Laravel Testing Decoded

Laravel Tesztelés Egyszerien (Magyarul!)
A tesztelési kdnyv, amelyre mindig is vagytatok!

JeffreyWay and Zsellér Istvan
This book is for sale at http://leanpub.com/laravel-testing-decoded-hungarian

This version was published on 2013-08-30

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and
many iterations to get reader feedback, pivot until you have the right book and build traction once
you do.

©2013 JeffreyWay and Zsellér Istvan

http://leanpub.com/laravel-testing-decoded-hungarian
http://leanpub.com
http://leanpub.com/manifesto

Tartalomjegyzék

Legyetek iidvozolve 1
Megkezd6dott 1
Nekem irtdk ezt a konyvet? oL 2
Miért Laravel specifikus? 2
Gyakorlatok e 3
Hibak . . . e 3
Hogyanolvasd eztakonyvet 3
Jelentkezz nekem L 3

Bele az ismeretlenbe 4

Els6 fejezet: Teszteljmindento 5
Mareddigisteszteltél L 5
6 nyer6 tulajdonsagaa TDD-nek L 6

LBiztonsadg 6
2.Részvétel 6

3. Felnéttkorba lépés 7

4. A tesztelhet6ség mindségi architekturat biztosito 8
5.Dokumentacid L. 8
6.Szorakoztatd L 8

Mit kell tesztelnem? 8
6 A tesztelhetetlen kod jelei 9
1. New Operatorok 9

2. Ellen6rzésmanias konstruktorok oo oo oo oL 11

B S 12

4 mod, hogy észrevegyiik a tul sok mindennel foglalkoz6 osztalyokat 12

4. Tul sok utvonal? Polimorfizmust neki! 12

5. Tal sok figgdség o 15

6. Tulsokhiba 15
Teszt zsargon 16
Egységtesztelés L 16
Modell Tesztelés 16
Integracid Tesztelés L 17

Funkcionalis (Kontroller) Tesztelés 17

TARTALOMJEGYZEK

Elfogadasiteszt
Nyugi . . . e

Legyetek udvozolve

Tl sokszor lattam ezt mar. Ahogyan egy applikacioé novekszik, ugyanigy a ronda, teszteletlen kod
is. Nemsokara ugy érzed magad, mint aki fulladozik, ahogyan megprobalod kézi vezérlésen tesztelni
minden funkcidjat! Ilyenkor jut eszedbe, s6t bizonyossa valsz, hogy sziikség van automatikus
tesztelésre. Megkockaztatom, mar olvastal TDD konyvet, de, ahogyan minden dolog az életben,
tapasztalat nélkil nem megy, és az “aha pillanat” — varat magéra.

A gond az, hogy a tesztelés eléggé trikkos foglalatossag. Konnyedén el6fordulhat az is, ahogyan
a kododat irtad, hogy tesztelhetetlen! Amit tudatositani kell, az, hogy a tesztelés nem csak arra
garancia, hogy a kddod mtkodik, de ezzel a mintaval te is jobb fejlesztévé valhatsz. A ronda,
tesztelhetetlen, és kifacsart kodtdl 6rokre megszabadulsz. Higgy nekem: mihelyt megkérded ma-
gadtdl “hogyan tesztelhetném ezt a dolgot” miel6tt még egy sort is irndl, vissza fogsz emlékezni a
régi onmagadra, és nevetve gondolsz majd azokra az id6kre, amikor még kozépkori modszerekkel
eszkabaltal programokat.

Légy tidvozolve a modern szoftverfejlesztés idészakaban.

ﬁ A szoftvertesztelés alaptérvényei (és a TDD) nyelvtdl fiiggetlenek, amikor is a végrehaj-
tashoz ériink, milliard technikaval és eszkozzel szembesiiliink. Ez a kony legalabb annyira
bevezetés a TDD-be, mint egy mélyenszanté analizis, hogyan kell ezt a Laravelben végezni.

Megkezdodott

Amikor programozasi nyelvekr?] beszéliink, mindenkinek megvan a sajat véleménye. Amikor pedig
éppen a PHP-r6l diskuralunk, késziilj fel egy kis szivatasra . Annak ellenére, hogy ez a nyelv jocskan
megizmosodott az elmult 6t évben , mindig lesznek olyanok, akik nem tudjak a PHP komolyan venni.

A hitetlenek nem latjak az 5.5-6s verziot, vagy az OOP-ot, vagy a modern keretrendszereket, mint a
Laravel, esetleg sosem hallottak a Composerrél, nem beszélve a test-first fejlesztésrél. Nem bizony,
6k még mindig a régi, csuf PHP 4 kodrol beszélnek, vagy egy rosszul osszedobott WordPress
sablonrol 2008-bol.

Szebb a PHP mint a Ruby? Nem. Az API-ja inkonzisztens idénként? Biztosan. A kozosség vezet6 -e
az innovacidban és szoftvertervezésben ? Definitive nem. A kérdés akkor, MIERT? Miért dominal a
PHP - 80 szazalékos résszel — amikor a versenyben 1év6 nyelvek mindegyike elegansabb? Az okokat
mashol kell keresniink. Tegytik fel, a tény, hogy létrehozol egy fajlt, echo hello world tartalommal,
és mindjart latod is a kimenetet a bongészében sokkal inkabb felhasznaldbarat, mint azt magunknak
be merjiik vallani. Lehetséges, hogy a flexibilitasa elényére valik, nem pedig hatranyara.

Legyetek tidvozolve 2

Mibta kell a konnyt felhasznalhatdsagot lekicsinyelni?

Az igazsag az, hogy a PHP nem az uj lany a grundon. Nem kiillonosképpen sexy. Nincs bétaban.
De, tudod mit? Megcsinalja azt, amit mondanak neki. Beszéljenek, amennyit csak akarnak a PHP
4-r6l. Ameddig azzal foglalkoznak, mi felhasznaljuk mindazt, amit a nyelv legijabb vivmanyai, és
a koriilotte létez6 okoszisztéma nyujt.

A PHP lesajnalasanak vége. A PHP reneszansza mar elkezd6dott. Modern objektum-orientalt techni-
kakat hasznalunk, csomagokat osztunk meg a Composeren keresztiil, verzié kontrollt alkalmazunk és
continuous integrationt, modern keretrendszereket hasznalunk, hisziink a tesztelésben (nemsokdara
te is fogsz), udvozoljik az Gjonnan jovéket (és nem csapjuk senki orrara az ajtot), mikozben a
legszélesebb mosolyunkat mutatjuk.

