

Laravel 3 公式ドキュメント日本語版
Laravel 3 の公式ドキュメントを日本語に翻訳したものです。

Hirohisa Kawase

This book is for sale at http://leanpub.com/laravel-3-japanese

This version was published on 2014-02-06

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools
and many iterations to get reader feedback, pivot until you have the right book and build
traction once you do.

©2012 - 2014 Hirohisa Kawase

http://leanpub.com/laravel-3-japanese
http://leanpub.com
http://leanpub.com/manifesto

Contents

ǤˤĤץ . i

前書き . ii

1 概要 . 1

2 テンプレート . 4

3 フォームの作成 . 10

4 バリデーション . 15

5 スキーマビルダー . 27

��Ĥ�
νҤLaravel 3 ɥ�ΥץȤ�Ƥ�

ä�ͽ�ΤˡPDFʼ� ŻҽǷ�ưǧΤˡѰ��

LeanpubǤϡѤǤ�ȤץʤΤǡѤǽʤΤǤ�Ƥ���Ȥ�ĤǤ礦 �ǻѤ��ʸ�äƤ� �IPA�ȤѤƤ�Τ�Ȥ��ƤϡIPA�ȤΥƥǤȤ

Leanpub���ȹͤƤ�ƥ夲� ��ФƤƤ�ĲƤȻפ�ǽϡ¿�Ƥ

Ƥ�LeanpubGoogle��� � פ � ơб�ĤȤˤʤäƤ���Υ� � СȤǥ � ˤʤΤǤ 餬 ơŪбȸäƤ�ɤΥѥ � � �
Τͤ�Ǥɤƥ� ˤʤ� ɵǤΤ�Google� Ǥפ� Ƥ�

ʤ���� Ƥϰʲ̤Ǥ

• PDFǱʸ�� ɽ
• PDFǥֹ�ɽ�ˤʤʤ
• URLɽMarkdownѤ� URL�åˤŤɽ�
• ContentsToC�Ρפ�Ȥɽʤ

�С����ƤбʤǤ礦� ƻŦƤȻפ�

ȤǤȡͤ�Ƥʤץ�����ˡΥץ�ȤơäPDFǤɽ��Υץ

前書き

この書籍について

この電子書籍はLaravel公式ドキュメント¹を、個人的に翻訳したものです。公式ドキュメントは
オリジナル英語版が Laravelの配布ファイルに含まれており、Laravelインストール後、/docsに
アクセスすることで、閲覧することができます。

フレームワークを始め、新しいサービスを日本人が活用するには、日本語のドキュメントが必
要です。Laravelの面白さと使いやすさに感動したため、急いで翻訳しました。翻訳したドキュ
メントは、以下のサイトで公開しております。Webで閲覧したい方は、どうぞ活用ください。もち
ろん、無料で閲覧していただけます。

• http://laravel.kore1server.com
• http://laravel-ja.phpfogapp.com
• http://laravel-ja.pagodabox.com

一番上のアドレスが、最新版となっております。以降のアドレスはコピーサイトです。他のサイ
トは最新版のサイトがダウンした場合のバックアップとして用意しました。

また、ローカルサーバーでこの日本語ドキュメントを利用したい方は、http://github.com/
HiroKws/Laravel-base-32/zipball/original-cssから、日本語ドキュメントを含んだ、配布 zip をダ
ウンロードしていただけます。内容につきましては、http://kore1server.com/laravel-tutorial/312-
laravel-32-development-base-sampleをご覧ください。 （メンテナンスの関係上、含めている日
本語ドキュメントは常時最新版に保っていません。 ）

本来、Markdownにより記述されており、HTMLに変換しWebで表示するために書かれてい
るドキュメントです。書籍としてそぐわない表現もあり、その部分に関しては多少書き換えまし
た。

サポート

この書籍のサポートは Laravel 3のドキュメントのサポート期間内とさせて頂きます。

現在リリースされている Laravel 3のバージョンの開発期間中、リリースごとに原文のドキュメ
ントが更新されます。原文の変更に合わせ、最新版を配布します。また、誤記や翻訳の修正、
表示の改善は随時行います。

ちなみに、Laravel 4のリリースは 2013年 5月です。

電子版を販売する Leanpub社の更新通知システムを通じ、メールにて更新をお伝えします。
その中のダウンロードリンクから無料で最新版を入手できます。

ダウンロードされる電子書籍のファイル名はいつも同じ名前になります。古いバージョンを保
存しておきたい方は、上書きされないように管理してください。旧バージョンのダウンロードは
できません。

¹http://www.laravel.com/docs

http://www.laravel.com/docs
http://laravel.kore1server.com
http://laravel-ja.phpfogapp.com
http://laravel-ja.pagodabox.com
http://github.com/HiroKws/Laravel-base-32/zipball/original-css
http://github.com/HiroKws/Laravel-base-32/zipball/original-css
http://kore1server.com/laravel-tutorial/312-laravel-32-development-base-sample
http://kore1server.com/laravel-tutorial/312-laravel-32-development-base-sample
http://www.laravel.com/docs

前書き iii

ライセンス

電子書籍を含め，書籍として出版されたドキュメントは、私が著作権を保持します。ただし、同
じ内容をWeb上で公表している日本語ドキュメント、配布パッケージに含まれている日本語
ドキュメントに関しては、オリジナルのドキュメントと同様に MIT ライセンスでご利用いただけ
ます。

Ｌａｒａｖｅｌとは

新しい軽量 PHP フレームワークの一つです。後発の利を生かし、様々なフレームワークから機
能を取り入れています。コードが読みやすくなるように、設計されています。そのため、メンテナ
ンスがしやすいフレームワークです。Laravel という名前は適当に創りだされた単語であり、特
別の意味を持っていません。

Laravelが他のフレームワークとは毛色が異なる多くの特徴を持っているのは、開発者 Taylor
Otwell氏のバックボーンにあるのでしょう。

彼は、PHPによるWeb開発の専門家でありませんでした。そのため、多くの PHPフレームワー
クや SQL ライブラリーにありがちな、ソースの見づらさを当然のものと受け取りませんでした。
彼の以前の経歴はMicrosoftの.NET solutionsに携わっていました。

当初、Laravelは Taylor氏の遊びで作られたものです。しかし、これを利用してWeb アプリを
開発した会社が資金援助を行い、結果ここまで発展しました。実に一年での急成長です。

既に 2013年の２月にカンファレンスがワシントン DCで開かれ、小中規模のスポンサーが１１
社も付きました。

もし読者の方が、大規模なアプリ開発に携わっており、上流からのきちんとした設計に基づく
開発手法を取られ、人員も確保できるのでしたら、他の有名フレームワークをご利用されたほ
うがよろしいでしょう。Laravelはまだ未熟な部分もあります。

