

Laravel 4 Türkçe Dokümantasyon
(v. 4.2) (Ücretsiz)
Laravel 4 Türkiye Forumları Çeviri Ekibi
tarafından yapılan çeviriler

Sinan Eldem

Bu kitap http://leanpub.com/laravel42-tr adresinde satıştadır.

Bu versiyon, 2015-08-29 tarihinde yayınlanmıştır

This is a Leanpub book. Leanpub empowers authors and
publishers with the Lean Publishing process. Lean Publishing is
the act of publishing an in-progress ebook using lightweight tools
and many iterations to get reader feedback, pivot until you have
the right book and build traction once you do.

©2014 - 2015 Sinan Eldem

http://leanpub.com/laravel42-tr
http://leanpub.com
http://leanpub.com/manifesto

İçindekiler

Artisan CLI . 1
Giriş . 1
Kullanım . 1

Laravel Cashier . 3
Giriş . 3
Yapılandırma . 3
Bir Plana Abone Olunması 4
Kredi Kartsız . 6
Aboneliklerin Takas Edilmesi 6
Abonelik Miktarı . 7
Bir Aboneliğin İptal Edilmesi 7
Bir Aboneliğe Geri Dönülmesi 8
Abonelik Durumunun Yoklanması 8
Başarısız Ödemelerin Halledilmesi 10
Diğer Stripe Webhook’larının İşlenmesi 11
Faturalar . 11

Artisan CLI

Giriş

Artisan, Laravel içerisinde gelen CLI’ın (Command-line Interfa-
ce) adıdır. Artisan size uygulamanızı geliştirirken birçok yardımcı
komut sağlar. Artisan, güçlü Symfony Console bileşeni üzerinden
geliştirilmiştir.

Kullanım

Tüm Kullanılabilir Komutların Listelenmesi

Tüm Artisan komutlarının bir listesini görmek için list komutunu
kullanabilirsiniz:

1 php artisan list

Bir Komut için Yardım Ekranının Görüntülenmesi

Tüm komutların özel bir “yardım” ekranı vardır ve komut hakkın-
daki argüman sırası ile ayarlar gibi bilgilerin açıklanmasını sağlar.
Bir yardım ekranını görüntülemek için komut adından önce help

yazın:

1 php artisan help migrate

Yapılandırma Ortamının Belirtilmesi

--env anahtarını kullanarak bir komut çalıştırılırken kullanılacak
olan yapılandırma ortamını belirtebilirsiniz:

Artisan CLI 2

1 php artisan migrate --env=local

Güncel Laravel Sürümünüzün Gösterilmesi

Ayrıca Laravel yüklemenizin güncel sürümünü de --version seçe-
neğini kullanarak görebilirsiniz:

1 php artisan --version

Laravel Cashier

Giriş

Laravel Cashier Stripe’in¹ abonelik faturalama hizmetleri için an-
lamlı, akıcı bir arayüz sağlar. Sizin yazmaktan ürktüğünüz klişe
abonelik faturalama kodunun hemen tümünü halleder. Cashier,
temel abonelik yönetimine ek olarak kuponları, abonelik takasını,
abonelik “miktarlarını”, ödemesiz dönemlerin iptal edilmesini hal-
ledebilir ve hatta fatura PDF’leri üretebilir.

Yapılandırma

Composer

Öncelikle, composer.json dosyanıza Cashier paketini ekleyin:

1 "laravel/cashier": "~2.0"

Service Provider

Daha sonra, app yapılandırma dosyanızda Laravel\Cashier\CashierServiceProvideri
kayda geçirin.

Migration

Cashier kullanabilmemiz için, veritabanımıza birkaç sütun ekle-
memiz gerekiyor. Endişe etmeyin, gerekli sütunları ekleyecek bir

¹https://stripe.com

https://stripe.com
https://stripe.com

Laravel Cashier 4

migrasyon oluşturmak için cashier:table Artisan komutunu kul-
lanabilirsiniz. Örneğin, bu alanı users tablosuna eklemek için php

artisan cashier:table users kullanın. Bu migrasyonu oluştur-
duktan sonra basitçe migrate komutunu çalıştırın.

Model Ayarı

Ondan sonra da model tanımlamanıza BillableTrait ve uygun tarih
değiştiricilerini ekleyin:

1 use Laravel\Cashier\BillableTrait;

2 use Laravel\Cashier\BillableInterface;

3

4 class User extends Eloquent implements BillableInterfac\

5 e {

6

7 use BillableTrait;

8

9 protected $dates = ['trial_ends_at', 'subscription_end\

10 s_at'];

11

12 }

Stripe Key

Son olarak, bootstrap dosyalarınızın birinde Stripe anahtarınızı
ayarlayın:

1 User::setStripeKey('stripe-key');

Bir Plana Abone Olunması

Bir model olgusuna sahip olduktan sonra o kullanıcıyı verilen bir
Stripe planına kolaylıkla abone edebilirsiniz:

Laravel Cashier 5

1 $user = User::find(1);

2

3 $user->subscription('monthly')->create($creditCardToken\

4);

Bir abonelik oluştururken bir kupon uygulamak isterseniz, withCo-
upon metodunu kullanabilirsiniz:

1 $user->subscription('monthly')

2 ->withCoupon('code')

3 ->create($creditCardToken);

Bu subscription metodu ilgili Stripe aboneliğini otomatik olarak
oluşturacaktır, bunun yanında veritabanınızı Stripe müşteri ID’si ve
ilgili diğer faturalama bilgisiyle güncelleyecektir. Eğer planınızda
Stripe’de yapılandırılmış olan bir trial (deneme) varsa, kullanıcı
kaydında deneme bitiş tarihi (trial end date) de otomatik olarak
ayarlanacaktır.