A legjobb rész pedig, Laravel felhasznaloként, TE is részese vagy a mozgalmunknak ! Amikor el§szor
csatlakoztam a Laravel IRC csatornajara, nem kellett sokat varni, és mar valaki koszontott is “Légy
iidvozélve a csaladunkban” Semmi sem irja le szebben a kézosségiinket. Egyek vagyunk. Ez az a
PHP kozosség, amelyet én szeretek.

Ha megvetted ezt a konyvet, valoszintileg sziikséged van egy kis segitségre a tesztelésnél. A Laravel
szellemében, iidvozollek a csaladban. Tanuljuk meg ezt egyiitt.

Nekem irtak ezt a konyvet?

A gondokat a technikai konyvek irasakor az okozza, hogy hol huzzuk meg a hatart, abbdl a
szempontbol, hogy az olvasoktél milyen elétudast koveteljiink meg. Ha mar hallottal a kovetkezd

dolgokrol, akkor vagj bele !

« PHP 53
« Laravel 3 (lehet6leg 4)
» Composer

Miért Laravel specifikus?

A konyvben bemutatott technikak nagy része akarmilyen nyelvre,vagy keretrendszerre alkalmaz-
hato, de, tapasztalatom szerint , ebben az 1j vilagban az els6 lépéseket a legkényelmesebb cipékben
kell megtenni. Megtanulhatd a teszt-vezérelt fejlesztés egy Java konyvbél? Fogadni mernék ra !
Konnyebb lenne-e egy nyelven, és keretrendszerrel, amelyet mar ismerek? Minden bizonnyal.

Masodsorban, egy altalanos tesztelési konyvben nem tudnam demonstralni a PHP-specifikus funk-
cidk és csomagok nagy részét, amelyet személyesen hasznalok mindennapi munkamban. Kérbeoleli
ez a PHPUnit segit6csomagokat, az acceptance testing keretrendszerekig, mint a Codeception.

Remélem, ahogyan végigolvasod ezt a konyvet , tesztelési ismereteid bévitése mellett , sok Laravel-
specifikus tippet és tritkkkot is megismersz.

Legyetek tidvozolve 3

Gyakorlatok

Itt-ott ebben az iromanyban, Gyakorlatok-nak nevezett részleteket fogsz latni. Gondolj ezekre,
mint részletes HOGYAN-okra, amelyeket neked kell megvaldsitanod, a fejezet irasa kozben. Az
elmélet 6nmagaban nem elég; a programok irasa az, amely ezeket a mintakat, és technikakat
megjegyezhet6vé teszi.

Tehat, amikor egy Gyakorlatok fejezethez érsz, kapcsold be a szamitogépet, és programozzunk
egyltt!

Hibak

Kérlek, tartsd észben azt, hogy megtettem mindent ami emberileg lehetséges, hogy ez a m{ lehetéleg
hibamentes legyen, de én is csak halandé vagyok. Ha valami hasonlot észlelsz, kérlek jelentsd a
GitHubon', én pedig javitom, amint lehet. A legkitartobb hibairtok jutalma csoportos 6lelés.

Hogyan olvasd ezt a konyvet

Ha kedved van az elejétd]l a végéig, de kezdheted azzal a fejezettel, amelyik legjobban érdekel.
Minden fejezet egy egészet alkot. Példaul ha mar ismered a unit testing alapjait, biztosan nem kell
elolvasnod a “Unit Testing 101” fejezetet! Lapozz at rajta, én addig behunyom a szemem.

Jelentkezz nekem

Ugy tiinik sok id6t fogunk egyiitt tolteni, kozos munkalkodasunk soran. Ha szeretnél kozelebbrél is
megismerni, esetleg par kérdésed lenne, ne felejts el bekdszonni.

« IRC (#laravel channel): JeffreyWay
« Twitter: @jeffrey_way®

"https://github.com/JeffreyWay/Laravel-Testing-Decoded
*http://twitter.com/jeffrey_way

https://github.com/JeffreyWay/Laravel-Testing-Decoded
https://github.com/JeffreyWay/Laravel-Testing-Decoded
http://twitter.com/jeffrey_way
https://github.com/JeffreyWay/Laravel-Testing-Decoded
http://twitter.com/jeffrey_way

Bele az ismeretlenbe

Az éj sotét fatylat boritotta rank... Varjunk csak, ez egy masik torténet. Szoval, az éj csondes volt, csak
a légkondi zorgott egy picit. A feleségem és az allataim mar régen magamra hagytak, és az igazak
almat aludjak. A kutyam, ahogyan altalaban, a legkitartobb volt, de nem rovok semmit sem a terhére;
ki vagyok én, hogy elitéljem 6ket azért, mert éjjel haromkor aludni szeretnének? Mindenesetre a
koriilmények éppen megfeleléek voltak. Ereztem legbeliil. Ahogyan minden figyelmemet a laptopom
képerny6jére iranyitottam, a gondolataim egyszerre egytivé forrtak .

A fejleszt6k ismerik ezt az érzést: azok a ritka pillanatok, amikor, hirtelen, az azel6tt megfejthetetlen,
most, legalabbis els6 pillantasra, értelmet nyert. Sokan ezt “aha” pillanatnak nevezik. Az els6
alkalom, amikor megértettem, mire j6 a <div> olyan volt. Most mar, persze, mindenkinek érthetd,
de ez nem tegnap volt. Minek pakolnam tele a HTML-t <div> -ekkel? A bongész6 ugyanazt jeleniti
meg! Az egyik nap azt mondtak nekem, gondoljak ra mint kosarakra; tedd a HTML-t a kosarba,
aztan, ha valamit odébb kell raknod, csak a <div> -et kell tjra pozicionalni. Es végre megértettem.

Egy csom6 hasonlé pillanatot idézhetnék fel, kiilonosképpen a nehezen megjové étvagyamat az
objektum-orientalt programozashoz, interface-ek kodolasara, végiil teszt-vezérelt fejlesztésre.

Igen, az utobbi dolog nem volt szerelem elsé latasra, be kell vallanom. Ahogyan a legtobb fejleszt6
is, olvastam egy konyvet, vagy egy cikket rdla, aztan azt gondoltam, “Hmm, ez érdekesnek t{inik”
aztan folytattam mindent ahogyan azel6tt. Végiil is megmaradt a tudatomban, és az elején olyan
lagy hangocska egyre hangosabb, és kovetel6dz6bb lett.

