

[image: Laravel Testing Decoded 日本語版]

 Laravel Testing Decoded 日本語版

 待望のLaravel 4ユニットテスト解説本

 JeffreyWay and Hirohisa Kawase

 This book is for sale at http://leanpub.com/laravel-testing-decoded-japanese

 This version was published on 2014-02-07

 [image: publisher's logo]

 This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and many iterations to get reader feedback, pivot until you have the right book and build traction once you do.

© 2013 - 2014 JeffreyWay and Hirohisa Kawase

目次

 	
 日本語版前書き

 	
 日本語翻訳版について

 	
 ようこそ

 	
 始まったばかり

 	
 この本はどんな人に役立つの？

 	
 なぜLaravel限定なの？

 	
 演習

 	
 誤記

 	
 この本を学び尽くす

 	
 連絡する

 	
 可能性に飛び込む

 	
 第１章　全てをテストする

 	
 あなたは既にテストしている

 	
 TDDから得られる６つのこと

 	
 何をテストすべきか？

 	
 不安定なコードの６つのサイン

 	
 テスト関係の専門用語

 	
 リラックス

日本語版前書き

この書籍はJeffery Way氏による、Laravel４で各種テストを実践するための実践書です。執筆当時、Way氏は、アメリカのオンライン有料チュートリアルサイト、nettuts+のリードチューター兼開発者でした。その後、nettuts+を含め、チュートリアルサイトをまとめる上位サイト、tuts+の開発を担当しました。現在はフリーになり、Laravel専用のチュートリアルサイト、http://laracast.comを運営しています。。プレゼンテーション力を持っている人のため、特にビデオチュートリアルやカンファレンスでの発表者として、一目置かれる人物です。

タイトル中のDecodedとはもちろん、「デコード」でお馴染みの単語です。一般的には暗号を解読するという意味になりますが、コンピューターの領域では、一旦別のコード体系に変換したものを、もとのコードに戻すと言う意味合いでも、利用されます。

Testing Decodedの場合、一見しただけでは理解しづらい「テスト」という主題を、馴染みがない方にも分かりやすく「読み解く」という意味で、デコードという言葉が使われているようです。

特に、初めの数章では、Laravelに特化した部分は少なく、一般的なテストに対する啓蒙になっています。

内容は、実践しながら知識を身に付けられるように、構成されています。重要な箇所や、初心者が掴みづらい内容は、ステップごとの解説となっています。スキルアップの学習は初段の知識をいかに効率的に身につけ、弾みをつけるかで、その後の伸びが違います。本書は、バランス良く、テストに関するスキルを身につける、最初の書籍としても良書で、かつ面白い内容となっています。

出版元のLeanpub社の方針は、情報は更新されていくものであり、完成された形の書籍を出版するために月日を費やしてしまうと、出版された頃にはその内容は古くなってしまうという、従来の書籍の欠点を解消するために、常時アップデートでき、購入者は更新版を無料でアップデートできるシステムを提供するというものです。

Jeffrey Way氏は、この本をLaravel正式リリースの約一ヶ月前くらいから、書き始めています。ベータ期間ですので、その間にあった変更に対応している部分が、垣間見れます。対応できたのも、Leanpub社の柔軟なシステムのおかげでしょう。

日本語版もこのLeanpubのシステムを活用しています。通常の出版物でしたら、最終稿が完成し、印刷されるまで読者の目に触れることはありません。ですがその間にも、時間は過ぎ、内容は陳腐化し、その書籍で扱う主題の最新情報を追従するのは難しくなります。

そこで、日本語版も荒訳の段階から出版しました。できるだけ、情報が新鮮なうちに、お読みいただくためです。

また、本書全般に渡り、モックのフレームワークであるMockeryを活用しています。この情報は、出版前にツイートされていましたので、原書が出版される前に、予め荒訳段階までドキュメントを訳しておりました。Way氏の了承も取れましたので、参考資料として最後に追加させて頂きます。

更に引き続き、この本の中で取り上げられている、受け入れテストフレームワークのCodeceptionのドキュメントも翻訳する予定です。（まだ、先になります。）

微力ながら、皆様のテスト技術と、Laravelに対する知見を深めるお役に立てれば、幸いです。

日本語版翻訳　川瀬　裕久

日本語翻訳版について

Leanpub社はカナダのスタートアップで、出版システムは、原稿をMarkdown形式で用意し、それをLaTeXを通じ、PDFに変換しています。システムはLeanpub内で開発されており、オープンソースではありません。

Laravel３の解説書であるCode Happyを見つけた頃、その元となったサイトの内容の翻訳許可をもらったことがきっかけとなり、著者のDayle Rees氏から翻訳の話が持ち上がりました。そこでLeanpubに、日本語にも対応してもらえるように依頼しました。

日本語でも動作することが確認できた時点で翻訳を開始しました。（翻訳している間に、日本語書籍第一号は取られましたが、これはしょうがないですね。秘密にせず、ブログの記事として公開していましたから。もっとも、同じような出版システムは他にもありますし、ただ日本語に対応してもらったという点が珍しかっただけで、自慢するような話でもありません。）

出版の過程で見つけたバグは報告し、対処してもらっていますが、回避しようがない問題もあります。

日本の状況に合わせ、PDFのサイズはA4に指定してあります。文字サイズは２つしか選べず、複雑な漢字を読みやすくするため、大きいサイズを指定しています。

なお、改行処理は適宜、自動に行われるのですが、特にコードが自動改行される場合、行末に次行へ改行することを表すハイフン、もしくはバックスラッシュが表示されます。

Leanpubのシステムも、改良され続けていますが、特に日本語に関しては完成しているものではなく、いかんせんセミオート出版システムでもあるため、細かい対応、指定、修飾などができません。本当の出版物ほどのクオリティに上げるのは、難しいことを、お汲み取りください。

内容に関して

書籍中のコードは、ほぼ原書のままにしております。必要に応じ、コメントを翻訳し、コードを英文として読んだ場合の意味合いをコメントとして追加しました。

原文の原稿ファイルを調べますと、構成に苦労した後が見えます。その後遺症なのでしょうが、本来前で説明しておく部分が、後ろのほうで説明されていたり、内容が重複していたりする部分も見受けられます。

推敲時に、多少の微調整は行いますが、大きな構成の変更はいたしません。たぶん、皆さんも望まれないでしょう。できるだけ、原文のままにしておきます。

上記の理由により、一度全体に目を通し、概略を掴んだ後に、再度読み返しながら実践されることをお勧めします。

誤記が残っているのを見つけられた方は、ご一報いただければ幸いです。（hirokws@gmail.com）

PHPのバージョン

明記されていませんが、PHPのバージョンは5.4以上を想定しているようです。一部では、トレイトが使用されています。また、配列の宣言を[…]で行なっています。

5.3でも、配列の宣言をarray()で書き直すことで、大抵の場合は対処できるようです。5.3の環境しか用意できない場合は、[…]をarray()に読み替えてください。

もちろん、PHPのバージョンを切り替え可能な環境で開発されている方は、問題ないかと思います。

最近は、仮想化もお手軽に使用できるようになっています。開発環境のバージョンが5.3でも、テストだけを仮想化された環境の5.4で実行するなどの、工夫も可能でです。

テストの日本語名使用

英語が苦手だ、もしくは開発メンバーの中に英語が苦手なメンバーがいる場合、テスト名を日本語で書くことができます。

1 public function test配列のチェック()
2 {
3 $color = array('Red', 'Blue', 'Green', 'Orange');
4 $this->assertContains('Green', $names);
5 }