活用できるベストシナリオとしては「アジャイルスタイルの開発方法をとり、数人のグループ
で新しいアプリを約一ヶ月で開発する」ような場合でしょう。PHP フレームワークでの経験が
あれば、数日もあれば十分習得でき、コードの読みやすさは、顧客からの要求に対応しやす
くなります。複雑なフレームワークの全体を把握するだけで一ヶ月かかることもありません。
ちょっとした変更に、自分の書いた難しいソースを読み解くこともありません。 （もちろん、いく
ら Laravel を使用しても、複雑に書いてしまえば、元の木阿弥ですよ。 ）このベストシナリオは、
ここに上げたような条件で Laravel を用い実際に開発を行った方が、彼の記事で Laravel を
褒めていた内容を紹介したものです。

Laravelは学習コストが最低で済みます。たやすく習得できるフレームワークです。ですから、
ある程度の人数で開発するのだが、共通のフレームワークの経験が見つからず、学習に手間
取らないフレームワークを探している場合にピッタリです。

もしくは、多くのWebサイト開発見られるようなアジャイルスタイルの開発手法を取られてい
るチームにも適しているでしょう。コードの読みやすさは抜群です。

更に、数多くの案件を個人で請け負っていられる方にも適しているでしょう。顧客からの修正
依頼にも、今までより気軽に答えられるようになるでしょう。

また、新たにフレームワーク自身を勉強したい方にも適しています。最初に大きなフレームワー
クにとりかかるのでは、全体を把握するだけでも、時間がかかります。余りにも小さなフレーム

前書き iv

ワークでは、使用するメリットを十分に感じられないでしょう。学習しやすく、それなりに機能を
備えた Laravelは学習目的にも最適です。

開発するのが「楽しい」と感じさせる不思議なフレームワークです。趣味であれ、仕事であれ、
開発の楽しみを感じさせてくれる Laravel を多くの方に使用していただきたいと思います。

Ｌｅａｎｐｕｂ

電子書籍版は Leanpub を利用し販売しています。

国内のサービスを介せず、Leanpub を利用するのは、メンテナンスの理由です。Leanpubで一
度購入いただくと、書籍の内容を修正した場合、購入者にメールで通知を行い、新しいバー
ジョンを無料でダウンロードしていただける仕組みになっています。

これにより、多くの時間を費やし、 「完全な書物」を用意したため、読者にとって最適な時期
に、書籍を手元に届けられない悲劇を回避できます。多くのテクニカルな書物で見られるよう
な、 「ちょっと機会を逃した」残念な出版を避ける事ができます。

現在の読者はWeb情報に新しさを、書物には正確さを期待しているとも言えます。Leanpub
での出版物は最初はWeb情報と同じく、 「新しいが、正確さに欠ける」かも知れません。しか
し、アップデートが可能であるということは、出版物の内容の修正 ・ 追加が可能であります。
読者からのフィードバックを受け付け、直ぐに対応できるということです。その結果、内容を「常
に新しく、正確」なものへと育てることができます。

出版ごとにサイトを用意し、正誤表を公開するという、著者と読者にとって手間がかかること
を行わなくとも、常に最新版を読者の手元に置いていただけます。

このドキュメントは原文が存在するため、日本語版を勝手に変更はしません。ですが、誤字脱
字、翻訳の間違いなどをご指摘いただけば、可能な限り迅速に対処させていただきます。

Leanpubは新しいサービスで、日本語の対応に関してまだ問題を抱えております。ですから、
Leanpubの開発者と連絡を取り、少しずつクオリティーも上げていきたいと思います。

また無料開放ではなく、有料での配布にさせていただくのは、私が体調不良のため働けず、
サイト維持のためいくらかのお金をご寄付いただかなければならないためです。元気でバリ
バリ働けるのでしたら、私個人でも、サイト維持は難なく可能ですが、現状それが不可能で
す。 （こうした状況であり、時間が取れるため、翻訳 ・出版も可能だったので、ネガティブな意
味だけでありません。 ）

値段は、最低 5.55 ドル、希望価格 7.77 ドルにさせていただいております。当初は最低 1.11 ド
ルに設定していましたが、アップデートの頻度が結構高いため、作業量にそぐわなくなってし
まい、値上げしました。この値段はドネーションの意味も込め、幅を持たせております。無理の
ない範囲で値段を決めていただけます。もし会社等で購入し、多少のドネーションを行なって
も良いという場合は、表示される値段をクリックしていただければ、値段を直接ご指定いただ
けます。

支払いは Paypalおよびカードです。今回の Laravel 3公式ドキュメント日本語翻訳電子書籍
版とは関係なく、日本語での情報提供に対しドネーションいただける方は、Paypalアカウント
hiro.soft@gmail.comへ寄付をお願いします。また、Laravel開発者の Taylor Otwell氏へ寄付
されたい方は、taylorotwell@gmail.comの Paypalアカウントへどうぞ。

川瀬　裕久

1 概要
1.1 初めに

Laravelのドキュメントへようこそ。このドキュメントはスタートガイドとして、さらに特徴の紹介
としても役立つように書かれています。どこから読んでも学習できますが、以前に学んだ概念
をもとに、その後に続くドキュメントは書かれていますので、初めから順番に読むことをお勧め
します。

1.2 Ｌａｒａｖｅｌを楽しめるのは誰？

Laravel は柔軟性と読み書きしやすさを重視した、パワフルなフレームワークです。初めて
Laravel に触れる方は、人気がある軽量な PHP フレームワークを使用して開発する時と同じ、
安らぎを感じるでしょう。もうちょっと経験を積んだユーザーであれば、他のフレームワークで
はできない方法で、コードをモジュール化できることを評価するでしょう。Laravelの柔軟性は、
要求に何度でも応じ、アプリケーションを修正しながら、形作ることを可能にし、表現性はあな
たとあなたのチームが開発するコードをシンプルで読みやすくしてくれるでしょう。

1.3 Ｌａｒａｖｅｌはどこが違うの？

Laravel には他のフレームワークと違った特徴を数多く持っています。特に重要な点をいくつ
か紹介しましょう。

• バンドルは Laravelのモジュールパッキングシステムです。Laravelバンドルリポジトリー
¹は、アプリケーションへ簡単に機能を付け加えられるように、予め用意されています。バ
ンドルリポジトリーから bundlesディレクトリーにダウンロードしても良いですし、”Artisan”
コマンドラインツールを使い、自動的にインストールすることもできます。

