= Y 4 % N\ <] =
u N
b=
] N\
]
A\ =
]|
,' = =
Y n |
N\
=
3
Y o = N &=
< . %ﬁ % -
Qe — ﬁ " \\ -
A= \T ”
%
<
& ~q
Q
=™’

LARAVEL 4

COOKBOOK

BY CHRISTOPHER PITT

Laravel 4 Cookbook (ES)

Christopher Pitt, Taylor Otwell y Carlos Ufano
Este libro est4 a la venta en http://leanpub.com/laravel4cookbook-es

Esta version se publico en 2014-07-04

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and
many iterations to get reader feedback, pivot until you have the right book and build traction once
you do.

©2013 - 2014 Christopher Pitt

http://leanpub.com/laravel4cookbook-es
http://leanpub.com
http://leanpub.com/manifesto

iTwitea sobre el libro!

Por favor ayuda a Christopher Pitt, Taylor Otwell y Carlos Ufano hablando sobre el libro en
Twitter!

El tweet sugerido para este libro es:

Acabo de comprar el libro Laravel 4 Cookbook (ES)

El hashtag sugerido para este libro es #laravel4cookbook.

Descubre lo que otra gente esta diciendo sobre el libro haciendo click en este enlace para buscar el
hashtag en Twitter:

https://twitter.com/search?q=#laravel4cookbook

http://twitter.com
https://twitter.com/search?q=%23laravel4cookbook
https://twitter.com/search?q=%23laravel4cookbook

Indice general

Instalando Laravel 4. 1
Autenticacion L e e 2
Configurando laBasededatos Lo 2
Conexidnalabasededatos 2
Controlador de basede datos 3
Controlador Eloquent 4
Creando una migracion o 4
Creandounmodelo e 7
Creando una sembradora (seeder) 9
Configurando la autenticaciéon L Lo Lo 10
Iniciando sesion L e e e 11
Creacion deuna vistadediseflo 12
Creando una vistade acceso e 15
Creando una accidn de acceso i o e 17
Autenticando a usuarios e 18
Redirigiendo coninput 22
Autenticando credenciales e 24
Restableciendo contrasefias e e e 25
Creando una vista de restablecimiento de contrasefia 25
Creando una accion de restablecimiento de contrasefia 28
Trabajando con usuarios autenticados 33
Creando una paginadeperfil o 34
Creando filtros e 34

Creando una accion de salida (logout) 37

Instalando Laravel 4

Laravel 4 utiliza Composer para gestionar sus dependencias. Puedes instalar Composer siguiendo
las instrucciones en http://getcomposer.org/doc/00-intro.md#installation-nix.

Una vez que tengas Composer funcionando, haz un nuevo directorio o navega hasta uno ya existente
e instala Laravel 4 con el siguiente comando:

composer create-project laravel/laravel ./ --prefer-dist

Si has escogido no instalar Composer globalmente (aunque realmente deberias), entonces el
comando a utilizar debe ser similar al siguiente:

php composer.phar create-project laravel/laravel ./ --prefer-dist

Ambos comandos iniciaran el proceso de instalaciéon de Laravel 4. Hay muchas dependencias que
tienen que ser seleccionadas y descargadas, por lo que este proceso puede tomar algin tiempo en
terminar.

Autenticacion

Si eres como yo, habras malgastado mucho tiempo construyendo sistemas protegidos por contrasefa.
Solia temer el punto en el que tenia que atornillar el sistema de autenticaciéon a un CMS (Sistema de
Gestion de Contenidos) o carrito de compras. Esto era hasta que aprendi lo facil que era con Laravel
4.

El codigo de este capitulo puede encontrarse en: https://github.com/formativ/tutorial-laravel-4-
authentication

Configurando la Base de datos

Una de las mejores maneras de gestionar usuarios y autenticacion es almacenandolos en una base de
datos. Los mecanismos de autenticacion por defecto de Laravel 4 asumen que usaras alguna forma
de almacenamiento en base de datos, y proporciona dos controladores con los que esos usuarios de
la base de datos pueden ser recuperados y autenticados.

Conexion a la base de datos

Para usar cualquiera de los controladores proporcionados, primero necesitamos una conexién valida
con la base de datos. Ponla en marcha configurando las secciones en el fichero app/config/databa-
se.php. Aqui hay un ejemplo de la base de datos MySQL que uso para pruebas:

© 00 N O O b W N =

(ST
N R~ O

<?7php
return |
"fetch" => PDO: :FETCH_CLASS,
"default" => "mysql",
"connections" => [
"mysql" => [
"driver" => "mysql",
"host" => "localhost",
"database" => "tutorial",
"username" => "dev",
"password" => "dev",

13
14
15
16
17
18
19

Autenticacion 3

"charset” => "utf8",
"collation" => "utf8_unicode_ci",

nn

"prefix" =>

] !

"migrations" => "migration"

1;

Este fichero deberia ser guardado como app/config/database.php.

He quitado los comentarios, lineas extrafias y opciones de configuraciéon del controlador super-
fluas.

Controlador de base de datos

El primer controlador que proporciona Laravel 4 se llama database. Como su nombre sugiere,
este controlador consulta la base de datos directamente a fin de determinar si existen usuarios
que coincidan con las credenciales proporcionadas, y si se han proporcionado las credenciales de
autenticacion apropiadas.

Si este es el controlador que quieres usar, necesitaras la siguiente tabla en la base de datos que tengas
configurada:

CREATE TABLE ‘user” (
“id® int(10@) unsigned NOT NULL AUTO_INCREMENT,
“username” varchar(255) DEFAULT NULL,
“password” varchar(255) DEFAULT NULL,
“email” varchar(255) DEFAULT NULL,
“created_at™ datetime DEFAULT NULL,
“updated_at®™ datetime DEFAULT NULL,
PRIMARY KEY (“id")

) CHARSET=utf8 COLLATE=utf8_unicode_ci;

1

Autenticacion 4

Aqui, y mas adelante, me desvio del estandar de los nombres plurales de tablas de base de
datos. Normalmente, recomendaria quedarse con el estandar, pero esto me di6 la oportunidad de
demostrar como puedes configurar nombres de tablas de base de datos, tanto en migraciones como
en modelos.