メソッド名先頭の”test”が好みでない場合は、メソッドのドキュメントコメントにアノテーションで宣言できます。ドキュメントコメントは”/**“で書き始めてください。どの開発言語でも、お約束になっています。

1 /**
2 * @test
3 */
4 public function 整数の計算()
5 {
6 $calc = 2 + 3;
7 $this->assertSame(4, $calc , '計算失敗');
8 }

また上記サンプルの通り、テスト失敗時の表示メッセージも日本語が使用できます。

Composerの補足

Laravelも進化し続けていますが、Composerも負けず劣らず、進化しています。

この書籍のリリース時、この章を書いている現時点より、約２ヶ月半前の頃は、Composerのデフォルトは”--no-dev“で表される、「非開発」モードがデフォルトでした。

つまり、”--dev“を付けなければ、非開発モードと判断され、”composer install”もしくは、”composer update”の実行時に、”require-dev”セクションで指定されたパッケージは、インストールされませんでした。

最近、その振る舞いが変更されたらしく、デフォルトが”--dev“で表される、開発モードになりました。つまり、本書で付けられているオプションの”--dev“は、現在開発時に指定する必要はなく、省略しても、”require-dev”で指定したパッケージがインストールされます。

逆に、本番環境の場合に、”--no-dev“を付け、Composerコマンドを実行する必要があります。

本書では、現在この変更が、まだ反映されていません。

４章ラッパークラスの補足

Way氏により作成、公開されている、Laravelのテストラッパークラスの補足です。本来、READMEをお読み頂けば良いのですが、英語ですので、簡単に説明します。

なお、コードは両クラスとも、ほんの１０行程度です。コードを読まれれば、使い方は推測できます。

テストは英文として読みやすくなりますが、IDEやエディターなどの補完が効かなくなる欠点もあります。まず試し、使い勝手を確かめて見ることをおすすめします。

Assertクラス

PHPUnitが用意しているグローバル関数と同様に、テスト中繰り返して書く、”$this->“を省略しつつ、Laravel的なstaticメソッドで、アサーションを記述するためのクラスです。

１．メソッド名がエイリアスとして登録されているものであれば、それに置き換えます。デフォルトとして、最初からeqとhasが登録されています。eqはエイリアス登録のサンプルとしてコードが記載されているものと同様に、'assertEqualsと等価です。

1 // 同じ、比較(==)としてアサートします
2 $this->assertEquals(4, 2+2);
3 Assert::eq(4, 2+2);
4
5 // 配列中の値存在チェックのアサーションとして、等価です。
6 $this->assertContains('cat', $animals);
7 Assert::has('cat', $animals);

２．エイリアスとして登録されていなければ、メソッド名の最初の一文字を大文字にし、assertの後ろにつけたアサーションを呼び出されます。

 1 // 同じ、比較(==)としてアサートします
 2 $this->assertEquals(4, 2+2);
 3 Assert::equals(4, 2+2);
 4 Assert::eq(4, 2+2);
 5
 6 // 配列中の値存在チェックのアサーションとして、等価です。
 7 $this->assertContains('cat', $animals);
 8 Assert::contains('cat', $animals);
 9 Assert::has('cat', $animals);
10
11 // 変数のタイプをチェックするアサーションとして、等価です。
12 $this->assertInternalType('array', $val);
13 Assert::internalType('array', $val);

Shouldクラス

Assertクラスより、更に英文に近い形態で、アサーションを書くためのクラスです。

１．Assertクラスと同様に、エイリアスとして登録されていれば、登録したアサーションメソッドと置き換えます。デフォルトとしてassertContainsがhaveエイリアスとして、登録されています。

1 // 配列中の値チェックのアサーションとして、等価です。
2 $this->assertContains('cat', $animals);
3 Assert::has('cat', $animals);
4 Should::have('cat', $animals);

２．メソッド名がbeかhaveで始まっている場合は取り除き、残りの部分の先頭を大文字にし、”assert”の後ろに付けたアサーションを呼び出します。

1 // nullであることをアサートする、等価のコードです。
2 $this->assertNull($val);
3 Should::beNull($val); // 英文として「Nullでなくてはならない」
4
5 // 要素数をアサートする、等価のコードです。
6 $this->assertCount(5, $members);
7 Should::haveCount(5, $members); // 「要素を５つ持たなくてはならない」

３．上記に当てはまらない場合、Assertクラスと同様に、先頭の一文字を大文字にし、”assert”の後ろに付けたアサーションを呼び出します。

beかhaveをつける、もしくは両方共付けないことで、”Should”（〜すべき）で始まる自然な英文として、アサーションを書きたい時に使用する、クラスだと思われます。

Mockery

前述のとおり、事前に本書の内容は、モックフレームワークのMockeryに及ぶことが、分かっていましたので、荒訳しました。

完成稿ではありませんが、Mockeryは便利ですし、せっかく本書をお読みいただいたのですから、十分にMockeryも活用していただきたいと思い、追補として内容に含めました。

本書前に訳したものであり、用語の翻訳の違いがあることは、ご容赦ください。最終的に、表現を合わせ、正式版としてWebでも公開いたします。

ようこそ

何度も経験しました。アプリケーションが大きくなるにつれ、段々いい加減になり、テストしないソースコードも増えていくんです。そのうち、アプリケーションを手動でテストするのは現実的でなくなってきて、「無理だ！」という話しになります。そんな時こそ、自動テストが本当に必要なんだと、認識し始めるのです。もちろん、皆さんも過去にTDDに関する書籍を読んでいらっしゃるでしょう。しかし人生における物事と同じく、突然やってくる素晴らしい幸福な瞬間、「ああ、そうだったのか」と理解できる時間を味わうには、実際に行ってみる経験が必要なのです。

テストにおける問題は唯一、技巧的に陥ってしまう可能性があることだけです。実際、今皆さんが取り掛かっているソースコードは、テストできない可能性が大きいでしょう！ 皆さんがまだ実感していないのは、そうです、テストは自分のコードを期待通りに動かすのに役立ち、パターンに従えばより良い開発者になれることです。過去のプロジェクトではまった、ぐちゃぐちゃで、不安定なスパゲティーコードは、もう現れません。信じてください。すぐにあなたも、新しいコードを目の前にすると、微笑みを浮かべながら、「これはどうやったらテストできるかな」とつぶやき、過去の自分を振り返り、カウボーイのようなやり方をしていたことを思い出し笑い出すでしょう。

近代的なソフトウェア開発へようこそ。

 	
 [image: warning]
 	
 テストの原則（とTDD）は、言語に依存するものではありません。実践しようと思えば、様々なツールとテクニックに手が届きます。この本ではアプリケーションをテストするために、Laravelの手法を深く分析しつつ、可能な限りTDDについても紹介していきます。

始まったばかり

プログラム言語の話しとなると、皆さん各自の意見をお持ちです。そして会話の話題がPHPに変わると、こき下ろされる心の準備をしなくてはなりません。実際、この５年間でPHPは大幅に成熟したにも関わらず、まるで父親が自分の成長した娘を見つめるように、手は貸さないが、赤ん坊のように見下す人達がいます。