• Eloquent ORMは最も進化した PHPアクティブレコードを実装しています。リレーション
シップとネストされた eager ローディングで簡単に制約を適用できる能力を使えば、自
分のデーターを完全にコントロールでき、アクティブレコードの便利さを十分に体験でき
るでしょう。Eloquentは Laravelのクエリービルダーである Fluentのメソッドを完全にサ
ポートしています。

• アプリケーションロジックを（多くのWeb開発者にはお馴染みの）コントローラーでアプ
リケーションに実装することもできますし、また Sinatra フレームワークと似たようなシン
タックスを使い、ルートの定義に直接記述することもできます。Laravelは小さなサイト
から、巨大なエンタープライズアプリケーションまで、必要に応じて全て作成できるだけ
の柔軟性を開発者に提供する哲学で、設計されています。

¹http://bundles.laravel.com/

http://bundles.laravel.com/
http://bundles.laravel.com/

概要 2

• リーバスルーティングで名前付きのルートへリンクを作成できます。リンクを作成すると
きにルートの名前を使えば、Laravelは自動的に正しい URI を挿入します。これを使うこ
とにより、後ほどルートを変更しても、Laravelがサイト中のリンク全部を適切に更新しま
す。

• Rest コントローラーは GET と POST のロジックを分ける一つの手法です。例えばログ
インにおいて、コントローラーの get_login()アクションでフォームを担当させ、コントロー
ラーの post_login() アクションで、送信されたフォームを受け取り、バリデーションし、エ
ラーメッセージと一緒にログインフォームにリダイレクトさせたり、各ユーザーのダッシュ
ボードにリダイレクトさせたりできます。

• クラスのオートロードはオートロードの環境設定を保つ手間を省き、使用していない不
必要なコンポーネントをロードしてしまうことを防げます。ライブラリーやモジュールを
使いたいのですか？ローディングに悩むことはありません。どうぞ使ってください。後は
Laravelが面倒を見ます。

• ビューコンポーサーはビューがロードされた時点で実行されるコードブロックです。良
い例がブログのサイドナビに見られる、投稿をランダムにリスト表示するものです。コ
ンポーサーは必要のあるブログポストを全てロードするロジックで構成されるでしょう。
そうしてビューをロードすれば、表示する準備は全て予め済んでいるわけです。これに
より、メソッドのページコンテンツに関連する、ビューのモジュールで使用するデータの
ロードを、全てのコントローラー側で確実に行わなくてはならない手間を省くことができ
ます。

• IoC コンテナ (Inversion of Control)は新しいオブジェクトを生成するメソッドを提供し、
随意にインスタンスを生成したり、シングルトンでの使用をできるようにするものです。
IoCにより、外部ライブラリーの使用準備を行う必要は滅多になくなります。また、きっち
りと決まった柔軟性のないファイル構造に係わる必要はなく、IoC を使用したオブジェ
クトにはコードのどこからでもアクセスできることも意味しています。 。

• マイグレーションはデータベーススキーマのバージョンコントロールで、Laravel に直接
統合されています。生成も実行も”Artisan” コマンドラインユーティリティーを使用して行
えます。他のメンバーがスキーマを変更したら、リポジトリーからコピーをローカル環境に
置き、マイグレーションを実行します。すると、あなたのデータベースもアップデートされ
ます！

• ユニットテストは Laravelの大切な一部です。Laravel自身も何百ものテストにより、新し
い変更が予期せず他の部分を壊していないことを確認するために使っています。これ
は、Laravelが業界で最も安定してるフレームワークであると考えられている理由の一
つです。さらに Laravelは皆さんが自分のコードにユニットテストを書くのを簡単にして
くれます。その後で、”Artisan” コマンドユーティリティーを使いテストを実行できます。

• 自動ペジネーションはアプリケーションロジックがペジネーションの設定のためにご
ちゃごちゃになることを防ぎます。現在のページを得て、DB のレコード数を取得し、
limit/offset を使用してデーターを SELECT する代わりに、ただ”paginate” を呼び出し、
ビューのどこにページリンクを出力するのか Laravelに教えて下さい。Laravelは自動的
に残りの面倒を見ます。Laravelのペジネーションシステムは簡単に使用でき、簡単に
変更できるように設計されています。強調しますが、Laravelがこれらを自動的に処理す
るからといっても、自分で呼び出したり、システムを設定できないわけではありません。
そうしたければ、手動で行えます。

これは他の PHP フレームワークとの違いを示す、わずかな例にすぎません。こうした特徴とそ
の他すべて、このドキュメント全体を通して記述してあります。

概要 3

1.4 アプリケーション構造

Laravelのディレクトリー構造は他の人気のある PHP フレームワークと似せて設計されていま
す。他のフレームワークで採用されている方法と似ている構造を使うことで、どんなアプリケー
ションでも、どんなサイズのものでも簡単に作成できます。

Laravelのアーキテクチャがユニークだからといっても、アプリケーションに合わせて、開発者
が独自の構造を構築することも可能です。これはコンテントマネージメントシステムのような
大きなプロジェクトに有効でしょう。こうした柔軟な構造は Laravel独自なものです。

このドキュメントを通し、設置するのに最適なデフォルトの位置を指定していきたいと思いま
す。

1.5 Ｌａｒａｖｅｌのコミュニティー

Laravel フォーラム²は手助けを得たり、手助けしたり、もしくは他の人が何を言っているかただ
眺めたりできる素晴らしい場所です。

我々の多くは毎日 FreeNodeの #laravel IRCチャンネルに接続しています。Laravelのフォーラ
ム記事に接続方法が説明されています。³この IRCチャンネルにつなぎっぱなしにすることは、
Laravel を使用するWeb開発について多くを学ぶ方法です。どうぞ質問をし、他の人の質問
に答え、もしくはつないだままにして、他の人の質問と答から学んでください。私達は Laravel
を愛していますし、Laravelについて話すのも大好きです。ですからよそ者にはならないでくだ
さい！

1.6 ライセンス情報

LaravelはMIT ライセンス⁴のもとにライセンスされているオープンソースのソフトウェアです。

²http://forums.laravel.com
³http://forums.laravel.com/viewtopic.php?id=671
⁴http://www.opensource.org/licenses/mit-license.php

http://forums.laravel.com
http://forums.laravel.com/viewtopic.php?id=671
http://forums.laravel.com/viewtopic.php?id=671
http://www.opensource.org/licenses/mit-license.php
http://forums.laravel.com
http://forums.laravel.com/viewtopic.php?id=671
http://www.opensource.org/licenses/mit-license.php

2 テンプレート
2.1 基本

多分、あなたのアプリケーションでもほとんどのページに渡って、共通のレイアウトを使用して
いることでしょう。このレイアウトを手動で、全てのコントローラーアクションに生成するのは、
辛いですよね。コントローラーにレイアウトが指定出来れば、開発はもっと楽しくなります。で
は、これを行なってみましょう。

コントローラーに”ｌａｙｏｕｔ”プロパティを指定する

class Base_Controller extends Controller {

public $layout = 'layouts.common';

}

コントローラーのアクションからレイアウトにアクセスする

public function action_profile()

{

$this->layout->nest('content', 'user.profile');

}

..