“Ezt tesztelned kell, Jeffrey.” “Ha ezt mar tesztelted volna, mar nem kéne megint meg
megint futtatnod a programot” “Ki fognak réhogni, ha erre a pull requestre nem irsz
teszteket.”

Mint ahogyan a legtobb dolog az életben, az igazi valtozas erds elhatarozast kivan, és nem art, ha
az egész vilaggal tudatjuk, “Soha tobbé! Végeztem a régi dolgokkal” Es megtettem. Ezrek tették
ugyanezt. Most pedig rajtad a sor.

Ahogyan Leeroy Jenkins® mondana, rendben: fogjunk neki! Ez az a tesztelési konyv, amelyre
mindannyian vartatok.

*http://www.youtube.com/watch?v=LkCNJRfSZBU

http://www.youtube.com/watch?v=LkCNJRfSZBU
http://www.youtube.com/watch?v=LkCNJRfSZBU

Elso fejezet: Tesztelj mindent

Minden létez6 teszteléssel foglalkoz6 konyv tartalmazza a “Miért teszteljiink” fejezetet. Ha egy kicsit
dondolkozol rajta, , az, hogy megvetted ezt a konyvet mar azt mutatja, hogy érdeklédsz a technika
irant. Azért nézziik csak meg miért tartjak masok olyan fontosnak.

Az applikaciok tesztelésének megtanulasa, sajnos, kezdetben nem konnyt . Ez meglepének tiinhet;
nekem legalabbis az volt! Az alapgondolat meglepGen egyszeru: irj teszteket, hogy bebizonyitsd ,
hogy a kédod tgy miikodik, ahogyan elvartad.

Allandban a Google Chrome-ot nyitogatod, hogy valamely 1j funkciét tesztelj? Csukd
csak be, helyette irj egy tesztet.

Hogyan tudna ez dsszezavarni? Nos, a dolgok gyorsan razésak lehetnek, amikor utananézel mit kell
tesztelni.

Kontrollereket kell tesztelnem? Es a modellek? Foglalkozzam -e a nézetekkel is? Mi van a
keretrendszer kddjaval, az adatbazissal, vagy a web szervizek altal kapott informéaciéval
? Mi van azzal a milliard és egy fajta tesztelési technikaval, amelyet a StackOverflow-n
emlegetnek? A tesztelési keretrendszerek? PHPUnit? Rspec? Capybara? Codeception?
Mink? A lista nagyon hosszu. Hol kell kezdenem?

Nem szeretek fogadni (nos, bizonyos fokig, de leginkabb a feleségemmel vivott Scrabble jatékokra,
amikor orszag vilag elétt zrikalhatom* ha nyerek), de biztosra veszem, hogy a karriered soran mar
felvetédtek ezek a gondolatok. A tesztelés egyszeri. Megérteni mit, és hogyan, egy egészen mas
torténet. Reményeim szerint, ez a kdnyv segiteni fog ebben.

Mar eddig is teszteltél

Az igazsag az, hogy mar régen a tesztelés mestere vagy . Ha mar egyszer is leirtad, hogy console. log,
vagy elkiildtél egy trlapot a web applikaciodban, hogy lasd, hogyan miikddik valamilyen 6j funkcio,
akkor mar teszteltél is. Még kolyokkorunkban is, mestertesztel6k voltunk. “Ha megcsavarom ezt a
gombot , az ajtoé kinyilik. Gyézelem!”

A gond az, hogy mindezen teszteket kézileg kellett végezni. Miért igykodnél olyan dolgokon,
amelyeket a szamitogép el tud végezni helyetted(mellesleg sokkal gyorsabban)? A konyv célja, hogy
a manualis tesztelést6l eljussunk a teljesen automatikusig. Ez lehet6vé teszi az allando tesztelési kort,
amelyeknél az applikacio fejlesztése kozben egy-egy teszt hajtodik végre. MeglepGen biztonsagossa
teszi ez a fejlesztést.

“http://notes.envato.com/team/jeffrey-wins-a-bet/

http://notes.envato.com/team/jeffrey-wins-a-bet/
http://notes.envato.com/team/jeffrey-wins-a-bet/

Elsé fejezet: Tesztelj mindent 6

“Amikor egy fejleszté felfedezi a test-vezérelt fejlesztés tulajdonsagait, olyan érzése ta-
mad, mintha egy 4j vildg nyilna meg szamara kevesebb stresszel, és bizonytalansaggal”
- DHH

6 nyer6 tulajdonsaga a TDD-nek

A tesztelés csalds dolog. Kezdetben azt hiszed, csak arra vald, hogy meggy6z6dj, a kddod miikodik.
Ez nem egészen igaz. A valosagban tobb elénye is van a TDD ciklusnak.

1. Biztonsag

Ha hibazol, vagy egy létez6 funkciot teszel tonkre, a test robot azonnal jelenti. Képzeld el, hogy leirsz
valamit, mented, majd abban a pillanatban tizenetet kapsz arrél, hogy minden mtikdik-e. Nem lenne
nyugodalmasabb az 4dlmod? Emlékszel arra a rondan irt osztalyra, amelyet féltél megvaltoztatni,
mert tal sok kiilsé kod fiiggott téle? Ha tesztekkel dolgozol, akkor nem kell tartani az ilyesmitél.

2. Részvétel

Ha nyilt forraskédu szoftveren szeretnél dolgozni, valoszintleg a kozosségi fejlesztés vivmanyait is
fel szeretnéd hasznalni a GitHubon . Egy id6 utan, masok is részt szeretnének venni, hogy javitsak a
hibakat, vagy 4j funkcionalitast adjanak hozza. Ha a projekted nem tartalmaz teszteket, és valaki pull
requestet kiild, hogyan ellenérizhetnéd, ellendrizhetnék, hogy nem toérténik semmi baj? A valasz?
Nem - kivéve, ha minden felhasznalasi forgatokonyvet magad probalsz ki. Kinek van erre ideje
minden esetben?

A jol tesztelt projekt olyan, mint a kivaléan miikodé motor. Ha dolgozni szeretnél egy projekten,
csak néhany 1épést kell tenned:

A repo klonozasa

Teszt irasa, amely hibat general (testThrowsExceptionIfUserNameDoesNotExist)
Véltoztasd meg a kddot, hogy a hiba eltinjon

Futtasd a tesztet, ha a kimenet z6lden villog akkor (siker)

A e

Git commit, és pull request kiilldés

Van egy csomd continuous integration szerviz, mint a Travis®’, amely automatikusan futtatja a
teszteket ha pull requestet kap . Ha a teszt nem sikeriil, akkor a valtozas nem keriil elfogadasra.