PHPに否定的な人はバージョン5.5やOOP、Laravelのようなモダンなフレームワーク、Composer、テストファースト開発が強調されつつある状況を見ようとはしません。残念ですが、彼らが見ているのはいい加減なPHP4のコードと、ひどくて不十分な2008年のWordPressテーマなのです。

PHPはRubyのように美しい言語でしょうか？ いいえ。たまに、APIに矛盾を含んでいるようですね？ 確かに、その通りです。ソフトウェアの革新とデザインという点で、PHPコミュニティーはソフトウェア開発という世界で牽引役を果たしているのでしょうか？ 明らかに違います。だとしたら、なぜ？ 競争相手のほうが明らかにエレガントな言語であるのに、なぜPHPが市場の80％のシェアを占めているんでしょうか？ うーん、どうやら成功には他の要因がありそうですね。たぶん、ファイルを作成し、echo hello worldと書き、すぐに出力をブラウザで確認できるのは、私達が思っている以上に、パワフルでユーザーフレンドリーだからでしょう。たぶん、柔軟性は欠点と言うよりは、長所なのです。

 簡単に使えるところを他の人達は嘲笑っていたのでは？

そうでなければ、多分、単純な真実として、PHPは新しい流行の話題ではないからでしょう。そんなにセクシーでもありませんしね。開発中のベータ版でもありません。けど、彼らは何を知っているんでしょう？ 私達はやり遂げました。好きなだけ、PHP4について語ってもらいましょう。彼らが、そんなことを話している一方で、私達はおすすめの最新エコシステムに取り囲まれ、新しいバージョンのPHPを使い、システムを構築しているのです。

PHPを嫌う時代は終わったのです。PHPルネッサンスが始まりました。近代的なオブジェクト指向の技術を使い、Composerでパッケージを共有し、バージョン管理と継続的インテグレーションを取り入れ、モダンなフレームワークを伝道し、テストが良いものだと信じ（もうすぐあなたもそうなります）、新しい人達を締め出す代わりに向かい入れ、こうしたことを全部、私達は微笑みながら行なっているのです。

素晴らしいことに、一人のLaravelユーザとして、あなたはこの新しい近代的な流れの最前線にいるのです。私が最初にLaravelのIRCチャンネルに参加した時、数分のうちに誰かが「ファミリーにようこそ」と声をかけてくれました。私達のコミュニティーは、美しいと表現するしかありません。私達は皆一緒に、このコミュニティーに参加しています。こここそ、私が愛してやまない、PHPコミュニティーです。

この本を購入してもらえているのなら、あなたはコミュニティーのテスト部門から、多少の手助けを受けているのです。Laravelスピリットにおいて、ファミリーへようこそ。一緒に学んで行きましょう。

この本はどんな人に役立つの？

技術書を書くときに難しいのは、学習条件のどこで一線を引き、第１章の前に提示するかです。今までに、以下の技術について、基本的な理解をお持ちであれば、続けてお読みください！

	PHP 5.3

 	Laravel 3（できればLaravel 4）

 	Composer

なぜLaravel限定なの？

確かに、この本に書かれている技術の概略は、どの言語でも、どのフレームワークでも応用できます。ですが私の経験上、新しい世界に第一歩を踏み出す最高の方法は、できるだけ履き心地の良い靴を履くことです。Javaの本から、テスト駆動開発を学ぶことはできるでしょうか？ もちろんです！ では、既によく知っている言語とフレームワークのレンズを通して学べるなら、もっと簡単ではないですか？ 明らかですよね。

第二に、一般的なテストのための書籍にしてしまえば、私が毎日コーディングで使用しているたくさんのPHP限定機能やパッケージのデモンストレーションが、できなくなってしまうからです。これにはPHPUnitのヘルパーパッケージ全部と、Codeceptionのような受け入れテストフレームワークを含んでいます。

最後の理由は、皆さんがこの本を最後まで読み進めてくれ（そう願っています）、テストに関する知識が向上し、様々なLaravel限定のヒントや技法を身に付けてもらえるからです。

演習

この本全体を通して、突然演習が始まることがあります。その章の内容に深みをもたらし、やり通せるように励ましてくれるものと考えてください。理論は理論に過ぎません。究極的には実際のコーディングが、こうしたパターンとテクニックを記憶の中に叩きこんでくれます。

ですから、演習に出会ったら、コンピューターを引っ張りだし、私と一緒にそれぞれのステップを実行してください。

誤記

私はこの本から、内容の間違いや誤記を無くそうと、懸命に努力していることをどうかご理解ください。残念ながら、いくつかは私の人間的なバーチャル保証装置を通り抜けてしまいます。内容の間違いに気づいたらGitHubにissueとして報告してください。できるだけ早く修正し、更新します。1ご褒美として、それぞれのバグ報告ごとに、５分間のハグをお約束いたします。

この本を学び尽くす

最初から最後まで順番に読んでいくこともできますし、もちろんパラパラめくり一番面白そうな章から読んでも構いません。それぞれの章は、独立しています。例えば、ユニットテストの基本を既に理解しているのでしたら、明らかに「ユニットテスト110番」の章は読む必要がないでしょう！ 飛ばして、もっと興味深い箇所へ進んでください。

連絡する

一緒に多くの時間を過ごすのですから、この本は自分のやり方でご利用ください。あなたが他の人と顔を突き合わせるのがお好きなら、多分、質問も同じ方法で行いたいことでしょう。どうぞ声を掛けて下さい。

	IRC (#laravel channel): JeffreyWay

 	Twitter: @jeffrey_way

可能性に飛び込む

夜は官能的です…。いや、ちょっと待った。それでは悪い本になってしまいます。不思議なことに心地よい、天井のファンの羽が繰り返す音以外、夜は静かです。妻と動物達が、私の睡眠の好みをあきらめてから、しばらく経っています。犬はいつもそうしているように、一番最後まで目を覚ましません。でも文句を言えません。朝の３時に目を覚まさないからといって、誰に不満をもらせるのでしょう？ 言えません。準備する時です。そう感じるのです。心の片隅までラップトップのスクリーンに注意を傾け続けます。始まります…クリック！

開発者なら、この気持ちをよく理解してくれるでしょう。めったにありませんが、その時、突然、今まで理解不能だったことが、今ではとにかく理解できるのです。これを「ああ、そうだったのか」の瞬間と呼びましょう。最初に”<div>“の目的と役割を理解した時もそのような瞬間でした。もちろん、現在はあなたも明確に理解していることでしょう。しかし、最初の頃を思い出して下さい。”<div>“でHTMLを囲むって一体全体何なんだ？ ブラウザに出力しても見かけは全く同じです。ある日、それらをバスケットのように考えるよう、アドバイスされました。HTMLをバスケットの中に配置します。そうすれば表示を移動する必要がある時に、”<div>“を移動するだけで良いのです。指をパチンと鳴らすような瞬間です。理解したのです。

このユニークな経験の瞬間を何ダースも私は列挙できます。それには遅かったオブジェクト指向プログラミングの評価、インターフェイスでコーディングすること、テスト駆動開発も含んでいます。