注目：レイアウトを使う場合、アクションは何もリターンしません。

2.2 セクション

ビューのセクションはネストしたビューからレイアウトにコンテンツを挿入するシンプルな方法
を提供します。例えば、多分あなたはレイアウトのヘッダーの中にネストビューが必要としてい
る Javascript を挿入したいとします。これを掘り下げてみましょう。

ビューの中にセクションを生成する

テンプレート 5

<?php Section::start('scripts'); ?>

<script src="jquery.js"></script>

<?php Section::stop(); ?>

セクションの内容をレンダリングする

<head>

<?php echo Section::yield('scripts'); ?>

</head>

Ｂｌａｄｅのショートカットを使いセクション操作する

@section('scripts')

<script src="jquery.js"></script>

@endsection

<head>

@yield('scripts')

</head>

2.3 Ｂｌａｄｅテンプレートエンジン

Bladeはビューを書くことを至高の喜びにしてくれます。Bladeビューを作成するには、ファイル
の拡張子を”.blade.php”にするだけです。Bladeにより、美しく控えめなシンタックスで、PHP コ
ントロール構文やデーターのエコーを書くことができるようになります。例をご覧ください。

Ｂｌａｄｅを使い、変数をエコーする

Hello, {{ $name }}.

Ｂｌａｄｅを使い、関数の結果をエコーする

{{ Asset::styles() }}

ビューをレンダーする

@include を使用し、他のビューの中にビューをレンダーすることができます。レンダーされる
ビューは自動的に、現在のビューの全てのデーターを継承します。

<h1>Profile</hi>

@include('user.profile')

同様に、@include と同じような働きをする@render も使用できます。違いはレンダー時に、
現在のビューのデーターを継承しないことです。

テンプレート 6

@render('admin.list')

Ｂｌａｄｅコメント

{{-- これがコメントです --}}

{{--

これは
複数行に渡る
コメント例です。

--}}

..

注目：Bladeのコメントは、HTML コメントとは異なり、HTML ソースには出力されません。

Ｂｌａｄｅコントロール構文

Ｆｏｒループ：

@for ($i = 0; $i <= count($comments); $i++)

コメントの内容は {{ $comments[$i] }}

@endfor

Ｆｏｒｅａｃｈループ：

@foreach ($comments as $comment)

コメントの内容は {{ $comment->body }}.

@endforeach

Ｗｈｉｌｅループ：

@while ($something)

まだループ中です！
@endwhile

Ｉｆ文：

@if ($message == true)

メッセージを出力中！
@endif

ＩｆＥｌｓｅ文：

テンプレート 7

@if (count($comments) > 0)

コメントがあります！
@else

コメントがありません！
@endif

ＥｌｓｅＩｆ文：

@if ($message == 'success')

成功した！
@elseif ($message == 'error')

エラーが起きた。
@else

ここに来るのかな？
@endif

ＦｏｒＥｌｓｅ文：

@forelse ($posts as $post)

{{ $post->body }}

@empty

配列中にはポストはありません！
@endforelse

Ｕｎｌｅｓｓ文：

@unless(Auth::check())

Login

@endunless

// 同じ内容…

<?php if (! Auth::check()): ?>

Login

<?php endif; ?>

2.4 Ｂｌａｄｅレイアウト

Bladeはきれいでエレガントなシンタックスを PHPの一般的なコントロール構文に提供して
いるだけでなく、ビューのレイアウトに使用できる、美しい手法も用意しています。例えば、あな
たのアプリケーションでは、共通のルック ・ アンド ・ フィールを提供するために、 「マスター」
ビューを使っているでしょう。それは多分、こんな感じだと思います：

テンプレート 8

<html>

<ul class="navigation">

@section('navigation')

Example Item 1

Example Item 2

@endsection

<div class="content">

@yield('content')

</div>

</html>

“content”セクションが生成されることに注目してください。このセクションに何かテキストを埋
めるなくてはなりません。では、このレイアウトを使用する、別のビューを作成しましょう。

@layout('master')

@section('content')

profileページへようこそ！
@endsection

素晴らしい！これで、ルートからシンプルに”profile”ビューをリターンできます。

return View::make('profile');

porfileビューはありがたいことに、@layout文により、Laravelは”master”テンプレートを自動
的に使用してくれます。

..

重要：@layoutはファイルの最初の一行で呼び出す必要があり、先頭にホワイトスペース
をつけたり、途中で改行してはいけません。

@ ｐａｒｅｎｔで追加する

場合により、セクションのレイアウトを置き換えてしまうよりは、追加したいこともあります。例え
ば、”master” レイアウトのナビゲーションリストを考えてください。ここに、新しいアイテムを追
加してみましょう。こんな風になります：

テンプレート 9

@layout('master')

@section('navigation')

@parent

Nav Item 3

@endsection

@section('content')

profileページへようこそ！
@endsection

@parentはレイアウトの navigation セクションの内容と置き換わります。これはレイアウトの
拡張と継承を実現する美しくてパワフルな手法を提供しています。

3 フォームの作成

..

注意：フォーム要素に表示されるすべての入力データーは HTML::entities メソッドを通して
フィルタリングされます。

3.1 フォームを開く

現在のＵＲＬへＰＯＳＴするフォームを開く

echo Form::open();

ＵＲＩとリクエスト方法を指定し、フォームを開く

echo Form::open('user/profile', 'PUT');

ＨＴＴＰＳのＵＲＬへＰＯＳＴするフォームを開く

echo Form::open_secure('user/profile');

フォームタグに追加のＨＴＭＬ属性を指定する

echo Form::open('user/profile', 'POST', array('class' => 'awesome'));

ファイルアップロードを受け付けるフォームを開く

echo Form::open_for_files('users/profile');

ＨＴＴＰＳを使い、ファイルアップロードを受け付けるフォームを開く

echo Form::open_secure_for_files('users/profile');

フォームを閉じる

echo Form::close();

フォームの作成 11

3.2 ＣＳＲＦプロテクション

Lravelはクロスサイト ・ リクエスト ・ フォージェリからサイトを守る簡単な方法を提供していま
す。まず、ユーザーのセッションにランダムトークンを設置します。これは自動的に行われます
ので、何もする必要はありません。次に、フォームに隠し入力フィールドを生成し、ランダムトー
クンを埋め込みます。

セッションのＣＳＲＦトークンを埋め込む隠しフィールドを生成する

echo Form::token();

ルートにＣＳＲＦフィルターを追加する

Route::post('profile', array('before' => 'csrf', function()

{

//

}));

ＣＳＲＦトークン文字列を取得する

$token = Session::token();

..

