-lg-3">

17 <div class="form-group">

18 {{ Form::submit('Aggiungi questa categoria', array('class' =>'btn b\

19 tn-success btn-large')) }}

20 </div>

21 </div>

22 </div>

23 {{ Form::close() }}

24 @stop

Diamo un’occhiata al parametro url del form: punta a categorie e il suo metodo è POST. Se diamo
un’occhiata alla tabella di prima, sapremo già quale metodo recupererà il campo nome_categoria: è
il metodo store(). Occupiamoci di quest’ultimo:

Capitolo 3: l’approccio RESTful 6

1 // app/controllers/CategorieController.php

2

3 public function store()

4 {

5 $categorie = new Categorie;

6 $categorie->nome_categoria = Input::get('nome_categoria');

7 $categorie->save();

8 return Redirect::action('CategorieController@index');

9 }

Avrai notato che ho istanziato l’oggetto categorie per utilzzarlo nel metodo. $categorie->nome_-
categoria è infatti il nome del campo della tabella categorie: l’ho valorizzato con l’input recuperato
dal form (noterai l’orrore della mancanza di validazione. Don’t worry, ne parleremo più in là) e poi
ho dato il comando save() (E qui noterai l’eleganza di Laravel!) per salvare il tutto nel db. Fatto!
Dopo questa operazione, un redirect al metodo index() del nostro controller. A proposito, quando
dobbiamo redirezionare verso un metodo del controller, il metodo (perdona il bisticcio) è action:

1 return Redirect::action('CategorieController@index');

Elenco delle categorie

Realizziamo adesso la lista dei dati inseriti. Questa lista sarà all’interno del metodo index() del
nostro controller.

1 // app/controllers/CategorieController.php

2

3 public function index()

4 {

5 $data['categorie_lista'] = Categorie::all();

6 $this->layout->content = View::make('categorie.categorie_lista', $data);

7 }

Con Categorie::all() recuperiamo immediatamente la lista delle categorie inserite. Si tratta di una
query banale, e sarebbe antieconomico realizzare un metodo all’interno del model Categorie.php.
Laravel ci strizza l’occhio e ci dà subito la lista. Per query più complesse, però, è sempre consigliabile
utilizzare i metodi nel model. Anche per una questione di ordine. Passiamo dunque l’array
valorizzato $data['categorie_lista'] alla view:

1 $this->layout->content = View::make('categorie.categorie_lista', $data);

E realizziamo la view. Ho pensato ad una gloriosa tabella:

Capitolo 3: l’approccio RESTful 7

1 // app/views/categorie/categoria_lista.blade.php

2

3 @section('content')

4 <table class="table">

5 <tr>

6 <td>Categoria</td>

7 <td>Azioni</td>

8 </tr>

9 @foreach($categorie_lista as $c)

10 <tr>

11 <td>{{ $c['nome_categoria'] }}</td>

12 <td><a href="{{ url('categorie/'.$c['id'].'/edit') }}" class="btn btn-wa\

13 rning">Modifica</td>

14 <td>C\

15 ancella</td>

16 </tr>

17 @endforeach

18 </table>

19

20 @stop

Se hai letto l’introduzione a Blade non hai bisogno di ulteriori spiegazioni sulla sintassi di questa
view. Vorrei, però, farti notare i due link della colonna AZIONI: il primo serve per la modifica e
punta a categorie/{id}/edit. Cioè al metodo edit() (dài un’occhiata alla tabella: tutto è come
previsto); il secondo link, invece, punta a categorie/{id} con metodo GET, quindi sarà accolto da
show().