そうです。テストに対する愛情は、すぐに持てた訳でありません。残念ですが。他の開発者と同じです。この主題の記事や本を読み、自分でも考え、「うん、これは面白そうだ」と思いました。それからも、いつものやり方を続けてました。知ってか知らずか、種は蒔かれたのです。時間が立つにつれ、心の裏側で、注意を引く声が段々と強く大きくなってきました。

 「テストしなきゃダメだ、Jeffrey。」

 「これにテストを書いたらどう？ 自分で何度も繰り返したくはないだろう。」

 「プル・リクエストにテストを付けなけりゃ、笑われるぞ。」

ほとんどの人生の物事と同様に、本当の変化は砂に足を取られる経験を必要とします。そして叫びました。「もういやだ！！ 古いやり方で行うのは。」これ以降、テストを続けています。何千もの開発者も、同じような経験をしているでしょう。今度は、あなたの番です。

Leeroy Jenkinsが言っているように。そうですね。これを実践しましょう！ 皆さんお待ちかねの、テストの本ですよ。

第１章　全てをテストする

テスト関係書を出版する時に、「なぜテストするのか」の章を書くことは、義務になっています。これを考えるに、皆さんがこの本を購入したという事実が、既にこのコンセプトを受け入れていると、暗示しています。まるで宗教でもやっているように、他の提唱者が話している「学ぶだけの価値がある理由」を聞いたことがあるでしょう。

アプリケーションを確実にテストする方法を学ぶには、残念ながら、かなり穏やかな学習曲線に、従わなくてはなりません。驚かれるかも知れませんが、私の場合は明らかにゆっくりでした。基本的な原則は、笑えるほどシンプルです。テストを書き、コードが期待通りに動作することを証明することです。

 特定の機能のテストを行うため、しょっちゅうGoogle Ghromeを使用している自分に気がついていますか？それを止め、代わりにテストを書きましょう。

どんなに混乱する羽目になるでしょうか？たぶん、何をテストするかをリサーチし始めれば、すぐに技巧に走ることになります。

 コントローラーはテストしますか？モデルはどうでしょう？ビューには本当にテストが必要ですか？フレームワークのコードは？データベースは操作するの？Webサーバーから情報を取得するの？それとStackOverflowを読んでいると目にする、投稿者達が書いている、１ダースもの違った種類のテストはどうなんでしょうか？テストフレームワークは？PHPUnit？Rspec？Capybara？Codeception？Mink？リストはまだまだ続きます。何から始めればよいでしょうか？

私は賭けに頼る人間ではありません。（えー、多少はたしなみます。 しかしほとんどは妻とスクラブルゲームを楽しみ、 私が勝利すると彼女に人前で恥ずかしい思いをさせます。） ですが（今でなくても）あなたのキャリアという視点から、これらの質問を自分自身に尋ねているのではないかと、多少疑っています。テストすることは簡単です。何をどうやってテストするかを理解するかは別の話です。多分、この本はお役に立てるでしょう。

あなたは既にテストしている

あなたは既にテストをマスターしているのは真実です。もし”console.log“を書き出したり、機能の一部をテストするためにWebアプリへフォームを送信したりしているのであれば、あなたはテストを行なっています。赤ん坊であろうと、テストのエキスパートです。「ノブを回せば、ドアが開く。成功だ！」

この様なテストの問題は、手動で行われているという一点です。どうしてコンピューターにやらせないのでしょうか？（より早いですしね。）この本のゴールは、全機能を手動でテストすることから、自動で行うプロセスへ切り換えることです。これにより継続的なテストサイクルが利用できるようになります。開発しているアプリケーションに応じて、繰り返してテストスーツが起動されるのです。もたらされる大きな安心感には、皆さんびっくりするでしょう。

 「テスト起動開発で開発者が最初に発見する驚きは、ストレスが少なく、正気を保った、新しいより良い世界への入り口を得たような感覚です。」 - DHH

TDDから得られる６つのこと

テストには騙されます。最初は、皆さん目的はただひとつ、コードを期待通りに確実に動かすことだと考えているでしょう。しかし、そうではありません。実のところテスト駆動開発サイクルには、次のような複数の利点が備わっています。

１．セキュリティ

意図せず間違えたり、既に存在している機能の一部を壊したりしても、テストロボットがすぐに教えてくれます。編集後、保存ボタンをクリックしたら、すぐにあなたがどじったのかどうか、フィードバックを得られることを想像して下さい。夜にぐっすりと、深く眠りたくないですか？コードを壊してしまいそうで、リファクタリングするのが怖いほど、ひどいコーディングをされたクラスを思い出して下さい。もしテストがそのコードをバックアップしていたら、恐れる必要はないでしょう。

２．貢献

あなたがオープンソースのソフトウェアを開発しているなら、きっとGitHubを通じ、ソーシャルコーディングの利便性とパワーを活用しているでしょう。そのうちに（特典の一つとして）、コミュニティーの他のメンバーがバグに出会ったり、新しい機能を実装したくなったりし、あなたのプロジェクトに貢献し始めます。しかし、プロジェクトにテストスーツが含まれていないと、開発者がプル・リクエストを送信してきた時に、その変更が既存のコードを壊していないことを判断できるのでしょうか？答えは？できません。手動で、コードの全パスをテストしない限り、できません。全てのプル・リクエストに対して、こんなことをする時間が、誰にあるのでしょう？

よくテストされたプロジェクトは、きちんと注油されている機械だと考えてください。もし、私があなたのプロジェクトに貢献したいと考えたら、以下の数ステップに従う必要があります。

	リポジトリをクローンする

 	そのバグを表現するテストを書く（testThrowsExceptionIfUserNameDoesNotExist：「ユーザーが存在しない場合例外を投げるテスト」という意味）

 	修正するための必要な修正を行う

 	テストを実行し全部がグリーン（success：成功）になることを確認する

 	変更をコミットし、プルリクエストを送信する

またTravisのような、継続的インテグレーションサービスも存在しています。プルリクエストが送信されると、自動的にプロジェクトのテストを実行してくれます。こうしたテストで失敗したら、さらに手直しされない限り、マージしてはいけないとすぐに気がつけます。

 [image: travis-ci.org]travis-ci.org

３．ビッグボーイ・パンツ

PHPコミュニティーの話題になり、しばらく話を脱線しても良さそうなら、WordPressは諸刃の剣であるという私の持論を話すことでしょう。良い点は、ブログを大衆化させたことです。これは否定できませんし、尊重されるべきことです。また、簡単に使用できるテーマフレームワークも、開発者へ提供してくれました。index.phpファイルを作成し、最近のポストを取得するループを挿入、それからスタイルです。これより簡単なものが、あるでしょうか？

ええ、確かに真実です。しかし、新しいプロジェクトでWordPress以上のツールにためらい、手を伸ばさないPHP開発者のコミュニティーを軽率にも育ててしまいました。その結果、テスト駆動開発やMVC、バージョンコントロールといった、近代的な実践とパターンの大部分は、彼らにとって他人ごとになっています。不幸なことに、これにより、現実に２つの副作用が起きています。

	PHP 4とWordPressコードの成果により、PHPコミュニティーに対して、多くの辛辣な言葉が投げかけられました。

 	WordPressからLaravelのようなフルスタックフレームワークに転向することは、とても難しくなります。多くの新しいツールやパターンがあるため、学習曲線は極めてゆっくりとしか、上昇しません。