Laravelの CSRFプロテクション機能を使用する前に、セッションドライバーを指定する必要
があります。

参照：

• ルートフィルター
• クロスサイト ・ リクエスト ・ フォージェリ¹

3.3 ラベル

ラベル要素を生成する

echo Form::label('email', 'E-Mail Address');

ラベルに追加のＨＴＭＬ要素を指定する

¹http://ja.wikipedia.org/wiki/%E3%82%AF%E3%83%AD%E3%82%B9%E3%82%B5%E3%82%A4%E3%83%88%E3%83%AA%E3%82%AF%E3%
82%A8%E3%82%B9%E3%83%88%E3%83%95%E3%82%A9%E3%83%BC%E3%82%B8%E3%82%A7%E3%83%AA

http://ja.wikipedia.org/wiki/%E3%82%AF%E3%83%AD%E3%82%B9%E3%82%B5%E3%82%A4%E3%83%88%E3%83%AA%E3%82%AF%E3%82%A8%E3%82%B9%E3%83%88%E3%83%95%E3%82%A9%E3%83%BC%E3%82%B8%E3%82%A7%E3%83%AA
http://ja.wikipedia.org/wiki/%E3%82%AF%E3%83%AD%E3%82%B9%E3%82%B5%E3%82%A4%E3%83%88%E3%83%AA%E3%82%AF%E3%82%A8%E3%82%B9%E3%83%88%E3%83%95%E3%82%A9%E3%83%BC%E3%82%B8%E3%82%A7%E3%83%AA
http://ja.wikipedia.org/wiki/%E3%82%AF%E3%83%AD%E3%82%B9%E3%82%B5%E3%82%A4%E3%83%88%E3%83%AA%E3%82%AF%E3%82%A8%E3%82%B9%E3%83%88%E3%83%95%E3%82%A9%E3%83%BC%E3%82%B8%E3%82%A7%E3%83%AA

フォームの作成 12

echo Form::label('email', 'E-Mail Address', array('class' => 'awesome'));

ラベルの表示内容のＨＴＭＬエスケープを行わない

echo Form::label('confirm', 'Are you sure you want to proceed\

?', null, false);

ラベルの表示内容の自動 HTMLエスケープを行わないため、４番目の引数にオプションとし
て false を指定することもできます。

..

ラベルを生成後に、ラベルと一致する名前で作られる HTML要素は、その名前と同じ ID も
生成されます。

3.4 テキスト、テキストエリア、パスワード、隠しフィールド

テキスト入力要素の生成

echo Form::text('username');

テキスト入力要素にデフォルト値を指定する

echo Form::text('email', 'example@gmail.com');

..

注目： hidden と textarea メソッドは text メソッドと使い方は同じです。一つ覚えるだけで、３
つまとめて学べます。

パスワード入力要素を生成する

echo Form::password('password');

3.5 チェックボックスとラジオボタン

チェックボックス要素を生成する

フォームの作成 13

echo Form::checkbox('name', 'value');

チェック状態をデフォルトにして生成する

echo Form::checkbox('name', 'value', true);

..

注目： radio メソッドは checkbox と全く同じです。１つで２つ分ですね。

3.6 ファイル入力

ファイル入力要素を生成する

echo Form::file('image');

3.7 ドロップダウンリスト

配列の要素から、ドロップダウンリストを生成する

echo Form::select('size', array('L' => 'Large', 'S' => 'Small'));

一つのアイテムをデフォルトに指定し、ドロップダウンリストを生成する

echo Form::select('size', array('L' => 'Large', 'S' => 'Small'), 'S');

3.8 ボタン

Ｓｕｂｍｉｔボタン要素を生成する

echo Form::submit('Click Me!');

..

注目：ボタン要素を生成する必要がある？ならば、button メソッドをお試しください。submit
と使い方は同じです。

フォームの作成 14

3.9 カスタムマクロ

カスタムフォームクラスヘルパー、通称「マクロ」を簡単に定義できます。実例を見て下さい。
最初に、マクロを名前と無名関数を指定して、登録します。

フォームマクロを登録する

Form::macro('my_field', function()

{

return '<input type="awesome">';

});

次に、名前でそのマクロを呼び出します。

カスタムマクロを呼び出す。

echo Form::my_field();

4 バリデーション
4.1 基本

ほとんどのインタラクティブな Web アプリケーションは、データーのバリデーションが必要で
す。例えば、登録フォームでは、パスワードの再確認が必要でしょう。多分、メールアドレスは重
複していてはいけません。データーのバリデーションは堅苦しいプロセスです。ありがたいこと
に、Laravelでは、そうではありません。Validator クラスはデーターのバリデーションを簡単にし
てくれる素晴らしいヘルパーを用意してくれています。一例を見てみましょう。

バリデーションしたいデーターを配列で獲得

$input = Input::all();

データーに対するバリデーションルールを定義

$rules = array(

'name' => 'required|max:50',

'email' => 'required|email|unique:users',

);

Ｖａｌｉｄａｔｏｒインスタンスを作成し、実行する

$validation = Validator::make($input, $rules);

if ($validation->fails())

{

return $validation->errors;

}

errors プロパティは、エラーメッセージの取り扱いを簡単にしてくれる、シンプルな message
collector クラスです。もちろん、デフォルトのエラーメッセージは全てのバリデーションルール
に用意してあります。デフォルトのメッセージは language/en/validation.phpにあります。

これで、基本的な Validator クラスの使い方に慣れました。データーをバリデーションするのに
使用するルールについて、掘り下げて学ぶ用意ができました。

4.2 バリデーションルール

必須項目

存在し、空文字列ではないことをバリデートする属性です。

バリデーション 16

'name' => 'required'

あるフィールドが入力済みの場合、同時に入力されていることをバリデートする属性です。

'last_name' => 'required_with:first_name'

文字種指定

英文字だけで構成されていることをバリデートする属性です。

'name' => 'alpha'

英文字と数字だけで構成されていることをバリデートする属性です。

'username' => 'alpha_num'

英数字とダッシュ、下線で構成されていることをバリデートする属性です。

'username' => 'alpha_dash'

サイズ

与えられた文字数であること、もしくは数字項目の場合はその値であることをバリデートする属性で
す。

'name' => 'size:10'

サイズが与えられた範囲内であることをバリデートする属性です。

'payment' => 'between:10,50'

..

