De Aprendiz a Artesao

Arquitetura de Aplicacao Avancada com Laravel 4

Por Taylor Otwell

Laravel: De Aprendiz a Artesao (Brazilian
Portuguese)

Taylor Otwell and Pedro Borges
This book is for sale at http://leanpub.com/laravel-pt-br

This version was published on 2013-10-01

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools
and many iterations to get reader feedback, pivot until you have the right book and build
traction once you do.

©2013 Taylor Otwell and Pedro Borges

http://leanpub.com/laravel-pt-br
http://leanpub.com
http://leanpub.com/manifesto

Tweet This Book!

Please help Taylor Otwell and Pedro Borges by spreading the word about this book on Twitter!
The suggested tweet for this book is:
Acabei de comprar o livro "Laravel: De Aprendiz a Artesao” por @taylorotwell.

Find out what other people are saying about the book by clicking on this link to search for this
hashtag on Twitter:

https://twitter.com/search/#

http://twitter.com
https://twitter.com/search/#

Conteudo

Injecidode Dependéncia

O Problema

Construaum Contrato e e e e e

Indo Além

N RN = =

© 00 N O O b W N =

-
o

Injecao de Dependéncia

O Problema

A fundacdo do framework Laravel é seu poderoso container de inversdao de controle (inversion
of control ou IoC, em inglés). Para compreender o framework de verdade, é necessario ter
um bom entendimento sobre o funcionamento do container. Entretanto, nés devemos notar
que o container IoC é simplesmente um mecanismo conveniente para se alcancar o padrao de
desenvolvimento de programas injecdo de dependéncia (dependency injection, em inglés). O uso
do container ndo é obrigatoério para se injetar dependéncias, ele apenas facilita esta tarefa.

Em primeiro lugar, vamos explorar porque a injecdo de dependéncia é vantajosa. Considere a
seguinte classe e método:

class UserController extends BaseController {

public function getIndex()
{

$users = User::all();

return View: :make('users.index', compact('users'));

Mesmo sendo um cédigo conciso, ndo podemos testa-lo sem acessar um banco de dados. Em
outras palavras, o ORM Eloquent esta fortemente acoplado ao nosso controlador. Nao podemos,
de forma alguma, usar ou testar este controlador sem usar também todo o Eloquent, incluindo a
necessidade de um banco de dados. Este codigo também viola um principio de desenvolvimento
de programas conhecido como separacdo de conceitos (separation of concerns ou SoC, em inglés).
Em outras palavras: nosso controlador sabe mais do que deveria. Controladores ndo precisam
saber de onde os dados vém, mas somente como acessa-los. O controlador nao precisa saber que
os dados estdo disponiveis em MySQL, apenas que eles existem em algum lugar.

0 Separacao de conceitos

Toda classe deve ter apenas uma responsabilidade e esta responsabilidade deve ser
completamente encapsulada pela classe.

Sendo assim, é melhor desacoplar completamente nossa camada web (controlador) da nossa
camada de acesso aos dados. Isso permitira migrar mais facilmente nossa implementacao de

© 00 N O O & W N =

I ==
B W N », O

Injecio de Dependéncia 2

armazenamento de dados e tornard o nosso cddigo mais facil de ser testado. Pense na “web”
apenas como uma camada de transporte para a sua aplicagdo “real”.

Imagine que sua aplicacdo é um monitor com portas para diversos cabos. Vocé pode acessar as
funcionalidades do monitor via HDMI, VGA ou DVI. Pense na internet como sendo apenas um
cabo conectado a sua aplicagdo. O monitor funciona independente do cabo utilizado. O cabo
¢ apenas um meio de transporte, assim como HTTP é um meio de transporte que leva a sua
aplicagdo. Assim sendo, nés ndo queremos entupir nosso meio de transporte (o controlador) com
a parte logica da aplicacdo. Isso permitira que qualquer camada de transporte, tais como uma
API ou aplicacdo moével, acessem a logica da nossa aplicacdo.

Por isso, ao invés de acoplar o controlador ao Eloquent, vamos injetar uma classe repositoria.

Construa um Contrato

Em primeiro lugar, vamos definir uma interface e uma implementagao correspondente:

interface UserRepositorylnterface {

public function all();

class DbUserRepository implements UserRepositorylnterface {

public function all()
{

return User::all()->toArray();

Injecio de Dependéncia 3
Em seguida, vamos injetar uma implementacao desta interface em nosso controlador:

class UserController extends BaseController ({

public function _ construct(UserRepositorylInterface $users)

{
$this->users = $users;
}
public function getIndex()
{
$users = $this->users->all();
return View: :make('users.index', compact('users'));
}

Nosso controlador é completamente ignorante quanto ao local onde os dados estdo sendo
armazenados. Neste caso, esta ignorancia é benéfica! Os dados podem estar em um banco de
dados MySQL, MongoDB ou Redis. Nosso controlador nao reconhece a diferenga, isso nao
¢ sua responsabilidade. Fazendo essa pequena mudanca, nés podemos testar nossa camada
web separadamente da nossa camada de dados, além de podermos facilmente alternar nossa
implementacdo de armazenamento de dados.

% Respeite os limites

Lembre-se de respeitar os limites da responsabilidade. Controladores e rotas servem
como mediadores entre HTTP e sua aplicacdo. Ao escrever uma aplicagdo de grande
porte, ndo polua-os com légica de dominio.