この副作用は、WordPressに責任があるのでしょうか？「はい」でもあり、「いいえ」でもあります。一つ確かなことは、ソフトウェア職人の技術レベルを押し上げていないことです。実際、使用可能なWordPressプラグインの９５％（でっち上げた数字です）はテストを無視しています。

結局、やはり私達全員、ビックボーイ・パンツをはくように教育されているのです。これはカウボーイのように「考えずにコーディング」する時代遅れのスタイルを示す言葉です。計画するな、考えるな、テストするな。「銃が燃えているぜ。」それぞれの変更がアプリケーションを壊していないことを確認するため、ブラウザーを狂ったようにリロードするのです。2

 私達はもっとましですよ。私達は開発者です。カウボーイ扱いしないで下さい。

興味深い変化が現れます。あなたはコーディングする前に、考えるようになるのです。これで実際にコードのクオリティは向上します。誰が想像したでしょう？この後、私達が学ぶのは、単純にメソッドが期待通りに動作するかをテストする以上の内容です。テストしよう思えば、書き始める前に、クラスやAPIと関わります。これにより、制約を全部取り去り、読みやすさに焦点を当てるよう、私達自身を強制するようになります。Webサービスからデータを取り込む方法を一番読みやすくするにはどうしたらいいかな？そのように書きましょう。失敗を見つけましょう。次に、動作するようにしましょう。これは美しい方法なんです！

４．テスタビリティーは構造を向上させる

新しいコードを目の前にした時に、「どうやってテストしようか？」と質問する習慣を身に付けてもらうことをこの本全体で伝えようとしています。このシンプルな質問をすることで、安心感がもたらされることになり、繰り返される挫折や乱雑なコーディングからあなたを守ってくれます。もうこれからは、怠けること無く、一つのメソッドでたくさんのアクションを詰め込まなくなります。そうすると、テストができなくなるからです。テストはコーディング前に、構造を設計するよう、あなたを促してくれます。

５．ドキュメンテーション

テストを書くことの大きな、とても大きなボーナスは、システムの無料ドキュメンテーションがもたらされることです。特定のクラスにより、どんな機能が提供されているか、知りたくありませんか？もし、きちんとテストに名前が付けられていれば（つまり、テスト名はテスト対象や、テスト中のシステムの振る舞いを記述したものにします）、余計な時間を費やさなくとも、テストを確認して、完全に理解できるのです！

６．テストは面白い

きちんと直面しましょう。私達はオタクです。そしてオタクというものは良いゲームを楽しむものではありませんか？テスト駆動開発の愉快な副作用は、仕事をゲームに変えてくれることです。どうやったら、このコードをレッドからグリーンにできるかな？グリーンになるまで、各ステップに従って下さい。最初は奇妙に聞こえることでしょう。けれど私を信じて下さい。すぐに満足している自分自身に気がつくようになります。

何をテストすべきか？

基本的なルール、この本の中で何度も繰りかえすことになりますが、壊れる可能性があればどんなものもテストしましょう。ある一つのルートが壊れ、４０４ページが表示される可能性がありますか？ありますよね？ですから、できるだけ早く、どこが壊れても確実に補足できるように、テストを書くのです。テーブルからデーターを取得し、レポートとしてファイルに書き出すカスタムクラスはどうでしょう？テストすべきでしょうか？もちろんです。ウェブサイトのサイドバーに、最新のツイートを取得し表示する、ユーティリティーはどうでしょうか？もしも、代替え案がGoogle Chormeを開き、サイドバーをチェックすることなら、明らかに答えは「はい」です。

欠点は、少なくとも最初の頃、全てをテストするマントラに、すぐ圧倒されてしまうことでしょう。学習曲線は緩やかです。でも大丈夫、一段ずつ上がって行きましょう。どのようにモデルをテストするか、学んで下さい。この手順に慣れたら、次へ進みます。よちよち歩きで行くのです。数を数え始める時に、指を折るのとおなじ理由です。

 注意を払うべき点

 これは部分的に正しいヒントです。壊れる可能性がある部分を全て何でもテストするというのは、高潔なゴールです。しかし、テストしすぎる状況もあるのです。（激しい議論の対象になったとしてもです。）コミュニティーで成長を続けている一派では、コードのどの領域をどこまでテストするのが一番効果的なのかという、議論が行われているでしょう。実際もし、あなたがアクセサー（ゲッター）とミューテーター（セッター）のコードを書く場合、めったに間違わないのであれば、それらをテストするコードを書くため、煩わされなくてよいのです。テストはあなたに仕えるものです。あなたが従うのではありません。

 読者の皆さんは、自分のアプリケーションのどこに線を引くべきか、自分自身で決める必要があります。もしくは、言い換えるなら、テストをする場合、どこが収穫逓減になるかです。

不安定なコードの６つのサイン

コードをいかにテストするかを学ぶのは、誰もあなたの国の言葉を話さない国へ引っ越すのと、多少似ています。結局、続けることで、明らかなパターンを認識できるようになるしかありません。間もなく、流暢に話している自分に気づくのです。ここで私達が取り掛かっているのは、ロケット工学ではありません。誰でも学べるのです。全てプレッシャー…と時間が必要だ。（最後の一文を読むときは、モーガン・フリーマンの声で読んで下さい。）

テスト力が向上すれば、すぐにコーディングの罠に気が付き始めます。あたかも本能のように、コードの各箇所を静かにスキャンし、アンチパターンに注意を払っている自分に気づくでしょう。

ここでは、簡単に見つけやすい、６つのポイントを紹介しましょう。

１．Newオペレーター

ユニットテストの原則は、テストを独立して行うべきであると要求しています。以降の章で、このコンセプトをもっと取り扱います。ですが、端的に言うならば、他の何者でもなく、現在取り扱っている、そのクラスのみテストすべきです。データベースクラスにアクセスしてはいけません。Webサービスからデータを取得する、Filesystemクラスをテストしてはいけません。そうしたクラスのテストは、クラス自身のテストとして実行されるべきです。二重に行なってはいけません。

もし、自分のクラスに、全体を通して、new演算子をあちこちに設置し始めたなら、このルールを破っています。思い出して下さい。テストでは、そのクラスだけ独立して行うことが求められています。他のオブジェクトをインスタンス化してはいけません。

 アンチパターン：

1 public function fetch($url)
2 {
3 // これでは、テストできません！
4 $file = new Filesystem;
5
6 return $this->data = $file->get($url);
7 }

これは、私達が望んでいる、PHPの柔軟性を壊してしまう状況の一つです。Rubyのような言語が提供している、クラスを再オープンしたり（monkey-patchingとして知られています）、メソッドをオーバーライト（テストに一部が役立ちます。）する能力は、残念ながらPHPには備わっていません。少なくとも、特別な拡張を付け、PHPをコンパイルしない限りです。こういう時は必ず、依存注入を使用しましょう。

 より良いコード：

 1 protected $file;
 2
 3 public function __construct(Filesystem $file)
 4 {
 5 $this->file = $file;
 6 }
 7
 8 public function fetch($url)
 9 {
10 return $this->data = $this->file->get($url);
11 }