Eğer planınız Stripe’de yapılandırılmış olmayan bir deneme süre-
sine sahipse, deneme bitiş tarihini abonelikten sonra elle ayarlamak
zorundasınız:

1 $user->trial_ends_at = Carbon::now()->addDays(14);

2

3 $user->save();

Ek Kullanıcı Ayrıntılarının Belirtilmesi

Ek müşteri ayrıntılarını geçmek isterseniz, onları createmetoduna
ikinci parametre olarak geçmek suretiyle bunu yapabilirsiniz:

Laravel Cashier 6

1 $user->subscription('monthly')->create($creditCardToken\

2 , [

3 'email' => $email, 'description' => 'Our First Custome\

4 r'

5]);

Stripe tarafından desteklenen ek alanlar hakkında daha fazlasını
öğrenmek için, Stripe’ın müşteri oluşturma dokümantasyonuna²
bakınız.

Kredi Kartsız

Eğer uygulamanız kredi kartı olmaksızın bedava bir deneme teklif
ediyorsa, modelinizde cardUpFront özelliğini false olarak ayarla-
yın:

1 protected $cardUpFront = false;

Hesap oluşturulmasında, modelde deneme bitiş tarihi ayarladığı-
nızdan emin olun:

1 $user->trial_ends_at = Carbon::now()->addDays(14);

2

3 $user->save();

Aboneliklerin Takas Edilmesi

Bir kullanıcıyı yeni bir aboneliğe takas etmek için, swap metodunu
kullanın:

²https://stripe.com/docs/api#create_customer

https://stripe.com/docs/api#create_customer
https://stripe.com/docs/api#create_customer

Laravel Cashier 7

1 $user->subscription('premium')->swap();

Eğer kullanıcı deneme (trial) durumundaysa, deneme normal şekil-
de sürdürülecektir. Ayrıca abonelik için eğer bir “miktar (quantity)”
mevcutsa, miktar da sürdürülecektir.

Abonelik Miktarı

Bazen abonelikler “miktar” ile etkilenir. Örneğin, uygulamanız bir
hesap üzerinde kullanıcı başına ayda $10 ücretlendirme yapabilir.
Abonelik miktarını kolayca artırmak ve azaltmak için increment

ve decrement metodlarını kullanın:

1 $user = User::find(1);

2

3 $user->subscription()->increment();

4

5 // Aboneliğin mevcut miktarına beş ekle...

6 $user->subscription()->increment(5);

7

8 $user->subscription()->decrement();

9

10 // Aboneliğin mevcut miktarından beş çıkar...

11 $user->subscription()->decrement(5);

Bir Aboneliğin İptal Edilmesi

Bir aboneliğin iptal edilmesi parkta bir yürüyüştür:

1 $user->subscription()->cancel();

Laravel Cashier 8

Bir abonelik iptal edildiği zaman, Cashier veritabanınızdaki subsc-
ription_ends_at sütununu otomatik olarak ayarlayacaktır. Bu sü-
tun, subscribed metodunun ne zaman false döndürmeye başla-
ması gerektiğini bilmek için kullanılır. Örneğin, eğer bir müşteri
1 Martta bir aboneliği iptal ederse ama aboneliğin sona ermesi 5
Marta kadar planlanmamışsa, subscribed metodu 5 Marta kadar
true döndürmeye devam edecektir.

Bir Aboneliğe Geri Dönülmesi

Eğer bir kullanıcı aboneliğini iptal etmiş ve bu aboneliğe kaldığı
yerden devam etmesini istiyorsanız, resume metodunu kullanın:

1 $user->subscription('monthly')->resume($creditCardToken\

2);

Eğer kullanıcı bir aboneliği iptal eder ve daha sonra bu abonelik
tam olarak sona ermeden geri dönerse, onlara hemen fatura edilme-
yecektir. Abonelikleri sadece tekrar etkinleştirilecektir ve orijinal
faturalama döngüsüne göre fatura edilecektir.