Controlador Eloquent

El segundo controlador que Laravel 4 proporciona se llama eloquent. Eloquent es el nombre del
ORM (mapeo objeto-relacional) que también Laravel 4 proporciona, para abstraer datos del modelo.
Es similar en que consultara una base de datos para determinar si un usuario es auténtico, pero el
interfaz que utiliza para hacer esa determinacion es un poco diferente a las consultas directas a base
de datos.

Si estas construyendo aplicaciones medianas a grandes, usando Laravel 4, tienes una buena
oportunidad para usar modelos Eloquent para representar objetos de base de datos. Con esto en
mente, voy a dedicar algun tiempo a a la elaboracién de la participaciéon de modelos Eloquent en el
proceso de autenticacion.

Si quieres ignorar todas estas cosas de Eloquent, siéntete libre de saltar las siguientes secciones que
se ocupan de las migraciones y modelos.

Creando una migracién

Puesto que estamos usando Eloquent para gestionar como nuestra aplicacién se comunica con la
base de datos; podemos también usar las herramientas de manipulacién de tablas de base de datos
de Laravel 4.

Para empezar, ve a la raiz de tu proyecto y escribe el siguiente comando:

php artisan migrate:make --table="user" CreateUserTable

El argumento —table="user” coincide con la propiedad $table=user que definiremos en el modelo
User.

Esto generara el andamiaje para la tabla de usuarios, que deberia parecerse a lo siguiente:

© 0 N O O & W N =

NN N N P R R | N | sy
W N 2O O N0 0w N~

Autenticacion

<?php

use Illuminate\Database\Schema\Blueprint;
use Illuminate\Database\Migrations\Migration;

class CreateUserTable
extends Migration

Schema: :table('user', function(Blueprint $table)

Schema: :table('user', function(Blueprint $table)

{
public function up()
{
{
//
1)
}
public function down()
{
{
/7
1)
}
}

Este fichero deberia guardarse como app/database/migrations/0000_00_00_000000_CreateUser-
Table.php. El tuyo puede ser un poco diferente, donde los 0 se sustituyen por otros niimeros.

El esquema de nombrado de ficheros puede parecer extrafio, pero es por una buena razon. Los
sistemas de migracion estan disefiados para ejecutarse en cualquier servidor, y el orden en que se
deben ejecutar es fijo. Todo esto para permitir cambios en la base de datos para estar bajo control

de versiones.

La migracion se crea solo con el andamiaje mas basico, que significa que necesitamos afiadir los

campos en la tabla de usuarios:

O 0O = O O » wWw N =

BB DWW W W WWWWWWNDNDNDDNDDNDNDDNDDNDNDDN-S S Ss s, sss,s e
N A O © 00 9 O O b W N~ OO © 03O0 O b N~ OO O 03O0 O k- WwN =~ o

Autenticacion

<?php

use Illuminate\Database\Schema\Blueprint;
use Illuminate\Database\Migrations\Migration;

class CreateUserTable
extends Migration
{
public function up()
{

Schema: :create("user", function(Blueprint $table)

{

$table->increments("id");

$table
->string("username"
->nullable()
->default(null);

$table
->string("password")
->nullable()
->default(null);

$table
->string("email")
->nullable()
->default(null);

$table
->dateTime("created_at")
->nullable()
->default(null);

$table
->dateTime("updated_at")
->nullable()
->default(null);

});

public function down()

43
44
45
46

© 00 N O O b W N =

(ST
N R~ O

Autenticacion 7

Schema: :droplfExists("user");

Este fichero deberia guardarse como app/database/migrations/0000_00_00_000000_CreateUser-
Table.php. El tuyo puede ser un poco diferente, donde los 0 se sustituyen por otros niimeros.

Aqui, hemos afnadido campos para id, nombre de usuario, contraseiia, fecha de creacion y fecha de
actualizacion. Hay métodos para acortar los campos de tiempo, pero prefiero afiadir estos campos
explicitamente. Todos los campos pueden ser nulos y su valor por defecto es null.

También hemos afiadido el método de borrado, que se ejecutara si las migraciones se invierten, y
eliminara la tabla de usuarios si existe.

Las formas cortas para afiadir los campos de tiempo pueden encontrarse en: http://laravel.com/docs/schema#adding-
columns

Esta migracion funcionar, incluso si solo quieres usar el controlador de base de datos, pero es por
lo general parte de una instalacién mas grande, que incluye modelos y sembradoras (seeders).

Creando un modelo

Laravel 4 proporciona un modelo User, con todos los métodos de interfaz que requiere. Lo he
modificado ligeramente, pero los fundamentos siguen ahi...

<?php

use Illuminate\Auth\UserInterface;
use Illuminate\Auth\Reminders\Remindablelnterface;

class User
extends Eloquent
implements UserInterface, Remindablelnterface

{

protected $table = "user";
protected $hidden = ["password"];

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

Autenticacion 8

public function getAuthIdentifier()

{
return $this->getKey();
}
public function getAuthPassword()
{
return $this->password;
}
public function getReminderEmail()
{
return $this->email;
}

Este fichero deberia guardarse como app/models/User.php.

Observa la propiedad $table=user que hemos definido. Debe coincidir con la tabla que definimos
en nuestras migraciones.

El modelo User extiende Eloquent e implementa dos interfaces que aseguran que el modelo es valido
para operaciones de autenticacién y recordatorio. Nos ocuparemos de los interfaces mas tarde, pero
es importante notar los métodos que esas interfaces requieren.

Laravel 4 permite el uso de cualquier direccion de email o nombre de usuario para identificar al usua-
rio, pero es un campo diferente de lo que devuelve getAuthldentifier(). El interfaz UserInterface
especifica el nombre de campo contrasefia, pero esto puede ser modificado sobreescribiendo/cam-
biando el método getAuthPassword().

El método getReminderEmail() devuelve una direccién de email en la que contactar al usuario con
un email de reinicio de contrasena, si esto fuese necesario.

Eres libre para especificar cualquier personalizaciéon del modelo, sin temor a que se rompan los
mecanismos de autenticacion integrados.