この変更で、Filesystemクラスのモックしたバージョンを注入し、完全にテストできるようになります。上のコードがよく分からなくても、心配しないで下さい。内部動作をすぐに勉強しますよ！今のところ、このまま頭に入れておいて下さい。

 1 public function testFetchesData()
 2 {
 3 $file = Mockery::mock('Filesystem');
 4 $file->shouldReceive('get')->once()->andReturn('foo');
 5
 6 $someClass = new SomeClass($file);
 7 $data = $someClass->fetch('http://example.com');
 8
 9 $this->assertEquals('foo', $data);
10 }

他のクラスを自分のクラスの内部でインスタンス化するのが受け入れられる状況は、参照するそのオブジェクトが値オブジェクトの場合か、ゲッターとセッターを使うコンテナが実際に動作しない場合のみです。

 	
 [image: tip]
 	
 ヒント： 皆さんのクラスの中で、newキーワードを鷹のようにハンティングして下さい。そうしたコードは（最低でも９０％のケースにおいて）、PHPコードの中でプンプン臭います！

２．管理マニアのコンストラクター

コンストラクターは、依存を指定することだけに責任を持たなくてはなりません。次のような質問を自分のクラスに対し尋ねて、考えましょう。Filesystemクラスを持ってもよろしいでしょうか？

これ以上のことを行なっているのでしたら、リファクタリングすることを考えて下さい。

 アンチパターン：

1 public function __construct(Filesystem $file, Cache $cache)
2 {
3 $this->file = $file;
4 $this->cache = $cache;
5
6 $data = $this->file->get('http://example.com');
7 $this->write($data);
8 }

 より良いコード：

1 public function __construct(Filesystem $file, Cache $cache)
2 {
3 $this->file = $file;
4 $this->cache = $cache;
5 }

こうする理由は、テストする時に、以下の工程を繰り返すからです。

	準備(Arrange)

 	実行(Act)

 	断言(Assert)

もし、クラスのコンストラクター中に、アクションやメソッド呼び出しが散らかっていると、あなたが書く全テストで、こうしたアクションを取り扱う必要が起きるからです。

 	
 [image: tip]
 	
 ヒント： シンプルにしておきましょう。コンストラクターは、依存の指定のみに限定しましょう。

3. それと、あれと、これも

最初は、クラスがどんな責任を持つべきか判断するのは、難しいものです。確かに私達は、単一責任原則のことを聞いたことがあるし、理解もしています。しかし最初に、知識を実践に移すことは、ハードルが高いのです。

多くの責任を持ちすぎているクラスを見つける４つの方法

	クラスがやりすぎているかを判断するシンプルな方法は、クラスでやっていることを声を出して話してみることです。もし「〜と(and)」という言葉を多用していれば、適切にリファクタリングする機会でしょう。

 	それぞれのメソッドの行数をすぐに分析するように、自分自身を鍛えてください。理想的には、（一番好ましいのは１行だとしても）メソッドは数行に限定すべきでしょう。別の表現をするなら、全メソッドへ数ダースもの行数が書かれていたら、これは明らかに詰め込みすぎていることを示しています。

 	もしクラスの名前を選ぶのにトラブっているなら、これもまた、道を外れているサインです。再構築が必要です。

 	１から３の方法で見つからなければ、クラスを開発者の友達に見せましょう。彼らが、そのクラスの一般的な目的をすぐに理解できなければ（「ああ、このクラスはパスワードをハッシュ処理しているんだね」）、変更しましょう。

理解を進めてもらうため、いくつか例をどうぞ。

	FileLoggerクラスは、データをファイルにログする責任がある。

 	TwitterStreamクラスは、指定されたユーザー名で、Twitter APIから取得したツイートを返す。

 	Validatorクラスは、一連のルールに従い、データのバリデーションに責任を持つ。

 	SQLBuilderは、指定された一連のデータで、SQLクエリーをビルドする。

 	UserAuthenticatorクラスは、指定されたログイン情報が正しいかを判定する。

上の例では、「〜と(and)」という言葉が、一つも出てこないことに注目してください。複数のオブジェクトを使って、ジャグリングするような真似を強制させていないため、随分とテストがやりやすくなります。

 	
 [image: tip]
 	
 ヒント： 各クラスの責任は一つに減らしましょう。これは、単一責任原則として良く知られています。

４．パスが多すぎる？多様性で減らしましょう！

多様性(polymorphism)が何かを本当に理解するには、aha moment（そうなのか、とわかる瞬間）が必要です。実際には、多くの状況があるのですが、一度理解すれば、決してこれを忘れないでしょう。

 	
 [image: information]
 	
 定義： 多様性(polymorphism)とは、共通のインターフェイスを使用し、複雑なクラスを機能的に独自なサブクラスへ分ける行動のことである。

多様性が有効かを判断する一番簡単な方法は、クラスでswitch文（もしくは多く繰り返されすぎている条件）を追跡することです。銀行口座のクラスを想像してください。当座預金(checking)か貯蓄預金(saving)、もしくはそれ以外などの種別に基づき、年間の利益の差を計算するクラスです。では、とても簡単な例を見て行きましょう。

 1 function addYearlyInterest($balance)
 2 {
 3 switch ($this->accountType) {
 4 case 'checking':
 5 $rate = $this->getCheckingInterestRate();
 6 break;
 7
 8 case 'savings':
 9 $rate = $this->getSavingsInterestRate();
10 break;
11
12 // 他の口座タイプがここへ続く
13 }
14
15 return $balance + ($balance * $rate);
16 }

このようなケースで、一番賢い行動は、似ているけれど、それぞれ異なるロジックをサブクラスとして切り出すことです。

確実にアクセスできるようにgetRateメソッドを持つインターフェイスを定義します。インターフェイスは契約のことだと、あなたも良く耳にするでしょう。これはインターフェイスを理解する良い方法です。実装しようとするクラスは、契約という言葉通り、指定されているメソッドを実装しなくてはなりません。

1 interface BankInterestInterface {
2 public function getRate();
3 }

インターフェイスを当座預金(checking)に対して実装します。

1 class CheckingInterest implements BankInterestInterface {
2 public function getRate()
3 {
4 return .01;
5 }
6 }

同様に、貯蓄預金(saving)に対して実装します。

1 class SavingsInterest implements BankInterestInterface {
2 public function getRate()
3 {
4 return .03;
5 }
6 }

これでオリジナルメソッドは、かなり整頓できます。以下のコードで、利益を表す$interest変数へ、タイプヒントを指定している方法に注目してください。getRateメソッドがクラスに存在しない場合でも、呼び出してしまうという罠に陥ることから、防いでくれています。これこそ正に、インターフェイスでコーディングした理由です。インターフェイスを実装することで、そのクラスは”getRate“メソッドを用意するように強制されます。

 1 function addYearlyInterest($balance, BankInterestInterface $interest)
 2 {
 3 $rate = $interest->getRate();
 4
 5 return $balance + ($balance * $rate);
 6 }
 7
 8 $bank = new BankAccount;
 9 $bank->addYearlyInterest(100, new CheckingInterest); // 101
10 $bank->addYearlyInterest(100, new SavingsInterest); // 103

良くなりました。このコードをテストするのは朝飯前です。この関数の中でアカウント種別のためにパスを分ける必要はもうありません。繰り返しますが、記述法が分からなくても大丈夫です。この後すぐに、説明します。

