

Laravel: De Aprendiz a Artesão (Brazilian
Portuguese)

Taylor Otwell and Pedro Borges

This book is for sale at http://leanpub.com/laravel-pt-br

This version was published on 2013-10-01

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools
and many iterations to get reader feedback, pivot until you have the right book and build
traction once you do.

©2013 Taylor Otwell and Pedro Borges

http://leanpub.com/laravel-pt-br
http://leanpub.com
http://leanpub.com/manifesto

Tweet This Book!
Please help Taylor Otwell and Pedro Borges by spreading the word about this book on Twitter!

The suggested tweet for this book is:

Acabei de comprar o livro ”Laravel: De Aprendiz a Artesão” por @taylorotwell.

Find out what other people are saying about the book by clicking on this link to search for this
hashtag on Twitter:

https://twitter.com/search/#

http://twitter.com
https://twitter.com/search/#

Conteúdo

Injeção de Dependência . 1
O Problema . 1
Construa um Contrato . 2
Indo Além . 4
Não é muito Java? . 6

Injeção de Dependência
O Problema

A fundação do framework Laravel é seu poderoso container de inversão de controle (inversion
of control ou IoC, em inglês). Para compreender o framework de verdade, é necessário ter
um bom entendimento sobre o funcionamento do container. Entretanto, nós devemos notar
que o container IoC é simplesmente um mecanismo conveniente para se alcançar o padrão de
desenvolvimento de programas injeção de dependência (dependency injection, em inglês). O uso
do container não é obrigatório para se injetar dependências, ele apenas facilita esta tarefa.

Em primeiro lugar, vamos explorar porque a injeção de dependência é vantajosa. Considere a
seguinte classe e método:

1 class UserController extends BaseController {

2

3 public function getIndex()

4 {

5 $users = User::all();

6

7 return View::make('users.index', compact('users'));

8 }

9

10 }

Mesmo sendo um código conciso, não podemos testá-lo sem acessar um banco de dados. Em
outras palavras, o ORM Eloquent está fortemente acoplado ao nosso controlador. Não podemos,
de forma alguma, usar ou testar este controlador sem usar também todo o Eloquent, incluindo a
necessidade de um banco de dados. Este código também viola um princípio de desenvolvimento
de programas conhecido como separação de conceitos (separation of concerns ou SoC, em inglês).
Em outras palavras: nosso controlador sabe mais do que deveria. Controladores não precisam
saber de onde os dados vêm, mas somente como acessá-los. O controlador não precisa saber que
os dados estão disponíveis em MySQL, apenas que eles existem em algum lugar.

Separação de conceitos
Toda classe deve ter apenas uma responsabilidade e esta responsabilidade deve ser
completamente encapsulada pela classe.

Sendo assim, é melhor desacoplar completamente nossa camada web (controlador) da nossa
camada de acesso aos dados. Isso permitirá migrar mais facilmente nossa implementação de

Injeção de Dependência 2

armazenamento de dados e tornará o nosso código mais fácil de ser testado. Pense na “web”
apenas como uma camada de transporte para a sua aplicação “real”.

Imagine que sua aplicação é um monitor com portas para diversos cabos. Você pode acessar as
funcionalidades do monitor via HDMI, VGA ou DVI. Pense na internet como sendo apenas um
cabo conectado à sua aplicação. O monitor funciona independente do cabo utilizado. O cabo
é apenas um meio de transporte, assim como HTTP é um meio de transporte que leva à sua
aplicação. Assim sendo, nós não queremos entupir nosso meio de transporte (o controlador) com
a parte lógica da aplicação. Isso permitirá que qualquer camada de transporte, tais como uma
API ou aplicação móvel, acessem a lógica da nossa aplicação.

Por isso, ao invés de acoplar o controlador ao Eloquent, vamos injetar uma classe repositória.

Construa um Contrato

Em primeiro lugar, vamos definir uma interface e uma implementação correspondente:

1 interface UserRepositoryInterface {

2

3 public function all();

4

5 }

6

7 class DbUserRepository implements UserRepositoryInterface {

8

9 public function all()

10 {

11 return User::all()->toArray();

12 }

13

14 }

Injeção de Dependência 3

Em seguida, vamos injetar uma implementação desta interface em nosso controlador:

1 class UserController extends BaseController {

2

3 public function __construct(UserRepositoryInterface $users)

4 {

5 $this->users = $users;

6 }

7

8 public function getIndex()

9 {

10 $users = $this->users->all();

11

12 return View::make('users.index', compact('users'));

13 }

14

15 }

Nosso controlador é completamente ignorante quanto ao local onde os dados estão sendo
armazenados. Neste caso, esta ignorância é benéfica! Os dados podem estar em um banco de
dados MySQL, MongoDB ou Redis. Nosso controlador não reconhece a diferença, isso não
é sua responsabilidade. Fazendo essa pequena mudança, nós podemos testar nossa camada
web separadamente da nossa camada de dados, além de podermos facilmente alternar nossa
implementação de armazenamento de dados.

Respeite os limites
Lembre-se de respeitar os limites da responsabilidade. Controladores e rotas servem
como mediadores entre HTTP e sua aplicação. Ao escrever uma aplicação de grande
porte, não polua-os com lógica de domínio.