O© 0O I O O » W N =

OIS T = S = U G G i U G Y
=, 0 © 00 N O O b W DN =~ O

Autenticacion 9

Creando una sembradora (seeder)

Laravel 4 también incluye un sistema de siembra, que puede utilizarse para anadir registros a tu base
de datos después de la migracion inicial. Para afiadir los usuarios iniciales a mi proyecto, tengo la
siguiente clase de sembradora:

<?php

class UserSeeder
extends DatabaseSeeder

{
public function run()
{
$users = |
[
"username" => "christopher.pitt",
"password" => Hash::make("T7h3iMOST!53cu23"),
"email" => "chris@example.com"
]
1;
foreach ($users as $user)
{
User: :create($user);
}
}
}

Este fichero deberia guardarse como app/database/seeds/UserSeeder.php.

Ejecutando esto afadird mi cuenta de usuario a la base de datos, pero para poder ejecutarlo
necesitamos afiadirlo a la principal clase DatabaseSeeder:

© 0 N O O & W N =

[ENEEN
[l]

Autenticacion 10

<?php

class DatabaseSeeder
extends Seeder

{
public function run()
{
Eloquent: :unguard();
$this->call("UserSeeder");
}
}

Este campo deberia guardarse como app/database/seeds/DatabaseSeeder.php.

Ahora, cuando la clase DatabaseSeeder sea invocada, sembrar la tabla de usuarios con mi cuenta.
Si ya has configurado tu migracién y modelo, y proporcionado datos de la conexién a la base de
datos, los siguientes comandos deberian entonces poner todo en marcha y funcionando.

composer dump-autoload
php artisan migrate
php artisan db:seed

El primer comando asegura que todas las nuevas clases que hemos creado sean correctamente
cargadas de manera automatica. El segundo cra las tablas de la base de datos especificas para la
migracion. El tercero siembra los datos del usuario en la tabla de usuarios.

Configurando la autenticacion

Las opciones de configuraciéon de los mecanismos de autenticacion son escasas, pero si permiten
cierta personalizacion.

© 0 N O O & W N =

[ENEEN
[l]

Autenticacion

<?php

return |
"driver" => "eloquent",
"model" => "User",

"reminder" => |
"email" => "email.request",
"table" => "token",

"expire" => 60

Este fichero debe ser guardado como app/config/auth.php.

Todos estos valores son importnates, y la mayoria auto-explicatorios y faciles de entender. La vista

11

utilizada para componer la solicitud del email se especifica con email = email.request y el tiempo

en el que el token de reinicio caducara se especifica con expire = 60.

Presta especial atencion a la vista especificada por email = email.request—le dice a Laravel que
cargue el fichero app/views/email/request.blade.php en vez del app/views/emails/auth/remin-

der.blade.php por defecto.

Hay varias cosas que se beneficiarian de las opciones de configuracion, que actualmente estan
siendo programadas en el codigo de los proveedores. Veremos algunas de ellas, a medida que vayan

surgiendo.

Iniciando sesion

Para permitir autenticarse a los usuarios para usar nuestra aplicacion, vamos a construir una pagina

de acceso, donde los usuarios puedan introducir sus datos de inicio de sesion. Si sus datos son validos,

seran redirigidos a su pagina de perfil.

O© 0O I O O & W N =

N N N B R R N | sy
N -~ © O 0 3 O O & W N =~ ©

Autenticacion 12

Creacion de una vista de diseino

Antes de crear cualquiera de las paginas de nuestra aplicacion, seria consejable abstraer todo nuestro
marcado de disefio y estilo. Para ello, vamos a crear una vista de disefio con varios includes, usando
el motor de plantillas Blade.

En primer lugar, tenemos que crear la vista de disefo.

<!DOCTYPE html>
<html lang="en”>

<head>
<meta charset="UTF-8" />
<link
type="text/css"
rel="stylesheet"
href="/css/layout.css" />
<title>
Tutorial
</title>
</head>
<body>

@include("header")

<div class="content">
<div class="container">

@yield("content")

</div>

</div>

@include("footer")

</body>
</html>

Este fichero deberia guardarse como app/views/layout.blade.php.

La vista de disefio es principalmente HTML estandar, con dos etiquetas especificas de Blade en ella.
Las etiquetas @include() le dicen a Laravel que incluya las vistas (nombradas en estas cadenas como
header y footer) del directorio de vistas.

;Has notado que hemos omitido la extension .blade.php? Laravel la afiade automaticamente por
nosotros. También une los datos proporcionados por ambos includes a la vista de disefio.

La segunda etiqueta Blade es yield(). Esta etiqueta acepta un nombre de seccion, y muestra los
datos almacenados en esa seccion. Las vistas en nuestra aplicacién extenderan esta vista de disefio,

N O O b W N

=N O O b W N =

Autenticacion 13

mientras especifican sus propias secciones content para que su marcado sea embebido en el marcaod
del disefio. Veras como se definen exactamente las secciones en breve.

@section("header")
<div class="header"»
<div class="container"»
<h1>Tutorial</h1>
</div>
</div>

@show

Este fichero deberia guardarse como app/views/header.blade.php.

El fichero header del include contiene dos etiquetas Blade que, en conjunto, indican a Blade que
almacene el marcado en la seccion que lo nombre, y lo renderice en la plantilla.

@section("footer")
<div class="footer">
<div class="container">
Powered by Laravel
</div>
</div>

@show

Este fichero deberia guardarse como app/views/footer.blade.php.

Del mismo modo, el include footer envuelve su marcado en la secciéon que lo nombre e inmediata-
mente lo renderiza en la plantilla.

Puede que te estés preguntando porqué necesitamos envolver el marcado, de estos ficheros include,
en secciones. Estamos renderizddolos de manera inmediata, después de todo. Haciéndolo asi
permitimos poder alterar su contenido. Lo veremos pronto en accion.