 1 public function testAddYearlyInterest()
 2 {
 3 $interest = Mockery::mock('BankInterestInterface');
 4 $interest->shouldReceive('getRate')->once()->andReturn(.03);
 5
 6 $bank = new BankAccount;
 7 $newBalance = $bank->addYearlyInterest(100, $interest);
 8
 9 $this->assertEquals(103, $newBalance);
10 }

 	
 [image: tip]
 	
 多様性は複雑なクラスを小さく分割することです。通常はサブクラスとして分割します。クラスが小さいほど、テストはやりやすくなることを覚えておいてください。

５．依存が多すぎる

管理マニアのコンストラクターのヒントで、依存はそのクラスのコンストラクターで注入されるべきだと書きました。もう少し言葉を加えるなら、通常はもっと少ないでしょうが、もし特定のクラスで４つ以上の依存が要求されていたら、依存が多すぎる証拠です。

 「どんなクラスでも[依存]が４つ以上あれば、通常私は見直します」 - Taylor Otwell

オブジェクト志向プログラムの基本的原則では、クラスやメソッドが受け付ける引数の数とその柔軟性の度合いには相関関係があると言っています。（そして、テストのやりやすさもです。）依存や引数を取り去るたび、あなたはコードを向上させているのです。

もし、あるクラスが余りにも多くの依存を持っているなら、リファクタリングを考えてください。

６．バグが多すぎる

私は一度、Ben Orensteinのバグは集合するのが大好きだという意見を聞いたことがあります。こんなに真実を言い当てている意見は、聞いたことがありません。あなたが特定のクラスで、頻繁にバグが繰り返し発生しているのに気がついたら、それはコードが「リファクタリング」と「サブクラス」を求め、叫び続けているのです。考えても見てください。バグが存在しているというのは、最初にコードを十分に理解できていなかったからです。複雑すぎたのです！どうしてだと思いますか？多くの場合、複雑なコードはテストできないというシグナルです。結合が単に強すぎるのです。バグが密かに入り込みます。お友達も全部、同様です。

 	
 [image: information]
 	
 定義： 結合とはシステム中の２つの構成物で、片方がもう一方に依存している度合いのことです。片方を取り除いたら、もう一方に影響が出るのは、不幸なことに結合が強いコードを書いており、簡単には修正できません。

これをBenは美しく表現しています。「もしバグが７行目にあれば、８行目にもバグがある可能性がある。」できるだけ早く、その芽を摘みましょう。

 	
 [image: tip]
 	
 ヒント： この種のバグが現れたら、（テストが簡単にできるように）ロジックをもっと小さなクラスへ分割できないか、考え初めましょう。テストの行いやすさを向上させるために、もう一言付け加えるならば、このパターンの利点の一つは、プロダクトコードの読みやすさを大幅に向上させることです。

バグは集まるのが大好きです。バグを追っ払いましょう。

テスト関係の専門用語

この本をテストについて学ぶための、唯一の情報源として役立てられるほど、私は疲れ切るまで考えるつもりがありません。（明らかに、望んでいません。）あなたも私と同じ道を通れば、毎晩遅くまで、理解できていない部分を埋めるべく、知識の最後の一片を求め、隅々までWebを探しまわることになるでしょう。

その過程で、きっととてつもない混乱をもたらす専門用語に出くわすでしょう。ひどいことに、こうした専門用語は、プログラム言語間でも矛盾しているのです。ですが、この本の中では、「シンプルに保つ」精神に基づき、こうした言葉をより単純な言葉で定義づけます。以下の定義をサッと読んでください。しかし一度に全部を覚えようなんて考えないでください。実際、私はこうした混乱をもたらす用語には、多くの方法で反対しています。ある言葉がすぐに理解できないのであれば、変更すべきです。開発コミュニティーは、天体物理学からヒントを得るべきでしょう。

 「言語という視点からすると、一番理解しやすい科学のフィールドは、天体物理学です。太陽上の染みを何と呼びますか？黒点です。宇宙で一度入ったら、二度と脱出できない領域は？ブラックホールです。大きな赤い星は？赤色巨星です。ですから、私は同僚の自然科学者たちを非難します。彼がある単語を使い、もし私がそれを理解できたら、こう言い返すのです。『ああ、それはべらべらべらべらという意味だろう？』」- Neil Degrasse Tyson

ユニットテスト

ユニットテストとは目の細かい網を使用し、クラスやメソッドを徹底的に検査することだと考えてください。デバッグをできるだけ簡単に行えるようにするため、ユニットテストは独立させて実行する必要があります。皆さんのテストの８０％は、このスタイルです。

ユニットテストを活用するには、一つのオブジェクト、一つだけのオブジェクトのみを考えてください。テストが失敗しても、どこを見れば良いのか、はっきりと分かります。

モデルテスト

Ruby on Railsコミュニティの何人かのメンバーは、ユニットテストを使ったモデルテスト（たとえそのテストでデータベースを操作していても）を支持しています。残念なことに、これが多少誤解を生じさせています。ユニットテストは、外部の依存から独立していなくてはなりません。一度このルールを破ってしまえば、既にユニットテストではなくなります。端的に言えば、結合テストを書いていることになります。

この本の中でモデルをテストする時は、特別に断らない限り、ユニットテストの伝統的な定義に則っています。

あなたのモデル中のメソッドが、メール送信のレスポンスであると想像してください。良いデザインパターンに従えば、クラスはメール送信だけを行なっているでしょう。（単一責任原則）ここで問題が起きます。もし外部のMailerクラスを呼び出していれば、どうやってユニットテストを成功させられるのでしょうか？その答えは、モックを使用することです。モックはこの本全体でカバーしていきます。モックにより、ダミーのMailerクラスが使用でき、正しいメソッドが呼び出されたことを確認するため、エクスペクティション（予期、期待、予想）を定義します。この方法で、たとえMailerコンポーネントが、現在壊れていたとしても（Mailer自身のテストが行われていることでしょう）、モデルメソッドが期待通りに動くかどうかを確認できるのです。

結合テスト

独立したユニットテストで、コードが正しく動くことが証明されたら、続いて結合テストに取り掛かります。このテストでは、アプリケーションの複数の部分を組み合わせます。通常、モックやスタブには頼りません。特定のテストデータベースが、実際に作成されるかなどの確認などです。

例えば、車を考えてください。エンジンと燃料のインジェクションシステムはそれぞれ期待通りに動きました。（それぞれ、ユニットテストを通ったわけです。）しかし２つを一緒にしたら動作するでしょうか？結合テストはこれを確認します。

機能（コントローラー）テスト

コントローラーをテストする手順を何と呼んだら良いのでしょう？いくつかのフレームワークでは機能テストと呼んでいます。（その通りです。）しかし、私達はシンプルにコントローラーテストと呼ぶことにこだわりましょう！

伝統的に機能テストはあなたとあなたのチームによるコードが、期待通りに動作するかをテストする方法です。ユニットテストはクラスのそれぞれのユニット（単体）をテストするのに対し、機能テストはもっと広く、アプリケーションの複数部分を動作させます。多くの場合、そうしたテストは外部から起動されることがあり、一般にシステムテストと呼ばれます。伝統的な機能テストで重要な点は、通常、サーバーの起動は要求されないことです。