注目：最低値と最高値も含まれます。

与えられたサイズ以上であることをバリデートする属性です。

'payment' => 'min:10'

与えられたサイズ以下であることをバリデートする属性です。

バリデーション 17

'payment' => 'max:50'

数字項目

数字であることをバリデートする属性です。

'payment' => 'numeric'

整数であることをバリデートする属性です。

'payment' => 'integer'

内包と除外

リストの値の中にあることをバリデートする属性です。

'size' => 'in:small,medium,large'

リストの値の中に無いことをバリデートする属性です。

'language' => 'not_in:cobol,assembler'

確認項目

confirmed ルールは attribute_confirmation項目が存在し、その値と一致していることをバリ
デートする属性です。

確認項目と一致していることをバリデート

'password' => 'confirmed'

この例で Validatorは、password項目が、配列の中の password_confirmation項目と一致して
いることを、確認します。

受け入れの確認

accepted ルールは項目が yes か 1であることをバリデートします。このルールは「サービスの
規約」のようなフォームのチェックボックスのバリデーションに役立ちます。

その項目が受け入れられたかバリデートする

'terms' => 'accepted'

4.3 他項目との比較

項目値が、他のフィールドの値と同じ事をバリデートする

バリデーション 18

'token1' => 'same:token2'

２つの項目の値が異なることをバリデートする

'password' => 'different:old_password',

正規表現

matchルールは与えられた正規表現と一致することをバリデートします。

正規表現と一致することをバリデートする

'username' => 'match:/[a-z]+/';

一意と存在

値が与えられたデータベーステーブルで一意であることをバリデートする

'email' => 'unique:users'

上記の例では、email項目は usersテーブルで、ユニークであるかチェックされます。その項目
名とカラム名が異なっている時にもユニークであることを確かめたいのですか？問題ありませ
ん。

ｕｎｉｑｕｅルールでカスタムカラム名を指定する

'email' => 'unique:users,email_address'

レコードを更新する場合、通常は uniqueルールを使用しても、更新するそのレコードに対して
は適用を除外したいことはよくあります。例えば、ユーザープロフィールの更新では、メールア
ドレスの変更は許可されていることでしょう。しかし、uniqueルールが効いていると、そのユー
ザーがメールアドレスを変更しなかった場合、uniqueルールは失敗してしまいます。そのため、
更新するユーザーに対しては、このルール適用を飛ばす必要があります。

ＩＤを指定し、ｕｎｉｑｕｅルールを無視するよう強制する

'email' => 'unique:users,email_address,10'

データベーステーブルに項目の値が存在していることをバリデートする

'state' => 'exists:states'

ｅｘｉｓｔｓルールにカスタムカラム名を指定する

バリデーション 19

'state' => 'exists:states,abbreviation'

日付

指定日付以前であることをバリデートする

'birthdate' => 'before:1986-05-28';

指定日付以降であることをバリデートする

'birthdate' => 'after:1986-05-28';

..

注目： before と afterバリデーションルールは日付の解析に、PHPの関数である strtotime
を利用しています。

日付が与えられたフォーマットであることをバリデートする

'start_date' => 'date_format:H\\:i'),

..

注意：パラメーターのセパレーターt として扱われないように、コロンをバックスラッシュでエ
スケープすること

日付に対するフォーマットのオプションについてはPHP ドキュメント¹に記述されています。

メールアドレス

メールアドレスとして正しいかバリデートする

'address' => 'email'

..

注目：このルールは PHP組み込み関数の filter_var メソッドを使用しています。

ＵＲＬ

有効なＵＲＬであるかバリデートする

¹http://php.net/manual/ja/datetime.createfromformat.php#refsect1-datetime.createfromformat-parameters

http://php.net/manual/ja/datetime.createfromformat.php#refsect1-datetime.createfromformat-parameters
http://php.net/manual/ja/datetime.createfromformat.php#refsect1-datetime.createfromformat-parameters

バリデーション 20

'link' => 'url'

アクティブなＵＲＬであるかバリデートする

'link' => 'active_url'

..

注目： active_url ルールは URLがアクティブであるか判断するために checkdnsr を使用し
ています。

アップロードファイル

mimes ルールはアップロードファイルが指定された MIME タイプであるかバリデートします。
このルールは、そのファイルの内容を読み、実際のMIMEタイプを決めるために、PHP Fileinfo
拡張を使用しています。config/mimes.phpの中で定義されている拡張子で、引数で指定され
たものは、このルールを通されます

指定されたタイプの一つであることをバリデートする

'picture' => 'mimes:jpg,gif'

..

注目：ファイルをバリデートする時は、Input::file()か入力::all() を入力項目収集に使用してく
ださい。

ファイルが画像であることをバリデートする

'picture' => 'image'

ファイルが指定キロバイトより小さいことをバリデートする

'picture' => 'image|max:100'

配列

配列をバリデートする

バリデーション 21

'categories' => 'array'

ちょうど３要素を持つ配列をバリデートする

'categories' => 'array|count:3'

１から３要素を持つ配列をバリデートする

'categories' => 'array|countbetween:1,3'

２つ以上の要素を持つ配列をバリデートする

'categories' => 'array|countmin:2'

多くて２つの要素を持つ配列をバリデートする

'categories' => 'array|countmax:2'

4.4 エラーメッセージの取得

Laravelでは、シンプルなエラー収集クラスを使用し、手軽にエラーメッセージを取り扱えるよ
うになっています Validatorのインスタンで passesか fails メソッドを呼び出した後に、errorsプ
ロパティーを利用してアクセスできます。メッセージを取得するためにいくつかの関数が用意
されています。

一項目にエラーメッセージがあるか確かめる

if ($validation->errors->has('email'))

{

// The e-mail attribute has errors…
}

その項目の最初のエラーメッセージを取得する

echo $validation->errors->first('email');

時には、HTML要素でラップしたエラーメッセージが必要なこともあるでしょう。大丈夫です。
２番目の引数に、:messageプレースホルダーを使い、フォーマットを指定してください。

エラーメッセージをフォーマットする

echo $validation->errors->first('email', '<p>:message</p>');

指定された項目の、すべてのエラーメッセージを取得

バリデーション 22

$messages = $validation->errors->get('email');

指定された項目の、すべてのエラーメッセージをフォーマット

$messages = $validation->errors->get('email', '<p>:message</p>');

全ての項目の、全てのエラーメッセージを取得

$messages = $validation->errors->all();

全ての項目の、全てのエラーメッセージをフォーマット

$messages = $validation->errors->all('<p>:message</p>');