Abonelik Durumunun Yoklanması

Bir kullanıcının uygulamanıza abone olduğunu doğrulamak için,
subscribed komutunu kullanın:

1 if ($user->subscribed())

2 {

3 //

4 }

Bu subscribed metodu bir rota filtresi için harika bir adaydır:

Laravel Cashier 9

1 Route::filter('subscribed', function()

2 {

3 if (Auth::user() && ! Auth::user()->subscribed())

4 {

5 return Redirect::to('billing');

6 }

7 });

Ayrıca, onTrial metodunu kullanmak suretiyle kullanıcının hala
deneme süresinde olup olmadığını (uygunsa) da tayin edebilirsiniz:

1 if ($user->onTrial())

2 {

3 //

4 }

Kullanıcının daha önce aktif bir abone olduğunu ama aboneliğini
iptal etmiş olduğunu tayin etmek için cancelled metodunu kulla-
nabilirsiniz:

1 if ($user->cancelled())

2 {

3 //

4 }

Ayrıca, bir kullanıcının aboneliğini iptal etmiş ama hala aboneliği
tam sona erinceye kadar “yetkisiz kullanım süresinde (grace peri-
od)” olup olmadıklarını da belirleyebilirsiniz. Örneğin, bir kullanıcı
10 Martta sona ereceği planlanmış bir aboneliği 5 Martta iptal
ederse, bu kullanıcı 10Marta kadar “yetkisiz kullanım süresindedir”.
Subscribed metodunun bu zaman süresinde hala true döndürdü-
ğüne dikkat ediniz.

Laravel Cashier 10

1 if ($user->onGracePeriod())

2 {

3 //

4 }

Bir kullanıcının uygulamanızdaki bir plana hiç abone olup olmadı-
ğını tayin etmek için everSubscribed metodu kullanılabilir:

1 if ($user->everSubscribed())

2 {

3 //

4 }

Bir kullanıcının verilen bir plana abone olup olmadığını ID’sine
dayalı olarak tayin etmek için onPlan metodu kullanılabilir:

1 if ($user->onPlan('monthly'))

2 {

3 //

4 }

Başarısız Ödemelerin Halledilmesi

Şayet bir müşterinin kredi kartı süresi dolarsa ne olur? Endişeye
gerek yok - Cashier sizin için müşterinin üyeliğini kolaylıkla iptal
edebileceğiniz bir Webhook controller içermektedir. Sadece bir
rotada bu controlleri belirtin:

1 Route::post('stripe/webhook', 'Laravel\Cashier\WebhookC\

2 ontroller@handleWebhook');

Hepsi bu kadar! Gerçekleşmemiş ödemeler bu controller tarafından
yakalanacak ve halledilecektir. Bu controller üç başarısız ödeme

Laravel Cashier 11

girişiminden sonra ilgili müşterinin aboneliğini iptal edecektir. Bu
örnekteki stripe/webhook URI sadece örnek içindir. Kendi Stripe
ayarlarınızda bu URI’ı yapılandırmanız gerekir.

Diğer Stripe Webhook’larının İşlenmesi

İşlemek istediğiniz başka Stripe webhook olaylarına sahipseniz,
Webhook controller’i basitçe genişletin. Metod isminiz Cashier’in
beklenen geleneğine uygun olmalıdır, burası için özel olarak, metod
ismi işlemek istediğiniz Stripe webhook’un ismi ve önüne handle

getirilmiş hali olmalıdır. Örneğin, eğer invoice.payment_succe-

eded webhook’unu işlemek istiyorsanız controllerinize bir handle-
InvoicePaymentSucceeded metodu eklemelisiniz.

1 class WebhookController extends Laravel\Cashier\Webhook\

2 Controller {

3

4 public function handleInvoicePaymentSucceeded($payload)

5 {

6 // Olayı işle...

7 }

8

9 }

Not: Webhook controller veritabanınızdaki abonelik
bilgilerini güncellemeye ek olarak Stripe API aracılı-
ğıyla aboneliği de iptal edecektir.

Faturalar

invoicesmetodunu kullanarak bir kullanıcının faturalarından olu-
şan bir diziyi kolaylıkla elde edebilirsiniz:

Laravel Cashier 12

1 $invoices = $user->invoices();

Müşterinin faturalarını listelerken, ilgili fatura bilgisini göstermek
için şu helper metodlarını kullanabilirsiniz:

1 {{ $invoice->id }}

2

3 {{ $invoice->dateString() }}

4

5 {{ $invoice->dollars() }}

Bir faturanın indirilebilir bir PDF’sini üretmek için downloadInvo-

ice metodunu kullanın. Evet, bu gerçekten bu kadar kolaydır:

1 return $user->downloadInvoice($invoice->id, [

2 'vendor' => 'Şirketiniz',

3 'product' => 'Ürününüz',

4]);

	İçindekiler
	Artisan CLI
	Giriş
	Kullanım

	Laravel Cashier
	Giriş
	Yapılandırma
	Bir Plana Abone Olunması
	Kredi Kartsız
	Aboneliklerin Takas Edilmesi
	Abonelik Miktarı
	Bir Aboneliğin İptal Edilmesi
	Bir Aboneliğe Geri Dönülmesi
	Abonelik Durumunun Yoklanması
	Başarısız Ödemelerin Halledilmesi
	Diğer Stripe Webhook'larının İşlenmesi
	Faturalar

