

Laravel: From Apprentice To Artisan
Advanced Architecture With Laravel 4

Taylor Otwell

This book is for sale at http://leanpub.com/laravel

This version was published on 2013-09-04

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and
many iterations to get reader feedback, pivot until you have the right book and build traction once
you do.

©2013 Taylor Otwell

http://leanpub.com/laravel
http://leanpub.com
http://leanpub.com/manifesto

Contents

Dependency Injection . 1
The Problem . 1
Build A Contract . 2
Taking It Further . 4
Too Much Java? . 6

Dependency Injection
The Problem

The foundation of the Laravel framework is its powerful IoC container. To truly understand the
framework, a strong grasp of the container is necessary. However, we should note that an IoC
container is simply a convenience mechanism for achieving a software design pattern: dependency
injection. A container is not necessary to perform dependency injection, it simply makes the task
easier.

First, let’s explore why dependency injection is beneficial. Consider the following class and method:

1 class UserController extends BaseController {

2

3 public function getIndex()

4 {

5 $users = User::all();

6

7 return View::make('users.index', compact('users'));

8 }

9

10 }

While this code is concise, we are unable to test it without hitting an actual database. In other
words, the Eloquent ORM is tightly coupled to our controller. We have no way to use or test this
controller without also using the entire Eloquent ORM, including hitting a live database. This code
also violates a software design principle commonly called separation of concerns. Simply put: our
controller knows too much. Controllers do not need to know where data comes from, but only how
to access it. The controller doesn’t need to know that the data is available in MySQL, but only that
it is available somewhere.

Separation Of Concerns
Every class should have a single responsibility, and that responsibility should be entirely
encapsulated by the class.

So, it will be beneficial for us to decouple our web layer (controller) from our data access layer
completely. This will allow us to migrate storage implementations easily, as well as make our code
easier to test. Think of the “web” as just a transport layer into your “real” application.

Dependency Injection 2

Imagine that your application is like a monitor with a variety of cable ports. You can access the
monitor’s functionality via HDMI, VGA, or DVI. Think of the Internet as just a cable into your
application. The bulk of a monitor’s functionality is independent of the cable. The cable is just a
transport mechanism just like HTTP is a transport mechanism for your application. So, we don’t
want to clutter up our transport mechanism (the controller) with application logic. This will allow
any transport layer, such as an API or mobile application, to access our application logic.

So, instead of coupling our controller to the Eloquent ORM, let’s inject a repository class.

Build A Contract

First, we’ll define an interface and a corresponding implementation:

1 interface UserRepositoryInterface {

2

3 public function all();

4

5 }

6

7 class DbUserRepository implements UserRepositoryInterface {

8

9 public function all()

10 {

11 return User::all()->toArray();

12 }

13

14 }

Next, we’ll inject an implementation of this interface into our controller:

1 class UserController extends BaseController {

2

3 public function __construct(UserRepositoryInterface $users)

4 {

5 $this->users = $users;

6 }

7

8 public function getIndex()

9 {

10 $users = $this->users->all();

11

12 return View::make('users.index', compact('users'));

Dependency Injection 3

13 }

14

15 }

Now our controller is completely ignorant of where our user data is being stored. In this case,
ignorance is bliss! Our data could be coming from MySQL, MongoDB, or Redis. Our controller
doesn’t know the difference, nor should it care. Just by making this small change, we can test our
web layer independent of our data layer, as well as easily switch our storage implementation.

Respect Boundaries
Remember to respect responsibility boundaries. Controllers and routes serve as a mediator
between HTTP and your application. When writing large applications, don’t clutter them
up with your domain logic.

To solidify our understanding, let’s write a quick test. First, we’ll mock the repository and bind it to
the application IoC container. Then, we’ll ensure that the controller properly calls the repository:

Dependency Injection 4

1 public function testIndexActionBindsUsersFromRepository()

2 {

3 // Arrange...