4.5 バリデーション実例

一度バリデーションを実行すれば、簡単にビューにそれを表示できます。Laravelでは、驚異的
なシンプルさで行えます。典型的なシナリオに沿って、行なってみましょう。２つのルートを定義
します。

Route::get('register', function()

{

return View::make('user.register');

});

Route::post('register', function()

{

$rules = array(…);

$validation = Validator::make(Input::all(), $rules);

if ($validation->fails())

{

return Redirect::to('register')->with_errors($validation);

}

});

素晴らしいですね！２つのシンプルな登録のためのルートができました。一つはフォームを表
示処理し、もうひとつはフォームの投稿を処理します。POST ルートでは、入力に対してバリ
デーションを行なっています。バリデーションが失敗した場合、表示に使えるようにバリデー
ションエラーをセッションに退避 (flash) させ、登録フォームへリダイレクトします。

しかし、GETルートで errors とビューを明確に結びつけていないことに注目してください。そ
れでも、エラー変数 ($errors)はビューで使用できます。賢明なことに Laravelは、errorsがセッ
ションにあれば、あなたのため、ビューに渡してくれます。errorsがセッションに存在していなけ

バリデーション 23

れば、からのメッセージコンテナがビューに渡されます。あなたはビューの中で、errors編集を
通して、いつもメッセージコンテナが存在すると思っていられます。私たちは、あなたの人生を
楽にすることが大好きです。

例えば、メールアドレスのバリデーションに失敗すれば、セッション変数の $errors の中
に’email’ を見つけることができます。

$errors->has('email')

Blade を使い、ビューにエラーメッセージを条件付きで付け加えることもできます。

{{ $errors->has('email') ? 'Invalid Email Address' : 'Condition is false. Can \

be left blank' }}

これは例えば Twitter Bootstrap のようなものを使用しているときに、条件付きでクラスを
付け加えたい時に便利に使えます。例えば、メールアドレスのバリデーションに失敗したら、
Bootstrapの”error” クラスを div class=”control-group” 文に付け加えたいことでしょう。

<div class="control-group {{ $errors->has('email') ? 'error' : '' }}">

バリーションが失敗したら、ビューには error クラスが付け加え表示されるでしょう。

<div class="control-group error">

4.6 カスタムエラーメッセージ

エラーメッセージをデフォルトから変更したいのですか？たぶん、項目名とルールを指定して、
カスタムエラーメッセージを使いたい場合さえあるでしょう。どちらにしても、Validatorクラスが
簡単に実現してくれます。

Ｖａｌｉｄａｔｏｒに渡すカスタムメッセージの配列を作成

$messages = array(

'required' => 'The :attribute field is required.',

);

$validation = Validator::make(Input::get(), $rules, $messages);

素晴らしいですね！これで、バリデーションのチェックしに失敗した時、いつでもカスタムメッ
セージが使用できます。けど、:attribute なんたらは、メッセージの中でどうなるんでしょう？あ
なたが楽になるように、Validator クラスは、attribute プレースホルダーを実際の項目の名前
に置き換えてくれます！項目名の下線も取り除いてくれます。

エラーメッセージを作成するときには、他にも:other、:size、:min、:max、:values プレースホル
ダーも使用できます。

他のバリデーションプレースホルダー

バリデーション 24

$messages = array(

'same' => 'The :attribute and :other must match.',

'size' => 'The :attribute must be exactly :size.',

'between' => 'The :attribute must be between :min - :max.',

'in' => 'The :attribute must be one of the following types: :values',

);

でも、カスタムメッセージが使えると言っても、email項目に対してしか指定できないのでしょ
うか？大丈夫です。項目_ルールのネーミングルールを使い、メッセージを指定して下さい。

与えられた項目のカスタムメッセージを指定する

$messages = array(

'email_required' => 'We need to know your e-mail address!',

);

上記の例のように、要求されたカスタムメッセージは email項目に使用されますが、他のすべ
ての項目にはデフォルトのメッセージが使用されます。

しかし、たくさんのカスタムエラーメッセージを使用するために、コードの中で指定すれば、扱
いにくくめちゃくちゃになるでしょう。ですから、バリデーション言語ファイルの中の custom配
列で、カスタムメッセージを指定して下さい。

バリデーション言語ファイルにカスタムエラーメッセージを追加する

'custom' => array(

'email_required' => 'We need to know your e-mail address!',

)

4.7 カスタムバリデーションルール

Laravelは多くのパワフルなバリデーションルールを提供しています。しかし、結局自分用に作
成する必要が起きるのは、よくあるでしょう。バリデーションルールを作成するには２つのシン
プルな方法が用意されています。両方共素晴らしいので、プロジェクトにあった方をお使いく
ださい。

カスタムバリデーションルールを登録

Validator::register('awesome', function($attribute, $value, $parameters)

{

return $value == 'awesome';

});

この例は、Validatorに新しいバリデーションルールを登録しています。ルールは３つの引数を
取ります。最初はバリデーションを行う項目名です。２つ目はバリデーションを行う値で、３つ目
はルールに指定されるパラメーターです。

あなたのカスタムバリデーションルールを使うには次のように呼び出します。

バリデーション 25

$rules = array(

'username' => 'required|awesome',

);

もちろん、新しいルールのエラーメッセージを定義する必要があります。これは、その場で直ぐ
に定義する方法と：

$messages = array(

'awesome' => 'The attribute value must be awesome!',

);

$validator = Validator::make(Input::get(), $rules, $messages);

もしくは、language/en/validation.phpの中にあなたのルールに対するエントリーを付け加え
る方法があります。

'awesome' => 'The attribute value must be awesome!',

前に述べたように、カスタムルールに引数のリストを指定し、受け取ることができます：

// When building your rules array…

$rules = array(

'username' => 'required|awesome:yes',

);

// In your custom rule…

Validator::register('awesome', function($attribute, $value, $parameters)

{

return $value == $parameters[0];

});

この場合、バリデーションルールの引数は、要素が”yes”だけの配列を受け取ります。

バリデーションルールを作成し保存する、もうひとつの方法は Validator クラス自身を拡張す
ることです。拡張して新しいバージョンの Validator を作成すれば、既に存在する機能を全部
使用しつつ、あなたのカスタム機能を追加できます。もし望むのでしたら、デフォルトのメソッド
を置き換えることもできます。例を見ていきましょう。

最初に、LaravelValidator を拡張し、application/librariesに設置します。

カスタムＶａｌｉｄａｔｏｒクラスを定義

バリデーション 26

<?php

class Validator extends Laravel\Validator {}

次に、config/application.phpから Validatorの別名 (alias) を削除します。これは必要です。そ
うしないと２つの”Validator” という名前がコンフリクトを起こしてしまいます。