*https://travis-ci.org/

https://travis-ci.org/
https://travis-ci.org/

Elsé fejezet: Tesztelj mindent 7

800 /[Travis C1 - Free Hosted cc || =
€ > C |8 hups://travis-clorg wAOVEOH =
T ravis Home Stats Blog Docs Status Sign in with GitHub
laravel laravel/framework ®
Recent Search Current Build History Pull Requests Branch Summary 3~
© laravel/framework 1608
Build © 1608 Commit 9914bf0 (master)
State Passed Compare b1bb225cb6d4...9914bf01d2e4
. Finished about 2 hours ago Author Taylor Otwell
© neoascetic/laravel 49
Duration 9 min 6 sec Committer Taylor Otwell
Message Swap dev queue back to iron.
Config Php: 5.3,5.4
andrew13/Laravel-4-... 29
Build Matrix
© segersjens/Laravel-M... 8 Job Duration Finished Php
© 1608.1 4 min 56 sec about 2 hours ago 5.3
© 1608.2 4 min 10 sec about 2 hours ago 5.4
© EscapeWork/Laravel... 13

e —
travis-ci.org

3. Felnéttkorba lépés

Ha egy kicsit eltériink a tématol, viszont tovabbra is a PHP ko6zosségrél beszéliink, a véleményem
az, hogy a WordPress olyan, mint egy kétéld kard. Egyfeldl lehetévé tette mindenkinek a bloggolast.
Ez egy letagadhatatlan, tisztelendé tény. Konny(ra sablonokat késziteni a profiknak. Készits
egy index.php fajlt, dobj be egy hurkot, amely el6hivja a legtijabb publikaciokat, majd tor6dj a
megjelenitéssel. Mi lenne egyszer(ibb ennél?

Ez tulajdonképpen igaz. Ez mellett 1étrehozott egy PHP fejleszt6i gardat, amely csak a Wordpressben
hajland¢ részt venni. Ennek a kovetkezménye az lett, hogy modern mintak és technikdk , mint a
teszt-vezérelt fejlesztés, MVC, verzid kontroll, nagyjabol ismeretlenek szamukra. Ez a kellemetlen
igazsag két mellékes eseménynek lett az alapja:

1. PHP ko6zosség a legtobb vitriolt a PHP 4, és a WordPress kod miatt kapja.
2. A valtas a WordPresst6l egy full-stack frameworkig, mint a Laravel, nagyon nehéz lehet. Az
Uj mintak, és eszkozok hasznalatanak megtanulasa nem konnyd.

A WordPress felelds ezért? Igen is, meg nem is. Annyi azonban bizonyos: nem nagyon torték
magukat a mesterség fejlesztésén. A tesztelés 95%—ban ignoralva van (ez persze csak egy kitalalt
szam) az elérhet6 WordPress bévitményekben.

Elsé fejezet: Tesztelj mindent 8

Végiil is mindenkinek fel kell nénie. Visszagondolhatunk a régi kodolok, és kézben nem gondolkodok
praktikdkra. Ne tervezz, gondolkozz, ne tesztelj; bele a kozepébe, hadd széljon, kozben pedig
allandéan t6ltsd ujra az oldalt, hatha valami sikeriil.

Mi jobbak vagyunk ennél. Mi fejleszt6k vagyunk. Ne nézzenek pisztolyhdsnek.

Egy érdekes valtozas torténik, amikor gondolkodsz is miel6tt kddolsz : a mindség azonnal javul. Ki
gondolta volna? Gyorsan rajossz, hogy a tesztelés nem csak arra jo, hogy megbizonyosodj, hogy
miikodik-e a kod. Amikor teszteliink, hasznalunk egy osztalyt, vagy API-t még miel6tt megirtak
volna. Ez felszabadit, és noveli az olvashatosagot Mi lenne a legjobban olvashaté modszer, hogy
adatot kapjunk egy web szervizt6l? Ird ezt le, nézd, ahogyan a teszt megbukik, majd tedd rendbe.
Igy mtikodik!

4. A tesztelhet6ség mindségi architekturat biztosit

Amit megtanulhatsz a konyvet olvasva, hogy feltedd a kérdést , Hogyan tesztelhetném ezt? miel6tt
egy sort is leirnal. Ez a kérdés lesz a biztonsagi ernyéd, amely megvéd majd a multbeli rossz
tapasztalatoktol. Egyetlen metédus nem fog egy csomo6 funkcionalitast végezni, mert én lusta voltam
rendesen megirni. Ez megneheziti a tesztelést. A tesztelés javit a strukturan is.

5. Dokumentacio

Hatalmas bonusz tesztirasnal, hogy dokumentacioét biztosit. Szeretnéd tudni, hogy valamely osztaly
mit is tesz? Nézd at a teszteket, ha rendesen nevezték el 6ket (ami azt jelenti, hogy leirjak a SUT-ot,
vagy tesztelés alatt allo rendszert), semmi perc alatt érteni fogsz mindent!

6. Szorakoztato

Valljuk be : kockdk vagyunk. Mely kocka nem szereti a jo jatékot? Mellékhatas a teszt-vezérelt
fejlesztésnek, hogy a munkat jatékka alakitja. Hogyan szinezem at a voros kodot zoldre? Menj végig
minden 1épésen, ameddig eljutsz a célig. E16szor butan hangzik, de igérem: szorakoztaté lesz. Magad
is meglathatod.

Mit kell tesztelnem?

Az alapvet6 torvény - amelyet sokszor meg fogok ismételni — tesztelj mindent ami tonkremehet.
Lehetséges, hogy a definialt utvonalak kozil egy ténkremehet, 404-es oldalt generalva? Igen? Akkor
irj egy olyan tesztet, amely szamol ezzel a lehet&séggel. Esetleg egy sajat osztaly, amely adatokat kér
le egy tablabol, majd ezeket egy fajlba irja ? Tesztelned kell azt is? Igen. Esetleg egy segédprogram,

Elsé fejezet: Tesztelj mindent 9

amely a legtijabb csiripeket assa el8, és egy sidebarban jeleniti meg ?Ha az egyetlen alternativa, hogy
megnyisd a Google Chrome-ot, és megnézd, akkor a valasz IGEN.

A kellemetlen dolog, legalabbis az elején, hogy a tesztelj mindent mantra tul sok munkat jelent.
Amugy is nehéz megtanulni a tesztelés miivészetét, ezért lassabban is lehet haladni. Kezd el6szor
a modellekkel. Ha megy, akkor probalkozz a tobbi résszel. Nyugdijasan. Megvan annak is miértje,
miért tanulunk meg el6szor az ujjainkon szamolni.