O 0O = O O » wWw N =

BB DWW W W WWWWWWNDNDNDDNDDNDNDDNDDNDNDDN-S S Ss s, sss,s e
N A O © 00 9 O O b W N~ OO © 03O0 O b N~ OO O 03O0 O k- WwN =~ o

Autenticacion

body

{
margin D 0;
padding . @ 0 50px 0;
font-family : "Helvetica",
font-size : 14px;
line-height : 18px;
cursor . default;

}

a

{
color : #ef7c6b1;

}

.container

{
width 1 960px;
position : relative;
margin : @ auto;

}

.header, .footer

{
background : #0Q00;
line-height : 50px;
height . B0px;
width : 100%;
color © HEff,

}

.header h1, .header a

{
display : inline-block;

}

.header h1

{
margin D 0;
font-weight : normal;

}

. footer

{
position : absolute;
bottom 1 0;

}

.content

"Arial";

14

43
44
45
46
47
48
49
50
51
52
53
54
55

Autenticacion
{
padding : 25px O;
}
label, input, .error

{

clear : both;
float : left;
margin : 5Spx 0;
}
.error
{
color : #ef7cb1;
}

15

©O© 0 I O O & W N =

Este fichero deberia guardarse como public/css/layout.css.

Terminamos afiadiendo algunos estilos basicos, que vincularemos en el elemento head. Estos alteran
las fuentes por defecto y el disefio. Tu aplicacion deberia funcionar atn sin ellos, pero se mostraria
todo un poco desordenado.

Creando una vista de acceso

La vista de acceso es esencialmente un formulario, en el que los usuarios introducen sus credenciales.

@extends("layout")
@section("content")
{{ Form: :open([

"route" => "user/login",
"autocomplete" => "off"

IDINS;
{{ Form::label("username", "Username") }}

{{ Form::text("username", Input::old("username"), [
"placeholder"” => "john.smith"

)R R)
a d W N =~ OO

1) }}

{{ Form::label("password", "Password") }}
{{ Form: :password("password",
"placeholder" => "OOOOOOOOOO"

1) }}

{{ Form: :submit("login") }}

[

16
17
18
19
20
21

Autenticacion 16

{{ Form::close() }}
@stop
@section("footer")

@parent

<seript src="//polyfill.io"></script>
@stop

Este fichero deberia guardarse como app/views/user/login.blade.php.

La primera etiqueta Blade, en la vista de acceso, le indica aLaravel que esta vista extiende la vista de
disefio. La segunda le dice qué marcado incluir en la seccién de contenido. Estas etiquetas formaran
la base de todas las vistas que creemos (ademas de las de disefio).

Luego utilizamos {{ y }} para decirle a Laravel que queremos que el c6digo contenido sea interpretado
como PHP. Abrimos el formulario con el método Form::open(), proporcionando una ruta para que
el formulario envie su contenido mediante post, ademas de parametros opcionales como segundo
argumento.

Entonces definimos dos labels (etiquetas de campo) y tres inputs (campos) como parte del formulario.
Las labels aceptan un argumento nombre, seguido por un argumento de texto. El siguiente input
acepta un argumento nombre, un argumento valor y parametros opcionales. El input password
(contrasena) acepta un argumento nombre y parametros opcionales. Por ultimo, el input submit
(entregar) acepta un argumento nombre y un argumento texto (como las labels).

Cerramos el formulario con una llamada a Form::close().

Puedes encontrar méas informacién sobre los métodos Form que Laravel ofrece en: http://laravel.com/docs/html

La ultima parte de la vista de acceso es donde sobreescribimos el marcado del pie por defecto
(especificado en el include footer que creamos anteriormente). Usamos el mismo nombre de seccion,
pero no terminamos la secciéon con @show. Ya se renderizara debido a coémo hemos definido el
include, por lo que solo usamos @stop de la misma forma como cerramos la seccién de contenido.

También utilizamos la etiqueta Blade @parent para decirle a Laravel que queremos que se muestre el
marcado que definimos en el pie por defecto. No estamos cambiandolo completamente, simplemente
afnadiendo una etiqueta script.

O O b W N -~

Autenticacion 17

Puede sencontrar méas informacion sobre las etiquetas Blade en: http://laravel.com/docs/templates#blade-

templating

El script que hemos incluido se llama polyfill.io. Es una coleccién de cufias de navegador permitiendo
cosas como el atributo placeholder (que no estan siempre presente en viejos navegadores).

Puedes encontrar mas informacion sobre Polyfill.io en: https://github.com/jonathantneal/polyfill

Nuestra vista de acceso esta ahora completada, pero basicamente es inutil sin el cédigo en la parte
del servidor que acepte la entrada de datos y devuelva un resultado. Vamos a resolverlo!

Creando una accion de acceso

La accion de acceso es lo que pega la logica de autenticacion con las vistas que hemos creado. Si
has estado siguiéndonos desde el principio, es posible que te hayas preguntado si ibamos a probar
cualquiera de estas cosas en un navegador. Hasta este punto, no habia forma de decirle a nuestra
aplicacion que cargase esta vista.

Para empezar, tenemos que agregar una ruta para la accion de acceso.

<?php

Route: :any("/", [
"as" => "user/login",
"uses" => "UserController@loginAction"

1);

Este fichero deberia guardarse como app/routes.php.

El fichero de rutas muestra una pagina de apoyo para una nueva aplicacién Laravel 4, renderizando
una vista directamente. Necesitamos cambiar eso para usar un controlador/accién. No es que
tengamos, podriamos realizar facilmente la l6gica en el archivo de rutas, pero simplemente no seria
muy ordenado.

© 00 N O O b W N =

-
o

© 00 N O O b W N =

[EEN
= O

Autenticacion 18

Especificamos un nombre para la ruta con as = user/login, y le damos un destino con uses =
UserController@loginAction. Este coincidira con todas las llamadas a la ruta por defecto /, e
incluso tiene un nombre que puede utilizarse para hacer referencia a esta ruta con facilidad.

Lo siguiente, necesitamos crear el controlador.
<?7php

class UserController
extends Controller

{
public function loginAction()
{
return View: :make("user/login");
}
}

Este fichero deberia guardarse como app/controllers/UserController.php.

Definimos el UserController (para extender la clase Controller). En él, tenemos el tinico método
loginAction() que especificamos en el fichero de rutas. Todo esto actualmente hace renderizar la
vista de acceso en el navegador, jpero es suficiente para que seamos capaces de ver nuestro progreso!