次に、”awesome”ルールを新しいクラスに付け加えます。

カスタムバリデーションルールを付け加える

<?php

class Validator extends Laravel\Validator {

public function validate_awesome($attribute, $value, $parameters)

{

return $value == 'awesome';

}

}

メソッドの名前に、validate_ルール命名規則を使っていることに注目してください。”awesome”
という名前のルールのメソッドは、”validate_awesome” にしなくてはなりません。これがカスタ
ムルールを登録する時と、Validator クラスを拡張する時の、違いの一つです。Validator クラス
はシンプルに trueか false をリターンします。これでおしまいです！

自分で作ったバリデーションルールのカスタムメッセージを作成する必要があることも、心に
留めておいてください。そうしてもらえるのでしたら、どんなルールを定義してもらってもかまい
ません！

5 スキーマビルダー
5.1 基本

スキーマビルダーはデータベーステーブルの作成と変更のメソッドを提供します。スラスラ書
ける構文で、ベンダー限定の何かにとらわれず、テーブルを操作できます。

参照：

• マイグレーション

5.2 テーブルの作成と削除

Schema クラスはテーブルを作成／修正するために使います。さっそく、例を見てみましょう。

簡単なデータベーステーブルを作成

Schema::create('users', function($table)

{

$table->increments('id');

});

このサンプルを確認して行きましょう。スキーマビルダーに create メソッドでこれは新しいテー
ブルで、作成する必要があると伝えます。２つ目の引数で、無名関数を渡し、Table インスタン
スを受けます。この Tableオブジェクトを利用し、カラムを足したり引いたり、テーブルに索引を
付けたり、すらすら書けます。

データベースからテーブルを削除

Schema::drop('users');

指定したデータベース接続のテーブルを削除

Schema::drop('users', 'connection_name');

時々、スキーマ操作を行うデータベース接続を指定する必要があるかも知れません。

操作を行う接続を指定

スキーマビルダー 28

Schema::create('users', function($table)

{

$table->on('connection');

});

5.3 カラム追加

Fluentテーブルビルダーのメソッドは、特定のベンダーの SQLを使用せず、カラムを追加でき
ます。まずはメソッドです。見て行きましょう。

コマンド 説明

$table->increments('id'); 自動増分される ID をテーブルへ
$table->string('email'); VARCHARのカラム
$table->string('name', 100); 長さ指定の VARCHAR
$table->integer('votes'); INTEGER をテーブルへ
$table->float('amount'); FLOAT をテーブルへ
$table->decimal('amount', 5, 2); 最大桁数と少数桁を指定し DECIMAL

を追加
$table->boolean('confirmed'); BOOLEAN をテーブルへ
$table->date('created_at'); 日付をテーブルへ
$table->timestamp('added_on'); TIMESTAMP をテーブルへ
$table->timestamps(); created_at と updated_at を追加
$table->text('description'); TEXT をテーブルへ
$table->blob('data'); BLOB をテーブルへ
->nullable() NULL値可能を指定
->default($value) そのカラムのデフォルト値を宣言
->unsigned() 整数を符号なしに設定

..

追記：Laravelの”boolean” タイプはすべてのデータベースシステムで small integerカラムに
マップされます。

テーブルの作成とカラム追加例

スキーマビルダー 29

Schema::table('users', function($table)

{

$table->create();

$table->increments('id');

$table->string('username');

$table->string('email');

$table->string('phone')->nullable();

$table->text('about');

$table->timestamps();

});

5.4 カラム削除

データベーステーブルからカラムを削除

$table->drop_column('name');

データベーステーブルから複数のカラムを削除

$table->drop_column(array('name', 'email'));

5.5 インデックス追加

スキーマビルダーは多くのタイプのインデックスをサポートしています。インデックスを付け加
えるためには２つの方法があります。それぞれのインデックスタイプごとにメソッドがあります。
しかしながら、カラムを追加時に索引を定義することもできます。見てみましょう。

インデックス付きでｓｔｒｉｎｇカラムを作成

$table->string('email')->unique();

もし別の行でインデックスを定義するなら、もっと様々な指定ができます。インデックスメソッド
の例をご覧ください。

コマンド 説明

$table->primary('id'); プライマリキーを追加
$table->primary(array('fname',

'lname'));

複合キーの追加

$table->unique('email'); ユニークキーの追加
$table->fulltext('description'); フルテキストインデックスの追加
$table->index('state'); 基本インデックスの追加

スキーマビルダー 30

5.6 インデックス削除

インデックスを削除するには、名前を指定しなくてはなりません。Laravelはすべてのインデッ
クスに適した名前をつけます。シンプルにテーブル名に続け、インデックスしているカラムの名
前、それからインデックスのタイプです。例をご覧ください。

コマンド 説明

$table->drop_primary('users_id_-

primary');

“users”テーブルのプライマリーキーを
削除

$table->drop_unique('users_-

email_unique');

“users”テーブルのユニークインデッ
クスを削除

$table->drop_fulltext “profile”テーブルから、
('profile_description_fulltext'); フルテキストインデックスを削除

$table->drop_index('geo_state_-

index');

“geo”テーブルから、基本インデックス
を削除

5.7 外部キー

Schema クラスの記述的なインターフェイスを使用し、テーブルに外部キー束縛を簡単に追加
できます。例えば、postsテーブルに、user_idがあり、usersテーブルの idカラムを参照してい
るとしましょう。カラムに外部キー束縛を付け加える方法です。

$table->foreign('user_id')->references('id')->on('users');

更に、 「削除 (on delete)」と「更新 (on update)」アクションを外部キーに指定できます。

$table->foreign('user_id')->references('id')->on('users')->on_delete('restrict\

');

$table->foreign('user_id')->references('id')->on('users')->on_update('cascade'\

);

また、簡単に外部キーを削除することもできます。スキームビルダーにおけるデフォルトの外
部キーの名前は、他のインデックスを作成する場合と同じ規則に従っています。サンプルをど
うぞ。

$table->drop_foreign('posts_user_id_foreign');

スキーマビルダー 31

..

注意：外部キーで参照されるフィールドは自動増分項目であり、そのため自動的に unsigned
integer になります。ですから、外部キーのフィールドは unsigned()で作成し、両方共に同じ
タイプであることを確認してください。さらに、両方のテーブルはエンジンに InnoDBをセット
していること、参照されるテーブルは、外部キーのテーブルの前に作成することも確実に行
なってください。

$table->engine = 'InnoDB';

$table->integer('user_id')->unsigned();

	目次
	ץǤˤĤ
	前書き
	概要
	テンプレート
	フォームの作成
	バリデーション
	スキーマビルダー