Recupero e modifica della categoria

Il recupero della categoria da modificare è affidato al metodo edit():

1 // app/controllers/CategorieController.php

2 public function edit($id)

3 {

4 $data['categoria_dettaglio'] = Categorie::find($id);

5 $this->layout->content = View::make('categorie.edit', $data);

6 }

Anche in questo caso, come l’elenco completo delle categoria, la query è piuttosto semplice ed
Eloquent ci soccorre con un’istruzione più che mai chiara: find(). Ecco la nostra view:

Capitolo 3: l’approccio RESTful 8

1 // app/views/categorie/edit.blade.php

2

3 @section('content')

4

5 {{ Form::open(array('url' => 'categorie/'. $categoria_dettaglio->id, 'method' =>\

6 'PUT')) }}

7 <div class="row">

8 <div class="col-lg-3">

9 <div class="form-group">

10 {{ Form::label('nome_categoria', 'Nome categoria') }}

11 {{ Form::text('nome_categoria', $categoria_dettaglio->nome_categoria, ar\

12 ray('class'=>'form-control')) }}

13 </div>

14 </div>

15 </div>

16

17 <div class="row">

18 <div class="col-lg-3">

19 <div class="form-group">

20 {{ Form::submit('Aggiorna questa categoria', array('class' =>'btn b\

21 tn-success btn-large')) }}

22 </div>

23 </div>

24 </div>

25 {{ Form::close() }}

26 @stop

Piuttosto simile alla view categorie/create.blade.php, ma ti invito a dare un’occhiata all’url del
form e al metodo. Il primo punta a categorie/{id} e il metodo è PUT. Quindi, da tabella, punterà a
update():

1 // app/controllers/CategorieController.php

2

3 public function update($id)

4 {

5 $categoria = Categorie::find($id);

6 $categoria->nome_categoria = Input::get('nome_categoria');

7 $categoria->save();

8 return Redirect::action('CategorieController@index');

9 }

Capitolo 3: l’approccio RESTful 9

Anche in questo caso utilizziamo find($id) come nel metodo edit(), ma il fine è diverso. Abbiamo
infatti recuperato il record, sostituito con il nuovo input e salvato nel db con il comando che già
conosciamo save().

Cancellazione della categoria

La view che mostrava la lista delle categoria conteneva anche il link per la cancellazione. Eccolo qui:

1 // app/views/categorie/categoria_lista.blade.php

2

3 <td>Cancella\

4 </td>

Se riprendiamo ancora una volta la tabella di tutti i metodi RESTful, noteremo che questo URL
corrisponde a:

METODO PERCORSO AZIONE NOME ROUTE

GET /categorie/{id} show categorie.show

Dunque il metodo è show():

1 // app/controllers/CategorieController.php

2

3 public function show($id)

4 {

5 $data['categoria_dettaglio'] = Categorie::find($id);

6 $this->layout->content = View::make('categorie.show', $data);

7 }

Niente che tu non abbia già visto. Ma diamo un’occhiata alla view: è lei che farà la differenza:

1 // app/views/categorie/show.blade.php

2

3 @section('content')

4 <div class="row">

5 <div class="col-lg-6">

6 <div class="form-group">

7 <h3>Sei sicuro di voler cancellare questa categoria?</h3>

8 </div>

9 </div>

10 </div>

Capitolo 3: l’approccio RESTful 10

11

12 {{ Form::open(array('url' => 'categorie/'. $categoria_dettaglio->id, 'method' =>\

13 'DELETE')) }}

14 <div class="row">

15 <div class="col-lg-3">

16 <div class="form-group">

17 {{ $categoria_dettaglio->nome_categoria }}

18 </div>

19 </div>

20 </div>

21 <div class="row">

22 <div class="col-lg-3">

23 <div class="form-group">

24 {{ Form::submit('Cancella questa categoria', array('class' =>'btn b\

25 tn-success btn-large')) }}

26 </div>

27 </div>

28 <div class="col-lg-3">

29 No, c\

30 i ho ripensato

31 </div>

32 </div>

33 {{ Form::close() }}

34 @stop

La particolarità è nel method="DELETE" del form. Ancora una volta la tabella:

METODO PERCORSO AZIONE NOME ROUTE

DELETE /categorie/{id} destroy categorie.destroy

Perfetto. Cliccando sul bottone Cancella questa categoria inneschiamo il metodo destroy() del
nostro controller:

1 // app/controlers/CategorieController.hp

2

3 public function destroy($id)

4 {

5 $categoria = Categorie::find($id);

6 $categoria->delete();

7 return Redirect::action('CategorieController@index');

8 }

Ancora find($id) e poi delete().