Autenticando a usuarios

Bien, como tenemos el formulario, ahora necesitamos conectarlo a la base de datos para que podamos
autenticar correctamente a los usuarios.

<?php

class UserController
extends Controller

{
public function loginAction()
{
if (Input::server("REQUEST_METHOD") == "POST")
{

$validator = Validator: :make(Input::all(), [

"username" => "required",

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

Autenticacion 19

"password" => "required"

1);

if ($validator->passes())

{

echo "Validation passed!";
}
else
{

echo "Validation failed!";
}

return View: :make("user/login");

Este fichero deberia guardarse como app/controllers/UserController.php.

Nuestra clase UserController ha cambiado algo. En primer lugar, tenemos que actuar sobre los
datos que se envian al método loginAction() via post; y para hacer esto comprobamos la propiedad
REQUEST_METHOD del servidor. Si su valor es POST podemos asumir que el formulario ha sido
enviado via post a esta accion, y procederemos entonces con la fase de validacion.

También es comun ver las acciones POST y GET de forma independiente para la misma pagina.
Si bien esto hace las cosas mas ordenadas, y evita la necesidad de comprobar la propiedad
REQUEST_METHOD, yo prefiero manejar ambas en la misma accion.

Laravel 4 ofrece un gran sistema de validacion, y una de las maneras de usarlo es llamando al método
Validator::make(). El primer argumento es una matriz de datos a validar, y el segundo argumento
es una matriz de reglas.

Solo hemos especificado que los campos username y password son obligatorios, pero hay otras
muchas reglas de validacion (algunas de las cuales usaremos en un rato). La clase Validator también
tiene un método passes(), que usamos para conocer si los datos del formulario enviados son validos.

©O© 00 I O O B wWw N =~

W W W W N DN DN DD DNDDNDNDNDDNDNDDN-S -~ B B2,
W N 2O O 0N 0 O kN0 O 0N 0w N

Autenticacion 20

A veces es mejor almacenar la logica de validacion fuera del controlador. A menudo la pongo en
el modelo, pero puedes también crear una clase especifica para manipulacién y validacién de la
entrada.

Si envias este formulario, ahora te dira si los campos obligatorios se han introducido o no, pero hay
una forma mas elegante de mostrar esta clase de mensajes...

<?php

use Illuminate\Support\MessageBag;

class UserController

extends Controller

{

public function loginAction()

{

$data = [];
if (Input::server("REQUEST_METHOD") == "POST")
{

$validator = Validator: :make(Input::all(), [
"username" => "required",
"password" => "required"

D
if ($validator->passes())
{
//
}
else
{
$data["errors"] = new MessageBag(|
"password" => |
"Username and/or password invalid."
]
1);
}

return View: :make("user/login", $data);

34
35

© 00 N O O & W N =

NN NN NN P S R S 1 s |l oy
O U WN PR, O O OO0 U WNN SO

Autenticacion 21

Este fichero deberia guardarse como app/controllers/UserController.php.

Con los cambios de anteriores, estamos utilizando la clase MessageBag para almacenar mensajes
de error de validacion. Esto es similar a como guarda implicitamente la clase Validation sus errores,
pero en vez de mostrar mensajes de error individuales para cada nombre de usuario o contrasefia,
estamos mostrando un Unico mensaje de error para ambos. jLos formularios de acceso son un poco
mas seguros de esta forma!

Para mostrar este mensaje de error, necesitaremos cambiar la vista de acceso.

@extends("layout")
@section("content")
{{ Form: :open([

"route" => "user/login",
"autocomplete" => "off"
1)}
{{ Form::label("username", "Username") }}
{{ Form::text("username", Input::get("username"), [
"placeholder” => " john.smith"
1) 1}
{{ Form::label("password", "Password") }}

{{ Form: :password("password", [
"placeholder" => "eeeocccccss"
1) 1}
@if ($error = $errors->first("password"))
<div class="error">
{{ $error }}
</div>
@endif
{{ Form::submit("login") }}
{{ Form::close() }}
@stop
@section(" footer")
@parent
<script src="//polyfill.io"></secript>
@stop

© 00 N O O b W N =

NN NN NN NN S R R 1 S s s s
<4 0 O Bd WN -~ OO © 0 9 0 O & Wb~ o

Autenticacion 22

Este fichero deberia guardarse como app/views/user/login.blade.php.

Como probablemente puedes ver, hemos afiadido una comprobacién de la existencia del mensaje de
error, y lo hemos renderizado con un elemento div con estilo. Si la validacion falla, ahora veras el
mensaje de error debajo del campo de contrasenia.

Redirigiendo con input

Uno de los errores comunes de los formularios es que a menudo refrescan la pagina si reenvian el
formulario. Podemos superar esto con un poco de la magia de Laravel. jAlmacenaremos los datos
del formulario enviados por post en la sesion, y redirigiremos a la pagina de acceso!

<7php
use Illuminate\Support\MessageBag;

class UserController
extends Controller

{

public function loginAction()

{

$errors = new MessageBag();

if ($old = Input::old("errors"))

{
$errors = $old;
}
$data = [
"errors" => $errors
1;
if (Input::server("REQUEST_METHOD") == "POST")
{

$validator = Validator::make(Input::all(), [
"username" => "required",

"password" => "required"

1);

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

Autenticacion 23

if ($validator->passes())

{
//
}
else
{
$data["errors"] = new MessageBag(]|
"password" => [
"Username and/or password invalid."
]
1),
$data["username"] = Input::get("username");
return Redirect: :route("user/login")
->withInput($data);
}

return View: :make("user/login", $data);

Este fichero deberia guardarse como app/controllers/UserController.php.

Lo primero que hemos hecho es declarar una nueva instancia de MessageBag. Lo hacemos porque
la vista todavia comprobara los errores MessageBag, por si han sido o no almacenados en la sesion.
Si es asi, en cambio, en la sesion, sobreescribiremos la nueva instancia que creamos con la instancia
almacenada.

Entonces lo afiadiremos a la matriz $data de modo que se pasa a la vista, y puede ser renderizado.

Si la validacion falla, almacenaremos el nombre de usuario en la matriz $data, junto con los errores
de validacion, y redirigiremos de vuelta a la misma ruta (utilizando también el método withInput()
para almacenar nuestros datos en la sesion).