Para solidificar nossa compreensao, vamos escrever uma teste rapido. Em primeiro lugar, vamos
simular (mock, em inglés) o repositério vinculando-o ao container IoC da aplicagdo. Em seguida,
nos certificaremos de que o controlador invoca o repositério devidamente:

© 0 N O O & W N =

10
11
12
13
14

<N O O b W N -

Injegédo de Dependéncia

public function testIndexActionBindsUsersFromRepository()

{
// Preparar. ..
$repository = Mockery: :mock('UserRepositorylnterface');
$repository->shouldReceive('all')->once()->andReturn(array('foo'));
App: :instance('UserRepositorylnterface', $repository);
// Agir. ..
$response = $this->action('GET', 'UserController@getIndex');
// Conferir. ..
$this->assertResponseOk();
$this->assertViewHas('users', array('foo'));
}
» Faca de conta
p Neste exemplo, n6és usamos uma biblioteca chamada Mockery. Esta biblioteca oferece
uma interface limpa e expressiva para fazer os mocks das suas classes. Mockery pode
ser facilmente instalado via Composer.
Indo Além

Vamos considerar um outro exemplo para solidificar nossa compreensao. Suponha que nos
queremos notificar nossos clientes sobre as cobrangas realizadas em suas contas. Para isso, vamos
definir duas interfaces, ou contratos. Estes contratos nos darao flexibilidade para mudar suas
implementacdes no futuro.

interface BillerInterface {

public function bill(array $user, $amount);

interface BillingNotifierInterface {

public function notify(array $user, $amount);

Injecio de Dependéncia 5

Continuando, vamos construir uma implementagao do nosso contrato chamadoBillerInter face:

class StripeBiller implements BillerInterface {

public function __construct(BillingNotifierInterface $notifier)

{
$this->notifier = $notifier;
}
public function bill(array $user, $amount)
{
// Cobrar o usuario via Stripe. ..
$this->notifier->notify($user, $amount);
}

}

Porque separamos a responsabilidade de cada classe, agora nés podemos facilmente injetar
varias implementagdes de notificagdo em nossa classe de cobranca. Por exemplo, nés poderiamos
injetar um SmsNotifier ou um EmailNotifier. A cobranca nio esta mais preocupado com a
implementacdo da notificacdo, somente com o contrato. Enquanto uma classe estiver de acordo
com o contrato (interface), a cobranca ira aceita-la. Além do mais, nds nao apenas adicionamos
tlexibilidade, mas também a possibilidade de testarmos a nossa cobranca separadamente dos
notificadores apenas injetando um mock BillingNotifierInterface.

% Use interfaces

Escrever interfaces pode parecer muito trabalho extra, mas na verdade, elas tornam o
seu desenvolvimento mais rapido. Use interfaces para simular e testar todo o back-end
da sua aplicacio antes de escrever uma unica linha de implementac&o!

Entdo, como nés podemos injetar uma dependéncia? E simples assim:
$biller = new StripeBiller(new SmsNotifier);

Isso é injecdo de dependéncia. Ao invés da cobranca se preocupar em notificar os usuarios,
nods simplesmente lhe passamos um notificador. Uma mudanca simples como esta pode fazer
maravilhas a sua aplicagdo. Seu codigo instantaneamente se torna mais facil de manter, porque as
responsabilidades de cada classe foram claramente definidas. A testabilidade de suas aplicacoes
aumentara consideravelmente porque agora vocé pode injetar mocks de dependéncias para isolar
o codigo em teste.

Mas, e quanto aos containers IoC? Eles ndo sdo necessarios na injecao de dependéncia? Claro
que nao! Conforme veremos nos proximos capitulos, containers tornam a injecao de dependéncia
mais facil de gerenciar, mas o seu uso nao é obrigatério. Seguindo os principios deste capitulo,
vocé ja pode praticar injecdo de dependéncia em qualquer projeto, mesmo que vocé ainda néo
tenha um container a sua disposicao.

Injecio de Dependéncia 6

Nao é muito Java?

Uma critica muito comum do uso de interfaces em PHP é que elas tornam o seu coédigo muito
parecido com o “Java”. Em outras palavras, o cddigo se torna muito verbal. Vocé precisa definir
uma interface e uma implementagio; isso exigira algumas “tecladas” a mais.

Para aplicagoes simples e menores, esta critica pode até ser valida. Muitas vezes, as interfaces
nao sao necessarias nestas aplicacoes e é perfeitamente “ok” ndo usa-las. Se vocé tem certeza que
a implementacdo ndo mudaréa, vocé nao precisa criar uma interface.

Ja para aplicacoes maiores, as interfaces serdo muito uteis. As tecladas extras ndo serdo nada em
comparagao com a flexibilidade e testabilidade que vocé ganhara. Poder mudar rapidamente a
implementagdo de uma contrato arrancara um “vau” do seu chefe, além de permitir que vocé
escreva um codigo que facilmente se adapta a mudangas.

Para concluir, tenha em mente que este livro apresenta uma arquitetura muito “pura”. Caso vocé
precise reduzi-la para uma aplicacdo menor, ndo sinta-se culpado. Lembre-se, vocé esta tentando
“programar com alegria”. Se vocé ndo gosta do que faz ou estd programando por culpa, pare um
pouco e faca uma reavaliacao.

	Índice analítico
	Injeção de Dependência
	O Problema
	Construa um Contrato
	Indo Além
	Não é muito Java?