Figyelmeztetés:

Ez a tipp csak félig igaz. Mindennek tesztelése gyonyord cél, de létezik olyan kifejezés mint a
tal-tesztelés (ezzel nem mindenki ért egyet). Egy novekvé része a kozosségnek tgy tartja, hogy
korlatozni kell a teszteket azokra a részletekre, ahol legsziikségesebb. Tehat, ha ritkan hibazol,
accessorok és mutatorok irasanal, ne kinlddj a tesztelésiikkel. A teszteknek kell tégedet szolgalniuk,
nem pedig forditva.

A te feladatod, hogy megtanuld meghtzni a hatart . Meg kell talalni azt a pontot, amikor a
befektetett munka mar nem tériil meg®

*http://en.wikipedia.org/wiki/Diminishing_returns

6 A tesztelhetetlen kaod jelei

A tesztelés kicsit olyan, mint utazni egy olyan orszagban, ahol senki sem beszéli a nyelvedet.
Ahogyan felfedezed a vidéket, mintakat veszel majd észre. Rovid idén beliil pedig folyékonyan
kommunikalsz. Nem atomfizika, amelyr6l beszélgetiink itt, mindenki megtanulhatja, aki akarja.

//////

Ahogyan jobb és jobb leszel, kdnnyebben észreveszed a maceras részeket. Osztonosen észre fogod
venni a hibas mintéakat.

A legkonnyebb 6t dolog, amikre oda kell figyelni:

1. New Operatorok

A tesztelés alaptorvénye, hogy mindent izolalva kell megfigyelni. Ezt az elkovetkez6 fejezetekben
még mélyebben is megtargyaljuk, de roviden az aktualis osztalyt kell tesztelni, semmi mast. Ne
kapcsolodj az adatbazishoz, ne teszteld, hogy a Filesystem osztaly adatokat feccol valami web
szervizt6l. Azoknak is kijar a sajat tesztjuk, ne keverjik 6ket.

Mihelyt telerakod new operatorokkal az oszalyaidat, azonnal megszeged ezt a torvényt. Emlékez-
tetlek: az osztaly izolalt tesztelése roviden azt jelenti, hogy mas objektumokat nem hozunk létre a
kodrészletben.

http://en.wikipedia.org/wiki/Diminishing_returns
http://en.wikipedia.org/wiki/Diminishing_returns

=N O O b W N =

O 0 N O U » W N =~

RN
= O

O 0O = O O » W N =~

-
o

Elsé fejezet: Tesztelj mindent 10

Hibas minta:

public function fetch($url)

{

// We can't test this!

$file = new Filesystem;

return $this->data = $file->get($url);
}

Ez egy olyan eset, amikor a PHP nem olyan flexibilis, amennyire szeretnénk. Mig Ruby-ban
ujranyithatjuk az osztalyt (ismeretes mint monkey-patching) és feliilirhatjuk a metédusokat (amely
kiilonosen hasznos a tesztelésnél), PHP, sajnos nem engedi meg - legalabbis kiilonleges bévitmények
forditasa nélkiil. Ezért, hasznalnunk kell egy technikat, amelyet dependency injectionnek hivnak.

Igy jobb:
protected $file;

public function __construct(Filesystem $file)

{
$this->file = $file;
}
public function fetch($url)
{
return $this->data = $this->file->get($url);
}

Ezzel a valtoztatassal , egy Filesystem osztalyt utanzunk, tesztelhetévé téve a kodot. Ne zavartasd
magad, ha az alabbi kddot nem érted. Nemsokara megtanulod majd a belsé mtikodését is! Egyenlére
olvasd at.

public function testFetchesData()

{
$file = Mockery: :mock('Filesystem');
$file->shouldReceive('get')->once()->andReturn(' foo');

$someClass = new SomeClass($file);
$data = $someClass->fetch('http://example.com');

$this->assertEquals('foo', $data);

0 N O O b W N =

O b W N =

Els6 fejezet: Tesztelj mindent 11

Az egyetlen eset, amikor egy osztalybol objektumot hozunk létre egy méasik oszalyban, ha az
objektum egy value-object, vagyis egy konténer getterekkel, és setterekkel, és semmilyen igazi
munkat nem végez.

K Tipp: Nem kell levadéaszni az 6sszes osztalyt , amely a new kulcsszavat tartalmazza.

2. Ellendrzésmanias konstruktorok

A konstruktor egyetlen dolga, hogy a fiiggdségeket meghatarozza. Ezt ugy kell elképzelni, mintha
az oszaly azt kérné Hozzajuthatnék aFilesystem osztalyhoz?

Ha ett6l tobb torténik, gondolkodj a valtoztatason.

Hibas minta:

public function __construct(Filesystem $file, Cache $cache)

{
$this->file = $file;
$this->cache = $cache;
$data = $this->file->get('http://example.com');
$this->write($data);
}
Javitva:

public function _ construct(Filesystem $file, Cache $cache)

{
$this->file = $file;
$this->cache = $cache;

}

A tesztelésnél a kovetkezé harom dolgot tessziik :

1. Rendeziink
2. Végrehajtunk
3. Ervényesitiink

Ha egy osztaly konstruktora tele van sajat metédusokkal, minden egyes tesztedben szamitanod kell
rajuk.

% Tipp: Csak egyszertien : a konstruktorokban csak a fliggéségeket hatarozzuk meg.

Elsé fejezet: Tesztelj mindent 12

3. Es...

Elérelatni, hogy milyen feladatokkal bizzuk meg az osztalyunkat nehéz lehet elsére. Hallottuk eleget
az Egyetlen Feladat Torvényét, de nehéz ezt a gyakorlatban megvaldsitani.

4 méd, hogy észrevegyiik a tul sok mindennel foglalkozé
osztalyokat

1. Egyszertien csak sorold fel, mit kell egy osztalynak tennie. Ha tul sokszor mondod azt, hogy
és, valdszintileg ujra kell irni.

2. Tanuld meg azonnal analizalni a metddus Gsszes sorat. Jo esetben a metddus csak parat
tartalmaz (jo lenne, ha egyet). Ha tdl sok sor van, akkor valdszintileg nincs minden rendben.

3. Ha nem tudsz j6 nevet talalni az osztalyodnak, lehet, hogy a logika santit.

4. Ha minden mas bukik, mutasd meg valaki masnak. Ha azonnal nem értik meg mire j6 az
osztaly (*Ez itt a jelszot hasheli *), valtoztasd meg.