Capitolo 3: l’approccio RESTful 11

Un ritocco al template

E’ arrivato il momento di ritoccare il nostro template per renderlo più carino. Aggiungiamo questa
porzione di codice prima del <div="container">

1 // app/views/template/main.blade.php

2 <div class="navbar navbar-inverse navbar-fixed-top">

3 <div class="container">

4 <button type="button" class="navbar-toggle" data-toggle="collapse" data-\

5 target=".nav-collapse">

6

7

8

9 </button>

10 Intranet Project

11 <div class="nav-collapse collapse">

12 <ul class="nav navbar-nav">

13 <li class="active">Login

14

15 </div><!--/.nav-collapse -->

16 </div>

17 </div>

Poi, prima della chiusura del tag </head>, questa piccola regola CSS che aggiunge un po’ di margine
superiore:

1 <style type="text/css">

2 body {

3 padding-top: 70px;

4 }

5 </style>

Il template corretto dovrebbe avere queste sembianze:

Capitolo 3: l’approccio RESTful 12

1 // app/views/template/main.blade.php

2

3 <!DOCTYPE html>

4 <html>

5 <head>

6 <title>Bootstrap 101 Template</title>

7 <meta name="viewport" content="width=device-width, initial-scale=1.0">

8 <!-- Bootstrap -->

9 <link rel="stylesheet" href="{{ url('/bs/css/bootstrap.min.css') }}" media="\

10 screen">

11 <style type="text/css">

12 body {

13 padding-top: 70px;

14 }

15 </style>

16 </head>

17 <body>

18 <div class="navbar navbar-inverse navbar-fixed-top">

19 <div class="container">

20 <button type="button" class="navbar-toggle" data-toggle="collapse" data-\

21 target=".nav-collapse">

22

23

24

25 </button>

26 Intranet Project

27 <div class="nav-collapse collapse">

28 <ul class="nav navbar-nav">

29 <li class="active">Login

30

31 </div><!--/.nav-collapse -->

32 </div>

33 </div>

34 <div class="container">

35 <div class="row">

36 <div class="col-lg-12">

37 @yield('content')

38 </div>

39 </div>

40 </div>

41 <!-- JavaScript plugins (requires jQuery) -->

42 <script src="{{ url('http://code.jquery.com/jquery.js') }}"></script>

Capitolo 3: l’approccio RESTful 13

43 <!-- Include all compiled plugins (below), or include individual files as ne\

44 eded -->

45 <script src="{{ url('/bs/js/bootstrap.min.js') }}"></script>

46 </body>

47 </html>

Cosa abbiamo imparato

Un approccio RESTful offre una serie di operazioni standard per gestire risorse. Utilizzarlo garantisce
una certa omogeneità, soprattutto quando si realizza un’applicazione backend.

Download dell’applicazione

Il progetto web fin qui discusso lo puoi scaricare a questo indirizzo https://www.dropbox.com/s/
laptcpv1cnng58c/laravel_2.zip. Se desideri testare subito l’applicazione (saltando tutti gli step del
libro), ricordati di lanciare il comando php artisan migrate per aggiornare il tuo db.

https://www.dropbox.com/s/laptcpv1cnng58c/laravel_2.zip
https://www.dropbox.com/s/laptcpv1cnng58c/laravel_2.zip

	Indice
	Capitolo 3: l'approccio RESTful
	Gestiamo le categorie
	Un approccio RESTful per le categorie
	Cosa abbiamo imparato
	Download dell'applicazione