Nuestra vista permanece sin cambios, pero podemos refrescarla sin el horrible reenvio del formula-
rio(y los molestos mensajes del navegador que van con él).

O 0 I O O B wWw N =

W W W W W W W W W N NN DNDDNDDNDDNDDNDDNDDND=S -~ 2 2 2
0 N O O b W N = O © 00 O O b WN=A~ O O 03 O O b O N~ O

Autenticacion

Autenticando credenciales

El dltimo paso en la autenticacién es comprobar los datos proporcionados en el formulario contra la

base de datos. Laravel maneja esto facilmente por nosotros.

<?php

use Illuminate\Support\MessageBag;

class UserController

extends Controller

{

public function loginAction()

{

$errors = new MessageBag();

if ($old = Input::old("errors"))

{
$errors = %old;
}
$data = [
"errors" => $errors
1;
if (Input::server("REQUEST_METHOD") == "POST")
{

$validator = Validator: :make(Input::all(), [
"username" => "required",

"password" => "required"

1);

if ($validator->passes())

{

$credentials = |
"username" => Input::get("username"),
"password" => Input::get("password")

1;

if (Auth::attempt($credentials))
{

return Redirect: :route("user/profile");

39
40
41
42
43
44
45
46
47
48
49
50
o1
52
53
o4
55

Autenticacion 25

}
$data["errors"] = new MessageBag(|
"password" => [
"Username and/or password invalid."
]
D
$data["username"] = Input::get("username");
return Redirect: :route("user/login")
->withInput($data);
}
return View: :make("user/login", $data);
}
}

Este fichero deberia guardarse como app/controllers/UserController.php.

Simplemente necesitamos pasar los datos del formulario enviados por post ($credentials) al método
Auth::attempt() y, si las credenciales son validas, el usuario accedera iniciando sesion. Si es valido,
devolveremos una redireccion a la pagina del perfil del usuario.

También hemos eliminado los codigos de error fuera de la clausula else. Es asi porque ocurrira en
ambos errores de validacion y también de autenticacion. El mismo mensaje de error (en el caso de
paginas de acceso) estd muy bien.

Restableciendo contrasenas

iEl mecanismo de restablecimeinto de contrasefias incorporado en Laravel 4 es genial! Vamos a
configurarlo para que los usuarios puedan restablecer sus contrasefas simplemente proporcionando
su direccion de correo electronico.

Creando una vista de restablecimiento de contrasena

Necesitamos dos vistas para que los usuarios puedan restablecer sus contrasefias. Necesitamos una
vista para que ellos introduzcan su direccion de email y se les envie un token de restablecimiento, y
necesitaremos otra vista para que introduzcan una nueva contrasefa para su cuenta.

© 0 N O O & W N =

[N N =Y
N O O & W N =~ O

©O© 0 I O O & W N =

SR R s s
O O b W N =~ O

Autenticacion 26

@extends("layout")
@section("content™)
{{ Form: :open([
"route" => "user/request",
"autocomplete" => "off"
1) 1}
{{ Form::label("email", "Email") }}
{{ Form::text("email", Input::get("email"), [
"placeholder"” => "john@example.com"
1) 1}
{{ Form::submit("reset") }}
{{ Form::close() }}
@stop
@section("footer")
@parent
<sceript src="//polyfill.io"></seript>
@stop

Este fichero deberia guardarse como app/views/user/request.blade.php.

Esta vista es similar a la vista de acceso, exceptuando que tiene un tinico campo para una direccion
de correo electrdnico.

@extends("layout")
@section("content™)
{{ Form: :open([
"url" => URL::route("user/reset") . $token,
"autocomplete" => "off"
1) 1}
@if ($error = $errors->first("token"))
<div class="error">
{{ $error }}
</div>
@endif
{{ Form::label("email", "Email") }}
{{ Form::text("email", Input::get("email"), [
"placeholder"” => "john@example.com"

1) }}

@if ($error = $errors->first("email"))

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

Autenticacion 27

<div class="error">
{{ $error }}
</div>
@endif
{{ Form::label("password", "Password") }}
{{ Form: :password("password", [
"placeholder" => "eeececccces"
1) 1}
@if ($error = $errors->first("password"))
<div class="error">
{{ $error }}
</div>
@endif
{{ Form::label("password_confirmation", "Confirm") }}
{{ Form: :password("password_confirmation", |
"placeholder" => "eeeecccses"
1) 1}
@if ($error = $errors->first("password_confirmation"))
<div class="error">
{{ $error }}
</div>
@endif
{{ Form: :submit("reset") }}
{{ Form::close() }}
@stop
@section("footer")
@parent
<script src="//polyfill.io"></script>
@stop

Este fichero deberia guardarse como app/views/user/reset.blade.php.

Ok, ahora lo entenderas. Hay un formulario con algunos inputs y mensajes de error. Una cosa
importante a tener en cuenta es el cambio en la accion del formulario, a saber, el uso de URL::route()
en combinaciéon con una variable asignada a la vista. Pondremos eso en la accidn, asi que no te
preocupes por ahora.

He modificado también ligeramente el correo electronico de solicitud del token de contrasefia,
aunque sigue siendo casi idéntico al de la vista predeterminada que proporciona una nueva
instalacion de Laravel 4.

© 0 N O O & W N =

[ENEEN
[l]

© 0 I O O & W N =

-
(]

Autenticacion

<IDOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8" />
</head>
<body>
<h1>Password Reset</h1>
To reset your password, complete this form:
{{ URL::route("user/reset") . "?token=" . $token }}
</body>
</html>

Este fichero deberia guardarse como app/views/email/request.blade.php.

Recuerda que cambiamos las opciones de configuracion de envio del correo electrénico de esta
vista por el predeterminado en app/views/emails/auth/reminder.blade.php.