Néhany példa kezdetnek:

A Filelogger osztaly adatok naplozasaval foglalkozik.

« A TwitterStream osztaly csiripeket tolt le a Twitter API-val, ha felhasznalonevet adunk meg
neki.

« AValidator osztaly adatokat ellendriz elére meghatarozott szabalyok szerint .
« A SQLBuilder SQL lekérdezést készit valamilyen adathalmazbol.
A UserAuthenticator osztaly ellendrzi a felhasznald beléptetését.

Figyeld meg a fenti leirdsban egyetlen és sem tiinik fel. gy sokkal konnyebb tesztelni, mert nem kell
tobb objektummal torédni.

% Tipp: Egy osztaly-egy feladat. Ez az Egyetlen Feladat Térvénye.

4. Tal sok utvonal? Polimorfizmust neki!

A polimorfizmus megértéséhez sziikség van egy aha pillanatra®. Ha egyszer megérted, sosem feleded
el.

Definicié: A polimorfizmus kifejezés egy komplex osztaly felosztasat jelenti sok hasonléra,
amelyek kozos interfészt hasznalnak, de sajat funkcidval rendelkeznek.

®https://tutsplus.com/2012/04/the-aha-moment/

https://tutsplus.com/2012/04/the-aha-moment/
https://tutsplus.com/2012/04/the-aha-moment/

© 00 N O O b W N =

I S SN
O O b WO N~ O

O O b W N =

Elsé fejezet: Tesztelj mindent 13

Ha ra akarunk jonni, vajon egy osztalynak jol jonne a polimorfizmus, akkor keresni kell a switch
allitasokat (vagy a tul sok feltételt). Képzelj el egy bankszamla osztalyt, amelynek ki kell szamolnia
az évi kamatot a szamlatipustdl fiiggden. Itt egy egyszertsitett példa:

function addYearlylInterest($balance)

{
switch ($this->accountType) {
case 'checking':
$rate = $this->getCheckinglnterestRate();
break;

case 'savings':
$rate = $this->getSavingsinterestRate();

break;

// other types of accounts here

return $balance + ($balance * $rate);

Hasonl6 esetben értelmesebb megoldas lenne ha a hasonlé logikat kisebb osztalyok hasznalnak fel.

Definialj egy interfészt, hogy biztosan legyen egy getRate metddusod. Az interfészeket sokszor
szerz6désnek irjak le. Minden implementacio a szerz6désnek megfeleléen miikodik.

interface BankInterestInterface {
public function getRate();

Create a checking implementation of the interface.

class CheckingInterest implements BankInterestInterface {
public function getRate()

{

return .01;

Create a savings implementation of the interface.

O O B W N -

O 0 9 O U » W N =~

-
o

O 00 9 O U » W N =~

-
o

Elsé fejezet: Tesztelj mindent 14

class SavingsInterest implements BankInterestlInterface {
public function getRate()

{

return .03;

Az eredeti metddus igy sokkal érthet6bb. Az $interest valtozd tipusara el6re utalunk . Ezzel
lehetetlenné valik a getRate metddus hivasa, ha eredetileg nem definidltuk. Ezért irtunk egy
interfészt. Minden implementacidja az interfésznek tartalmaz egy getRate metddust.

function addYearlylnterest($balance, BankInterestInterface $interest)

{

$rate = $interest->getRate();

return $balance + ($balance * $rate);
$bank = new BankAccount;

$bank->addYearlylInterest (100, new Checkinglnterest); // 101
$bank->addYearlylnterest(100, new SavingsInterest); // 103

Még jobb az, hogy igy konnyebb tesztelni, hiszen a funkcié csak egyetlen uton haladhat. Ne
idegeskedj a szintaxis miatt . Nemsokara azt is atvessziik.

public function testAddYearlylInterest()

{
$interest = Mockery: :mock('BankInterestInterface');
$interest->shouldReceive('getRate')->once()->andReturn(.03);
$bank = new BankAccount;
$newBalance = $bank->addYearlylnterest(100, $interest);
$this->assertbEquals(103, $newBalance);

}

Tipp: A polimorfizmussal nagyobb osztalyokat kisebbekre lehet felosztani, amelyeket
gyakran alosztalyoknak neveznek. Emlékeztetlek: minél kisebb az osztaly , annnal konyebb
tesztelni.

Elsé fejezet: Tesztelj mindent 15

5. Tal sok fliggdség

Az *Ellenérzésmanias konstruktor * tippben , beszéltiink arrél, hogy a fiiggdségeket a konstruktoron
keresztiill kell meghatarozni. Ha olyasmit tapasztalsz, hogy egy osztaly tal sokat kér, valoszintleg
nincs minden rendben vele.

“Mindig djragondolom egy osztaly felépitését, ha tobb mint négy [fiiggbséget tartal-

maz]” - Taylor Otwell

Alapvet6 torvényszertiség az objektum-orientalt programozasban, hogy 6sszefiiggés van az osztaly,
vagy metodus paraméterei szamanak, illetve flexibilitasa kozott (tesztelhet6ség!). Minden esetben,
amikor megszabadulsz egy paramétertdl, vagy fliggéségtol, javitsz a kodon.

Ha az osztalyod tul sok fiigg6séget tartalmaz, ird djra.

6. Tul sok hiba

Egyszer hallottam Ben Orensteint6l azt, hogy a hibak imadjak a tarsasagot. Ez eddig a legigazabb
allitas, amit eddig hallottam. Ha tal sokkal talalkozol egyetlen osztalyon belil, akkor ez egy
segélykialtas alosztalyok és tjrairas utan. Gondoljunk csak bele: a hiba létrejottének egyik alapvet6
oka az, hogy els6 alkalommal sem értetted a kod altal nyujtott megoldast; tal osszetett volt ! Tudod
mit? Osszetett kod sokszor egyenld a tesztelhetetlen koddal. Ez aztan egy csomd hibédhoz vezet, és,
mint tudjuk, a baj nem jar egyediil.

Definici6: Coupling -csatolas- sz6 azt jeliili, hogy a rendszerben két komponens mennyire
figg egymastol. Ha az egyik hidnya hatassal van a masikra, akkor tightly coupled coderél
-erésen csatolt- beszéliink.

Ahogyan Ben mondta, ha hiba volt a hetedik sorban, akkor jo esély van ra, hogy gond lesz a
tizenegyedikben is. Vésd ezt a fejedbe.