受け入れテスト

機能テストは、開発チームの要求に、テストするコードが適しているかを確実にすることであると、既に学びました。しかし、そうしたテストで例えグリーン（合格）の結果であっても、クライアントの環境では、最終的に実装した機能が、要件に合っていないかもしれません。これこそ、受け入れテストが何かを示しています。別の表現をすれば、「このコードはクライアントの要求を満たしているか？」です。あなたのソフトウェアが、ユニットテストと機能テスト、結合テストにパスしても、受け入れテストに失敗したら、クライアントや顧客は期待通りに動かないと判断します。

 	
 [image: tip]
 	
 ヒント：機能テストを開発者の仮定と要求に合っているかをテストするものだとすれば、受け入れテストはクライアントの期待に合っているかを確認することを意図しています。

私が働いている月極料金ベースの技術教育サービス、Tuts+ Premiumを考えてください。最近、後で読みたいコースと電子本を保存できる、ブックマーク機能を付け加えました。開発者はコードの最初の一行を書く前に、コンテンツチームが何を期待しているのかを一番初めに理解しておく必要があります。彼らが要求している機能です。これには受け入れテストが必要です。

1 次に何を勉強するかを保存できるように
2 メンバーとして
3 コンテンツをブックマークしたい

この受け入れテストに合格したら、機能は完全に実装され、クライアント（この場合は、社内のコンテンツチーム）の期待を満たしていると仮定できます。

 [image: Tuts+ 受け入れテストが必要な、Premiumのブックマーク機能]Tuts+ 受け入れテストが必要な、Premiumのブックマーク機能

この本の一番最後では、Codeceptionフレームワークを使い、受け入れテストを書くことを学びます。Codeceptionを使えば人間が話しているようにアプリケーションに関連する要求を定義できることが、理解できるでしょう。

 テストはコストがとても高く付くのでしょうか？

 これぞまさしく、テストの神話です。テストは有益にもかかわらず、実際の世界でクライアントの予算には含まれません。セキュリティ強化だけの目的に、２倍の予算を出したがるクライアントなんていないと言うことでしょう。

 この議論にメリットはありますか？いいえ、全くありません。実際のところ、多くの研究で、テスト駆動開発サイクルは、プロジェクト完成までに必要な期間を短くしてくれることが発見されています。

リラックス

最初に伝えておきたいことは、これらの定義を学び、価値が分かるまで、長い時間を要したということです。一回読んだだけで理解できるなんて、明らかに期待していません。おお神よ、「PHPUnitの紹介」の章にさえ、まだ行き着いていません！今のところは、アプリケーションを開発するにつれ、あなたは複数のテストスタイルを使うようになるとだけ、心に留めて置いてください。

もう一つ、伝えておきましょう。不幸なことに、開発者コミュニティー全体は、用語の統一により、彼ら自身も救われることに同意しそうもないのです。あなたも、更に別な用語に出会うことになるでしょう。システムテスト、要求スペック、中間テストなどです。多くの場合、こうした言葉と前に紹介したテストは、ほとんど意味が重複しています。余り心配いりません。一番重要なのは、あなたがテストを行うことです。やがて、自分のスタイルを確立するでしょう。

 先に述べたように、あなたがどのようにテストするかは問題ではありません…テストしている限りは。

用語使用の時より多い、不協和音が持続していますね。公正に表現するなら、最近の開発者はほとんどが、テストを書くことは重要であると同意していますが、その一方で、どんな順番でテストを書くかについては、また話が違ってきます。Bob Martin（ボブおじさん、Uncle Bob）のような何人かの提唱者は厳格かつ忠実なTDDの哲学を勧めています。「最初にテストを書くまでは、プロダクションコードは一行も書くな。」

 「テスト駆動開発を実践しないのであれば、プロフェッショナルな開発者であると考えることは不可能です。」- Bob Martin

しかし同じように有力な、DHH（Ruby on Railsの作成者）などの開発者は、プロダクションコードの後にテストを書くことも許しています。 - 大体８０％の場合にです。

 「全コントローラー、モデル、ビューに対しテストファーストを自分に強制するな。（私の場合、典型的には２０％でテストファースト、８０％はテストアフターの割合だ。）」- David Heinemeier Hansson

あなたの仕事は全部をインプットし、Webなどでアドバイスを受け、あなた（もしくはあなたの開発チーム）が喜んで応じてくれるスタイルを形成することです。そのため、この本はバイブル以下、一人の人間のテストへの順応記録以上であると考え、自分のスタイルへと変形させてください。スプーンは付いていません。自分で、用意してください。

 	日本語翻訳に関する部分は、hirokws@gmail.comまでお願いします。↩

 	弾丸の再充填とブラウザの再表示の「リロード」をかけています。↩

OEBPS/images/leanpub_error.png

OEBPS/images/leanpub_discussion.png

OEBPS/images/leanpub_leanpub_logo.png
Leanpub

OEBPS/images/leanpub_warning.png

OEBPS/images/leanpub_information.png
1

OEBPS/images/leanpub_question.png

OEBPS/images/leanpub_tip.png

OEBPS/images/leanpub_exercise.png

OEBPS/images/whytest----travis.png
e —— "
© 00/ Hrravis CI - Free Hosted Co x

€ = C | @ hips:/travis-ciorg wArPODEOEEF
Docs Status Sign in with GitHub
| taravel | laravel/framework ®
Recent Search Current Build History Pull Requests Branch Summary v
© laravel/framework 1608 Build © 1608 Commit 9914bf0 (master)
Duration: 9 min 6 sec, Finished: a...
State Passed Compare b1bb225¢cb6d4...9914bf01d2e4
. Finished about 2 hours ago Author Taylor Otwell
© neoascetic/laravel 49
Duration 9 min 6 sec Committer Taylor Otwell
Duration: 17 sec, Finished: about ...
Message ‘Swap dev queue back to iron.
Config Php: 5.3,5.4
andrew13/Laravel-4-... 29
Duration: 11 min 31 sec, Finished: ...
Build Matrix
© segersjens/Laravel-M... 8 Job Duration Finished Php
Duration: 3 min 20 sec, Finished: a... © 1608.1 4 min 56 sec about 2 hours ago 53
© 1608.2 4 min 10 sec about 2 hours ago 5.4
© EscapeWork/Laravel... 13
Duration: 45 sec, Finished: a day ...

OEBPS/images/whytest----bookmark-feature.jpg
8168,/ Pavues+ premum evoakc 1

€ > C | @ https://tutsplus.com/ebook/php-team-development/

tuts+ premum GETSTARTED ~ FORUMS BLOG 1 HELP

m Development

ADD TO BOOKMARKS 19

002 0H

£k MY ACCOUNT A MY BOOKMARKS & SIGN OUT

Search Tuts+ Premium

AlContent v

Topics:

Audio & Music
Business

Mobile Development
Photography
Photoshop

Vectors

Web Design

Web Development

20

2

hitps:/tutsplus.com/bookmarks/jeffreyway/
e —

OEBPS/images/leanpub-logo.png
Leanpub
EYy—33

OEBPS/images/title_page.jpg
Laravel Testing Decoded
With Jeffrey way

... Via Hirohisa. Kawase