Creando una accion de restablecimiento de contrasena
A fin de que las acciones sean accesibles, necesitamos afiadir rutas para ellas.
<?php

Route::any("/", [
"as" => "user/login",
"uses" => "UserController@loginAction"

1);

Route: :any("/request", |
as" => "user/request",
"uses" => "UserController@requestAction"

N U
O O b W N =

1);

Route: :any("/reset", |

as" => "user/reset",
"uses" => "UserController@resetAction"

1);

O© 00 9 O U » W N =~

NN NN NN NN R R R R s s s
0 T 0O O B WN A QO © W 3 0 U b W NN ~»r O

Autenticacion 29

Este fichero deberia guardarse como app/routes.php.

Recuerda; la ruta de peticion es para solicitar un token de restablecimiento, y la ruta de restableci-
meinto es para restablecer una contrasena.

También necesitamos generar la tabla de tokens de restablecimiento de contrasefias, utilizando
artisan.

php artisan auth:reminders
Esto generara una plantilla de migraciéon para la tabla de recordatorio.

<?php

use Illuminate\Database\Schema\Blueprint;
use Illuminate\Database\Migrations\Migration;

class CreateTokenTable
extends Migration
{
public function up()
{
Schema: :create("token", function(Blueprint $table)
{
$table
->string("email™)
->nullable()
->default(null);

$table
->string("token™)
->nullable()
->default(null);

$table
->timestamp("created_at")
->nullable()
->default(null);

1)

29
30
31
32
33
34

O 00 9 O U B W N =~

T ST T N T N S N G G U S G N
B W0 N 20 O 00N O O b O N~ O

Autenticacion 30

public function down()
{
Schema: :droplfExists("token");
}
}

Este fichero deberia guardarse como app/database/migrations/0000_00_00_000000_CreateTo-
kenTable.php. El tuyo podria ser ligeramente diferente cambiando los 0 por otros nimeros.

He modificado ligeramente la plantilla, pero los fundamentos son los mismos. Esto creara una tabla
con los campos email, token y created_at, que los mecanismos de autenticacién usaran para generar
y validar los tokens de restablecimiento de las contrasefias.

Con esto en mente, podemos empezar a anadir nuestras acciones de restablecimiento de contrasefia.

public function requestAction()

{
$data = [
"requested" => Input::old("requested")

1;

if (Input::server("REQUEST_METHOD") == "POST")

{
$validator = Validator::make(Input::all(), [

"email" => "required"

1);

if ($validator->passes())

{

$credentials = |
"email" => Input::get("email")

1;

Password: :remind($credentials,
function($message, $user)

{

$message-> from("chris@example.com");

25
26
27
28
29
30
31
32
33
34

O 0 < O O » W N =

T S V' G i U G G G Y
S © 0 9 O O » Ww N =~ ©

Autenticacion 31

$data["requested"] = true;
return Redirect: :route("user/request")
->withInput($data);
}
}
return View: :make("user/request", $data);
}

Esto se ha extraido de app/controllers/UserController.php.

El método requestAction() valida los datos enviados del formulario de la misma forma que hacia
el método loginAction(), pero en vez de pasar los datos del formulario a Auth::attempt(), este lo
pasa a Password::remind(). Este método acepta una matriz de credenciales (que normalmente solo
incluye una direccion de correo electronico), y también permite una devolucién de llamada en la
que puedes personalizar el correo electronico que se envia.

public function resetAction()
{
$token = "?token=" . Input::get("token");

$errors = new MessageBag();

if ($old = Input::old("errors"))

{
$errors = $old;
}
$data = [
"token" => $token,
"errors" => $errors
1;
if (Input::server("REQUEST_METHOD") == "POST")
{

$validator = Validator::make(Input::all(), [
"email" => "required|email"

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
o1
52
53

Autenticacion 32

"password" => "required|min:6",
"password_confirmation" => "same:password",
"token" => "exists:token,token"
1);
if ($validator->passes())
{
$credentials = |
"email" => Input::get("email")
1;
Password: :reset($credentials,
function($user, $password)
{
$user->password = Hash::make($password);
Suser->save();
Auth: :login($user);
return Redirect: :route("user/profile");
}
)i
}
$data["email"] = Input::get("email");
$data["errors"] = $validator->errors();
return Redirect::to(URL: :route("user/reset") . $token)
S>withInput($data);
}
return View: :make("user/reset", $data);
}

Esto se ha extraido de app/controllers/UserController.php.

El método resetAction() es mas de lo mismo. Lo empezamos creando la cadena de consulta del
token (que usaremos para redirecciones, manteniendo el token en todos los estados de la pagina de
restablecimiento). Obtendremos los mensajes de error viejos, como hicimos para la pagina de acceso,
y validaremos los datos enviados del formulario.

Autenticacion 33

Si todos los datos son validos, los pasaremos a Password:reset(). El segundo argumento es la
légica utilizada para actualizar el registro del usuario en la base de datos. Estamos actualizando
la contrasefia, almacenando el registro y entonces iniciando automaticamente la sesion del usuario.

Si todo esto sale a pedir de boca, redirigiremos a la pagina del perfil. Si no, redirigiremos de vuelta
a la pagina de restablecimiento, pasando a través de los mensajes de error.

Hay una cosa extrafa sobre los mecanismos de autenticacién aqui, los nombres de los campos
contrasefia/token estan incluidos en el c6digo y hay una validacién también incluida en el cédigo
en la funciéon Password::reset() que no utiliza la clase Validation. Mientras tus nombres de campos
sean password, password_confirmation y token, y tu contrasefia mayor de 6 caracteres, no
notaras esta situacion extraia.

Como alternativa, puedes modificar los nombres de campo y la validacién aplicada en el fiche-
ro vendor/laravel/framework/src/Illuminate/Auth/Reminders/PasswordBroker.php o imple-
mentar tu propio ReminderServiceProvider para reemplazar lo que ofrece Laravel 4. Los detalles
de estos dos enfoques estan mas alla del alcance de este tutorial. Puedes encontrar detalles para crear
proveedores de servicio en el excelente libro de Taylor Otwell, en: https://leanpub.com/laravel

Como mencioné antes, se puede establecer la cantidad de tiempo tras el cual el token de
restablecimiento caduque, en el fichero app/config/auth.php.