Tipp: Ha hasonlé hibakkal talalkozols, gondolkod; el arrél, hogyan lehetne kisebb (tesztel-
het6) osztalyokba pakolni a kodot. A kod nem csak tesztelhetébb lesz, de konnyebben lehet
majd olvasni.

A baj nem jar egyediil. Kar mar az elsét is keresgélni.

"https://twitter.com/taylorotwell/status/334789979920285697

https://twitter.com/taylorotwell/status/334789979920285697
https://twitter.com/taylorotwell/status/334789979920285697

Elsé fejezet: Tesztelj mindent 16

Teszt zsargon

Annyira nem vagyok elszalva magamtdl, hogy ebbél a konyvbél fogsz mindent megtanulni a
tesztelésrél (Legalabb is reménykedem). Ha hasonlitunk, akkor késé éjjel is a webet fogod bongészni
infok utan.

E kozben mindenféle zavard kifejezéssel talalkozhatsz. Ett6l mar csak az a rosszabb, hogy a
terminolégia minden nyelvben mas! Anyam! Ebben a konyben — az egyszeriiség szellemében —
mindent a lehet6 legegyszertibben probalok magyarazni. Nézd at a kovetkez6 definiciokat, de
most nem muszaj megjegyezni 6ket. Az igazsag az, hogy nem szeretem a sok zsargont. Ha a sz
elsére nem jelent semmit, akkor meg kell valtoztatni. A fejlesztéknek is lehet valamit tanulni az
asztrofizikusoktol.

“A legérthet6bb tudomany a nyelv szempontjabodl, szerintem, az asztrofizika. What do
you call spots on the sun? Hogyan hivod a foltokat a Napon? Napfoltoknak. Azon
részeit az Grnek, ahova belezuhansz, és sosem jossz ki? Fekete lyukaknak. Nagy voros
csillagokat? Voros oridsnak. Adok egy feladatot kollegdimnak. O mond egy szét, ha
pedig megértettem, azt mondom, “O, ez azt jelenti, hogy da-da-da-de-da?” - Neil
Degrasse Tyson

Egységtesztelés

Gondolj az egységtesztelésre, mintha egy finom féstivel mennél at minden osztalyon, és metoduson,
hogy megbizonyosodj, minden megfeleléen mikodik. Az egységtesztelést izolacioban kell végezni,
hogy a hibakeresés a lehet6 legegyszer(ibb legyen. 80% tesztjeidnek ilyen lesz.

Ha ez segit, ha az egységtesztelésre gondolsz, mondogasd egy objektum, és csak egy objektum. Ha a
teszt nem sikeriil, azonnal tudni fogod hol a hiba.

Modell Tesztelés

Bizonyos Ruby on Rails kozosségi tagok modell tesztelésre gondolnak (még akkor is ha a tesztek
adatbazisforgalommal jarnak) egységteszteléskor. Ez egy kicsit csalds lehet. Az egységteszt izolaltan
mukodik a kilsé figgdségektsl. Ha ezt az alapvetd szabalyt nem tartjuk be , akkor mar nem
egységtesztet hajtunk végre. Ez ekkor mar integracios teszt (errél nemsokara tobbet).

Ebben a konyvben, ha a modelleket teszteljiik, ehhez a torvényszeriiséghez tartjuk magunkat .

Képzeld el, hogy egy metdédus a modelledben email kiildésre val6. Ha a megfelel6 mintat koveted,
akkor van egy csak az emailek kiildésével foglalkozd osztalyod (Egyetlen FelelGsség Torvénye).
Ebben az esetben viszont egy gonddal szembesiiliink: hogyan tesztelhetjiik ezt a metddust, ha egy
kiils6 Mailer osztalyt hiv? Ekkor utdnzasokat hasznalunk, amelyekrél még sokat hallasz ebben
a konyvben. Egy hamis Mailer osztalyt hozunk létre, és azt varjuk, hogy a megfelel6 metddust
hivjak. Igy, még ha a Mailer komponens ebben a pillanatban nem miikédik (sajdt tesztjei lesznek),
megbizonyosodhatunk arrél, hogy a modell gy miikodik, ahogyan elképzeltiik.

Elsé fejezet: Tesztelj mindent 17

Integracio Tesztelés

Ha az egységteszt bizonyitotta, hogy a komponens miikodik izolacidban, az integracids teszt éppen
az ellenkez6je. Ezek a tesztek sok részét probaljak ki az applikacionak, és alapvet6en nem hasznalnak
utanzatokat. Ilyenkor készits egy erre a célra kijelolt adatbazist.

Példaul egy autd. Mondjuk a motor és a tank kiilon-kiilon miikodik (dtmentek az egységteszten), de
tudnak-e egytitt dolgozni? Az integracio tesztelés erre vald.

Funkcionalis (Kontroller) Tesztelés

Hogy hivjuk a kontrollerek tesztelését? Bizonyos keretrendszerekben ezt funkcionalis teszteknek
nevezziik (végil is azok), de mi -dobpergés - kontroller tesztelésnek hivjuk!

Tradicionalisan a funkci6 tesztelés arra jo, hogy te, és a tarsaid megbizonyosodjatok arrél, hogy a
kod azt teszi, amit elvarnak téle. Az egységtesztelés mindig egy egységén az osztalynak mikodik,
a funkcionalis tobb részét hasznalhatja az applikacionak. Ezek a tesztek leggyakrabban kiviilrél
jonnek, ezért is hivjak Rendszer Teszteknek. Egy fontos torvény, hogy a funkcionalis tesztelés nem
igényel szervert.

Elfogadasi teszt

Mar megtanultuk, hogy a funkcionalis tesztek arra jok, hogy a fejleszt6i garda elvarasai szerint
probaljuk ki a programot. Ennek ellenére, el6fordulhat, hogy a teszt sikeres, viszont a kliens nincs
megelégedve az eredménnyel. Ilyenkor van szerepe az elfogadasi tesztnek. Masképpen, ez a kod
megfelel -e a kliens elvarasainak? A program atmehet mindenféle egység-, funkcionalis, integracios
teszten , de megbukik az elfogadasin, mert a kliens rajott, hogy nem minden gy van, ahogyan
elvarta.

% Tipp: A funkcionalis tesztek a fejleszt6k elvarasait igazoljak, az elfogadasiak pedig a
kliensét.