Para solidificar nossa compreensão, vamos escrever uma teste rápido. Em primeiro lugar, vamos
simular (mock, em inglês) o repositório vinculando-o ao container IoC da aplicação. Em seguida,
nos certificaremos de que o controlador invoca o repositório devidamente:

Injeção de Dependência 4

1 public function testIndexActionBindsUsersFromRepository()

2 {

3 // Preparar...

4 $repository = Mockery::mock('UserRepositoryInterface');

5 $repository->shouldReceive('all')->once()->andReturn(array('foo'));

6 App::instance('UserRepositoryInterface', $repository);

7

8 // Agir...

9 $response = $this->action('GET', 'UserController@getIndex');

10

11 // Conferir...

12 $this->assertResponseOk();

13 $this->assertViewHas('users', array('foo'));

14 }

Faça de conta
Neste exemplo, nós usamos uma biblioteca chamada Mockery. Esta biblioteca oferece
uma interface limpa e expressiva para fazer os mocks das suas classes. Mockery pode
ser facilmente instalado via Composer.

Indo Além

Vamos considerar um outro exemplo para solidificar nossa compreensão. Suponha que nós
queremos notificar nossos clientes sobre as cobranças realizadas em suas contas. Para isso, vamos
definir duas interfaces, ou contratos. Estes contratos nos darão flexibilidade para mudar suas
implementações no futuro.

1 interface BillerInterface {

2 public function bill(array $user, $amount);

3 }

4

5 interface BillingNotifierInterface {

6 public function notify(array $user, $amount);

7 }

Injeção de Dependência 5

Continuando, vamos construir uma implementação do nosso contrato chamado BillerInterface:

1 class StripeBiller implements BillerInterface {

2

3 public function __construct(BillingNotifierInterface $notifier)

4 {

5 $this->notifier = $notifier;

6 }

7

8 public function bill(array $user, $amount)

9 {

10 // Cobrar o usuário via Stripe...

11

12 $this->notifier->notify($user, $amount);

13 }

14

15 }

Porque separamos a responsabilidade de cada classe, agora nós podemos facilmente injetar
várias implementações de notificação em nossa classe de cobrança. Por exemplo, nós poderíamos
injetar um SmsNotifier ou um EmailNotifier. A cobrança não está mais preocupado com a
implementação da notificação, somente com o contrato. Enquanto uma classe estiver de acordo
com o contrato (interface), a cobrança irá aceitá-la. Além do mais, nós não apenas adicionamos
flexibilidade, mas também a possibilidade de testarmos a nossa cobrança separadamente dos
notificadores apenas injetando um mock BillingNotifierInterface.

Use interfaces
Escrever interfaces pode parecer muito trabalho extra, mas na verdade, elas tornam o
seu desenvolvimento mais rápido. Use interfaces para simular e testar todo o back-end
da sua aplicação antes de escrever uma única linha de implementação!

Então, como nós podemos injetar uma dependência? É simples assim:

1 $biller = new StripeBiller(new SmsNotifier);

Isso é injeção de dependência. Ao invés da cobrança se preocupar em notificar os usuários,
nós simplesmente lhe passamos um notificador. Uma mudança simples como esta pode fazer
maravilhas à sua aplicação. Seu código instantaneamente se torna mais fácil de manter, porque as
responsabilidades de cada classe foram claramente definidas. A testabilidade de suas aplicações
aumentará consideravelmente porque agora você pode injetarmocks de dependências para isolar
o código em teste.

Mas, e quanto aos containers IoC? Eles não são necessários na injeção de dependência? Claro
que não! Conforme veremos nos próximos capítulos, containers tornam a injeção de dependência
mais fácil de gerenciar, mas o seu uso não é obrigatório. Seguindo os princípios deste capítulo,
você já pode praticar injeção de dependência em qualquer projeto, mesmo que você ainda não
tenha um container à sua disposição.

Injeção de Dependência 6

Não é muito Java?

Uma crítica muito comum do uso de interfaces em PHP é que elas tornam o seu código muito
parecido com o “Java”. Em outras palavras, o código se torna muito verbal. Você precisa definir
uma interface e uma implementação; isso exigirá algumas “tecladas” a mais.

Para aplicações simples e menores, esta crítica pode até ser válida. Muitas vezes, as interfaces
não são necessárias nestas aplicações e é perfeitamente “ok” não usá-las. Se você tem certeza que
a implementação não mudará, você não precisa criar uma interface.

Já para aplicações maiores, as interfaces serão muito úteis. As tecladas extras não serão nada em
comparação com a flexibilidade e testabilidade que você ganhará. Poder mudar rapidamente a
implementação de uma contrato arrancará um “uau” do seu chefe, além de permitir que você
escreva um código que facilmente se adapta a mudanças.

Para concluir, tenha em mente que este livro apresenta uma arquitetura muito “pura”. Caso você
precise reduzí-la para uma aplicação menor, não sinta-se culpado. Lembre-se, você está tentando
“programar com alegria”. Se você não gosta do que faz ou está programando por culpa, pare um
pouco e faça uma reavaliação.

	Índice analítico
	Injeção de Dependência
	O Problema
	Construa um Contrato
	Indo Além
	Não é muito Java?