4 $repository = Mockery::mock('UserRepositoryInterface');

5 $repository->shouldReceive('all')->once()->andReturn(array('foo'));

6 App::instance('UserRepositoryInterface', $repository);

7

8 // Act...

9 $response = $this->action('GET', 'UserController@getIndex');

10

11 // Assert...

12 $this->assertResponseOk();

13 $this->assertViewHas('users', array('foo'));

14 }

Are You Mocking Me
In this example, we used the Mockery mocking library. This library provides a clean, ex-
pressive interface for mocking your classes. Mockery can be easily installed via Composer.

Taking It Further

Let’s consider another example to solidify our understanding. Perhaps we want to notify customers
of charges to their account. We’ll define two interfaces, or contracts. These contracts will give us the
flexibility to change out their implementations later.

1 interface BillerInterface {

2 public function bill(array $user, $amount);

3 }

4

5 interface BillingNotifierInterface {

6 public function notify(array $user, $amount);

7 }

Next, we’ll build an implementation of our BillerInterface contract:

Dependency Injection 5

1 class StripeBiller implements BillerInterface {

2

3 public function __construct(BillingNotifierInterface $notifier)

4 {

5 $this->notifier = $notifier;

6 }

7

8 public function bill(array $user, $amount)

9 {

10 // Bill the user via Stripe...

11

12 $this->notifier->notify($user, $amount);

13 }

14

15 }

By separating the responsibilities of each class, we’re now able to easily inject various notifier imple-
mentations into our billing class. For example, we could inject a SmsNotifier or an EmailNotifier.
Our biller is no longer concerned with the implementation of notifying, but only the contract. As
long as a class abides by its contract (interface), the biller will gladly accept it. Furthermore, not only
do we get added flexibility, we can now test our biller in isolation from our notifiers by injecting a
mock BillingNotifierInterface.

Be The Interface
While writing interfaces might seem to a lot of extra work, they can actually make your
development more rapid. Use interfaces to mock and test the entire back-end of your
application before writing a single line of implementation!

So, how do we do dependency injection? It’s simple:

1 $biller = new StripeBiller(new SmsNotifier);

That’s dependency injection. Instead of the biller being concerned with notifying users, we simply
pass it a notifier. A change this simple can do amazing things for your applications. Your code
immediately becomes more maintainable since class responsibilities are clearly delineated. Also,
testability will skyrocket as you can easily inject mock dependencies to isolate the code under test.

But what about IoC containers? Aren’t they necessary to do dependency injection? Absolutely not!
As we’ll see in the following chapters, containers make dependency injection easier to manage, but
they are not a requirement. By following the principles in this chapter, you can practice dependency
injection in any of your projects, regardless of whether a container is available to you.

Dependency Injection 6

Too Much Java?

A common criticism of use of interfaces in PHP is that it makes your code too much like “Java”.
What people mean is that it makes the code very verbose. You must define an interface and an
implementation, which leads to a few extra key-strokes.

For small, simple applications, this criticism is probably valid. Interfaces are often unnecessary in
these applications, and it is “OK” to just couple yourself to an implementation you know won’t
change. There is no need to use interfaces if you are certain your implementation will not change.
Architecture astronauts will tell you that you can “never be certain”. But, let’s face it, sometimes
you are.

Interfaces are very helpful in large applications, and the extra key-strokes pale in comparison to the
flexibility and testability you will gain. The ability to quickly swap implementations of a contract
will “wow” your manager, and allow you to write code that easily adapts to change.

So, in conclusion, keep in mind that this book presents a very “pure” architecture. If you need to scale
it back for a small application, don’t feel guilty. Remember, we’re all trying to “code happy”. If you’re
not enjoying what you’re doing or you are programming out of guilt, step back and re-evaluate.

	Table of Contents
	Dependency Injection
	The Problem
	Build A Contract
	Taking It Further
	Too Much Java?