Gondolj a Tuts+ Premiumra® egy edukacios szolgaltatasra, amelyen dolgozom. Nemrégiben ,
hozzaadtunk egy funkciot, amely lehetévé teszi konyvjelzék 1étrehozasat, amelyekkel elmenthetik a
tanfolyamokat, és konyveket, amelyeket kés6bb szeretnének elolvasni . Miel6tt a fejleszt6k egyetlen
sor kodot leirnanak, meg kell érteniiik, hogy mit is varnak el tlik a tartalmakért felelds csapat tagjai
— hiszen 6k kérték a funkciot. Ez egy elfogadasi tesztet igényel.

®http://tutsplus.com

http://tutsplus.com
http://tutsplus.com

Els6 fejezet: Tesztelj mindent

Meg szeretném jeldlni azt amit tanulni akarok
Bejelentkezett felhasznald vagyok

Koényvjelz6t akarok létrehozni

18

Ha ez az elfogadasi teszt atmegy, akkor az egész funkcio teljességében elfogadott, megfelel a kliens

(ebben az esetben a tartalmakért felels csapat) elvarasainak.

0 00 Fruts+ Premium eBook: Pl x

L C' | @ htips://tutsplus.com/ebook/php-team-development/

EBOOKS

ADD TO BOOKMARKS 'd

https: f/tutsplus.com/bookmarks jeffreyway/

m Development

Y AOCCRQEH P

%% MY ACCOUNT R MY BOOKMARKS A SIGN ouT

Browse Premium Content

Search Tuts+ Premium

All Content - Q

Topics:

Audio & Music 1
Business 20
Mobile Development 7
Photography 1
Photoshop 3
Vectors 1
‘Web Design 9
‘Web Development 26

A konyvjelzé funkcié a Tuts+ Premiumon elfogadasi teszteket igényelt.

A konyv végén megtanulod, hogyan kell elfogadasi teszteket irni a Codeception keretrendszerrel.
Ezzel emberi nyelven definialhatjuk, hogyan kell m{ikodnie az applikacionak.

A tesztelés koltséges?

Elterjedt nézet az, hogy a tesztek ugyan jol jonnek, de amikor igazi munkarél van szo, a kliens
pénztarcija szabja meg a hatart.E szerint nincs az a kliens, aki megduplazna a fizetett 6sszeget a

nagyobb biztonsagért.

Van ennek alapja? Nem. Sok tanulmany szol arrél, hogy a teszt-vezérelt fejlesztés megroviditi az

eldallitési ciklust .

Elsé fejezet: Tesztelj mindent 19

Nyugi

Be kell vallanom, hogy ezek a szavak, és technikak sokaig idegenek voltak szamomra is. Nem
varom el, hogy mindent értsetek, és emlékezzetek rajuk. Nyugi; még el sem jutottunk a “Bevezetés a
PHPUnitba” fejezetig! Egyenlére meg kell jegyezni, hogy ameddig egy applikaciot fejlesztesz sokféle
tesztelési modszert fogsz hasznalni.

A kellemetlen igazsag az, hogy a fejleszt6i kozosség csak nem tud megegyezni a terminoldgian.
Latni fogsz kifejezéseket, mint rendszer teszt, kérési specifikaciok, medium tesztek, és még sok mas.
Legtobbszor, atfedések vannak a fentebb emlitett kifejezések kozott. Ne zavarjon ez most téged; a
legfontosabb, hogy elkezdj tesztelni. Ki fogod alakitani a sajat stilusodat.

Ahogyan mondjak, mindegy hogyan tesztelsz... ameddig tesztelsz.

Nem csak a terminologiaval van igy . Mostansag a legtobb fejleszt6 elfogadja, hogy nagyon fontos
teszteket irni, viszont, ahogyan irjak 6ket, mar nagyon kiilonbézik. Bizonyos személyek, mint Bob
Martin (Uncle Bob), TDD filozéfia szigora betartasat ajanlja : egyetlen sor produkciés kodot se irj,
ameddig nem irtal tesztet ra.

“Lehetetlenné valt egy szoftverfejleszt szamara, hogy profinak nevezze magat, ha nem
végez teszt-vezérelt fejlesztést. “ - Bob Martin®

Némely, szintén prominens programozék, mint DHH (Ruby on Rails létrehozdja), nyugodtan
bevallja, hogy 6k a teszteket a produkeios kod utan irjak- ugy 80 szazalékban.

“Ne tord magad, hogy el6zetesen tesztelj minden modellt, kontrollert, és nézetet (az én
egyenlegem 20% el6zetes, 80% utodtesztelés).” - David Heinemeier Hansson™

A te munkad az, hogy a lehet6 legtobb helyr6l szerezz informaciot, majd alakitsd ki azt a stilust, amit
te (vagy a fejleszt6i csapat) kedvel. Ez a konyv nem Szentiras, sokkal inkabb sajatos adaptacioja a
tesztelésnek, amelyet magadéva tehetsz.

*http://www.youtube.com/watch?feature=player_detailpage&v=KtHQGs3zFAM#t=77s
"®http://37signals.com/svn/posts/3159-testing-like-the-tsa

http://www.youtube.com/watch?feature=player_detailpage&v=KtHQGs3zFAM#t=77s
http://37signals.com/svn/posts/3159-testing-like-the-tsa
http://www.youtube.com/watch?feature=player_detailpage&v=KtHQGs3zFAM#t=77s
http://37signals.com/svn/posts/3159-testing-like-the-tsa

	Tartalomjegyzék
	Legyetek üdvözölve
	Megkezdődött
	Nekem írták ezt a könyvet?
	Miért Laravel specifikus?
	Gyakorlatok
	Hibák
	Hogyan olvasd ezt a könyvet
	Jelentkezz nekem

	Bele az ismeretlenbe
	Első fejezet: Tesztelj mindent
	Már eddig is teszteltél
	6 nyerő tulajdonsága a TDD-nek
	1. Biztonság
	2. Részvétel
	3. Felnőttkorba lépés
	4. A tesztelhetőség minőségi architektúrát biztosít
	5. Dokumentáció
	6. Szórakoztató

	Mit kell tesztelnem?
	6 A tesztelhetetlen kód jelei
	1. New Operátorok
	2. Ellenőrzésmániás konstruktorok
	3. És…
	4 mód, hogy észrevegyük a túl sok mindennel foglalkozó osztályokat

	4. Túl sok útvonal? Polimorfizmust neki!
	5. Túl sok függőség
	6. Túl sok hiba

	Teszt zsargon
	Egységtesztelés
	Modell Tesztelés
	Integráció Tesztelés
	Funkcionális (Kontroller) Tesztelés
	Elfogadási teszt

	Nyugi