Puedes encontrar mas informacion acerca de los métodos de autenticacion en: http://laravel.com/docs/security#authen
users

Puedes encontrar mas informacion sobre los métodos de correo electrénico en: http://laravel.com/docs/mail

Trabajando con usuarios autenticados

Bien. Ya tenemos en nuestro haber el restablecimiento de contrasefia y el acceso. La parte final de
este tutorial es para que podamos utilizar los datos de sesion en nuestra aplicacion, y proteger el

O b W N -

W N -

Autenticacion 34
acceso no autenticado para securizar partes de nuestra aplicacionr.

Creando una pagina de perfil

Para mostrar algunos de los datos de seién del usuario a los que tenemos acceso, vamos a
implementar una vista de perfil.

@extends("layout")
@section("content")
<h2>Hello {{ Auth::user()->username }}</h2>
<p>Welcome to your sparse profile page.</p>
@stop

Este fichero deberia guardarse como app/views/user/profile.blade.php.

Esta pagina de perfil increiblemente escasa muestra una sola cosa, se pueden obtener datos del
modelo de usuario accediendo al objeto devuelto por el método Auth::user(). Cualqueir campo que
hayas definido en este modelo (o tabla de base de datos) son accesibles de esta manera.

public function profileAction()

{

return View: :make("user/profile");

Esto se ha extraido de app/controllers/UserController.php.

El método profileAction() es tan simple como la vista. No necesitamos pasar ningun dato a la vista,
o incluso controlar la sesion del usuario utilizando algun codigo especial. jAuth::user() lo hace todo!

Para que esta pagina sea accesible, necesitamos afiadir una ruta para ella. Vamos a hacer esto en
un minuto, pero ahora seria un buen momento para hablar sobre proteccion de paginas sensibles de
nuestra aplicacion...

Creando filtros

Laravel 4 incluye un fichero de filtros, en el que podemos definir filtros para ejecutar en rutas simples
(o incluso grupos de rutas).

© 0 N O O & W N =

NN N N NN R R R L Ly
O b W0 N »~» © O© 00 J O O b W N »~ O

Autenticacion 35

<?php

Route: : filter("auth", function()

{
if (Auth::guest())
{
return Redirect: :route("user/login");
}
1)
Route: :filter("guest", function()
{
if (Auth::check())
{
return Redirect: :route("user/profile");
}
1);
Route: : filter("csrf", function()
{
if (Session::token() != Input::get("_token"))
{
throw new Illuminate\Session\TokenMismatchException;
}
1)

Este fichero deberia guardarse como app/filters.php.

El primer filtro es para rutas (o paginas si lo prefieres) para las que un usuario debe estar autenticado.
El segundo es para todo lo contrario, para las que los usuarios no deben estar autenticados. El ultimo
filtro es el que hemos estado utilizando desde el principio.

Cuando usamos el método Form:open(), Laravel afiade automaticamente un campo oculto en
nuestros formularios. Este campo contiene un token especial de seguridad que es comprobado cada
vez que el formulario es enviado. No necesitas realmente entender porqué esto es mas seguro...

...pero si quieres, lee esto: http://blog.ircmaxell.com/2013/02/preventing-csrf-attacks.html

O 00 I O O » W N =

W oW oW NN NN NNNDNDN N B R sl s
N - O © @ 9 0 O & W N~ OO O W 3 0 0 & W = O

Autenticacion

Para poder aplicar estos filtros, necesitamos modificar nuestro fichero de rutas.

<?php

Route: :group(["before" => "guest"], function()

{
Route: :any("/", [

"as" => "user/login",
"uses" => "UserController@loginAction"

1);

Route: :any("/request", |

as => "user/request",

"uses" => "UserController@requestAction"

1);

Route: :any("/reset", |

" "

as => "user/reset",

"uses" => "UserController@resetAction"

1);
});

Route: :group(["before" => "auth"], function()

{
Route: :any("/profile", [

as" => "user/profile",
"uses" => "UserController@profileAction"

1);

Route: :any("/logout", |

" "

as => "user/logout",

"uses" => "UserController@logoutAction"

1);
});

Este campo deberia guardarse como app/routes.php.

Para proteger las partes de nuestra aplicacion, juntamos grupos con el método Route::group(). El
primer argumento nos permite especificar qué filtros aplicar a las rutas encerradas en él. Queremos

O b W N =

O© 0 I O O & W N =

T S Y
~N O O b W N =~ 0O

Autenticacion 37

agrupar todas nuestras rutas en las que los usuarios no deban estar autenticados, para que esos
usuarios no las vean cuando estan logados. Hacemos lo contrario para la pagina de perfil porque
solo los usuarios autenticados deberian poder ver sus paginas de perfil.

Creando una accidon de salida (logout)

Para probar estas nuevas medidas de seguridad (y redondear el tutorial) necesitamos crear un método
logoutAction() y afiadir enlaces en la cabecera para que los usuarios puedan salir de su sesion.

public function logoutAction()
{
Auth: :logout();
return Redirect: :route("user/login");

Esto se ha extraido de app/controllers/UserController.php.

El método logoutAction() llama al método Auth:logout() para cerrar la sesion del usuario, y
dirigirlo de vuelta a la pantalla de acceso. jAsi de facil!

Este es el aspecto de lo que incluye la nueva cabecera:

@section("header")
<div class="header"»
<div class="container">
<h1>Tutorial</h1>
@if (Auth::check())

logout

|
<a href="{{ URL::route("user/profile") }}"»
profile

@else

login

@endif

Autenticacion
18 </div>
19 </div>
20 @show

Este fichero deberia guardarse como app/views/header.blade.php.

38

	Tabla de contenidos
	Instalando Laravel 4
	Autenticación
	Configurando la Base de datos
	Conexión a la base de datos
	Controlador de base de datos
	Controlador Eloquent
	Creando una migración
	Creando un modelo
	Creando una sembradora (seeder)

	Configurando la autenticación
	Iniciando sesión
	Creación de una vista de diseño
	Creando una vista de acceso
	Creando una acción de acceso
	Autenticando a usuarios
	Redirigiendo con input
	Autenticando credenciales

	Restableciendo contraseñas
	Creando una vista de restablecimiento de contraseña
	Creando una acción de restablecimiento de contraseña

	Trabajando con usuarios autenticados
	Creando una página de perfil
	Creando filtros
	Creando una acción de salida (logout)

