

Laravel 5.1 Beauty
Creating Beautiful Web Apps with Laravel 5.1

Chuck Heintzelman

This book is for sale at http://leanpub.com/l5-beauty

This version was published on 2015-07-16

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and
many iterations to get reader feedback, pivot until you have the right book and build traction once
you do.

©2014 - 2015 Chuck Heintzelman

http://leanpub.com/l5-beauty
http://leanpub.com
http://leanpub.com/manifesto

Also By Chuck Heintzelman
Getting Stuff Done with Laravel 4

Getting Stuff Done with Laravel 4 (TR) Türkçe

Laravel4でこなすプログラム術　Getting Stuff Done

http://leanpub.com/u/chuckheintzelman
http://leanpub.com/gettingstuffdonelaravel
http://leanpub.com/gsd-laravel-tr
http://leanpub.com/gsd-laravel-jp

Contents

Thank You . i
Feedback . i
Other places to learn Laravel 5.1 . i

Chapter 1 - Introduction . 1
Chapter Contents . 1
Long Term Support . 1
Why This Book . 1
GitHub and the Blog . 1
What is the Application? . 2
Conventions Used This Book . 2
Have Fun . 4

Chapter 2 - Required Software and Components . 5
Chapter Contents . 5
The Rise of the Virtual Machines . 5
About Laravel Homestead . 5
Installing Virtual Box . 6
Installing Vagrant . 7
Where Do I Execute Things? . 8
Recap . 10

Chapter 3 - Setting up a Windows Machine . 11
Chapter Contents . 11
Multiple Ways to Setup Windows . 11
Step 1 - Installing PHP Natively . 11
Step 2 - Install Node.js . 13
Step 3 - Install Composer . 15
Step 4 - Install GIT and set up SSH Key . 16
Step 5 - Adding the Homestead box . 17
Step 6. Installing Homestead . 18
Step 7 - Bring up the Homestead VM . 19
Step 8 - Setting up PuTTY . 20
Step 9 - Installing Laravel’s Installer . 21

CONTENTS

Recap . 22

Chapter 4 - Setting up an OS X or Linux Machine . 23
Chapter Contents . 23
Slight Variations with Linux . 23
Step 1 - Installing PHP . 23
Step 2 - Install Node.js . 24
Step 3 - Install Gulp . 25
Step 4 - Install Composer . 26
Step 5 - Adding SSH Keys . 27
Step 6 - Adding the Homestead box . 28
Step 7 - Installing Homestead . 28
Step 8 - Bring up the Homestead VM . 30
Step 9 - Installing the Laravel Installer . 31
Recap . 32

Chapter 5 - Homestead and Laravel Installer . 33
Chapter Contents . 33
The Homestead Tool . 33
Overview of Common Homestead Commands . 34
Examining Homestead.yaml . 35
Adding Software to the Homestead VM . 37
Daily Workflow . 38
Six Steps to Starting a New Laravel 5.1 Project . 38
Other Homestead Tips . 41
Recap . 42

Chapter 6 - Testing . 43
Chapter Contents . 43
Creating the l5beauty Project . 43
Running PHPUnit . 46
Using Gulp for TDD . 51
Creating a Markdown Service . 53
Other Ways to Test . 59
Recap . 60

End of Preview . 61
Chapter 7 - The 10 Minute Blog . 61
Chapter 8 - Starting the Admin Area . 61
Chapter 9 - Using Bower . 61
Chapter 10 - Blog Tags . 61
Chapter 11 - Upload Manager . 61
Chapter 12 - Posts Administration . 62
Chapter 13 - Cleaning Up the Blog . 62

CONTENTS

Chapter 14 - Sending Mail and Using Queues . 62
Chapter 15 - Adding Comments, RSS, and a Site Map . 62
Chapter 16 - General Recap and Looking Forward . 62

Thank You
Thank you for sampling this book. I hope you find it informative and useful.

Feedback

Feedback is encouraged!

If you find a typo, have a correction, or just want to comment on something you’ve found useful
please drop by LaravelCoding.com¹ and comment on the appropriate chapter where you’ve found
an issue.

Other places to learn Laravel 5.1

• The Laravel Web Site² - The documentation there is a great place to start.
• Laracasts³ - The video tutorials created by Jeffrey Way are unparalleled.

¹http://LaravelCoding.com/blog/?tag=L5+Beauty
²http://laravel.com
³http://laracasts.com

http://LaravelCoding.com/blog/?tag=L5+Beauty
http://laravel.com
http://laracasts.com
http://LaravelCoding.com/blog/?tag=L5+Beauty
http://laravel.com
http://laracasts.com

Chapter 1 - Introduction
Chapter Contents

• Long Term Support
• Why This Book
• GitHub and the Blog
• What is the Application?
• Conventions Used This Book
• Have Fun

Long Term Support

Laravel version 5.1 is the first LTS (long term support) Laravel release. This means bug fixes are
provided for 2 years and security fixes are provided for 3 years.

This is important because the applications you build today will still be supported by the framework
tomorrow.

Why This Book

Myprevious book on Laravel,Getting Stuff Done with Laravel 4⁴ waswell received. Now that Laravel
5.1 is available, I briefly thought of updating my previous book to work with Laravel 5.1. The new
version of Laravel implements big changes from Laravel 4, but Laravel 5.1 is mostly backwards
compatible.

But theGetting Stuff Done with Laravel 4 book isn’t really a manual covering every aspect of Laravel
4. It’s a process and design book. The principles discussed within that book still are valid in Laravel
5.1, even if the implementation may vary slightly.

Instead of updating my previous book, I’ve created a new book, Laravel 5.1 Beauty, to highlight
some of the new features. This book is bigger and better than Getting Stuff Done with Laravel 4.

GitHub and the Blog

I’m publishing Laravel 5.1 Beauty simultaneously, as it is being built, on my web site LaravelCod-
ing.com⁵ and on Leanpub⁶.

⁴https://leanpub.com/gettingstuffdonelaravel
⁵http://laravelcoding.com
⁶http://leanpub.com

https://leanpub.com/gettingstuffdonelaravel
http://laravelcoding.com
http://laravelcoding.com
http://leanpub.com
https://leanpub.com/gettingstuffdonelaravel
http://laravelcoding.com
http://leanpub.com

Chapter 1 - Introduction 2

The Source Code is on GitHub
The source code for the application built in this book is available on GitHub at Chuck-
Heintzelman/l5beauty⁷. Just switch the branch at github to the chapter you’re working
on.

This book has a different tone than my previous book. No lame attempts to be funny. (I guess we all
can’t be Dayle Rees.)

Laravel 5.1 Beauty goes through the process of creating, designing and coding a real-world
application while focusing on the the architecture that makes Laravel the number one PHP
framework available today.

What is the Application?

Throughout this book we’ll build a simple, clean and beautiful blogging application along with the
administration required to maintain the blog.

My own Laravel blog, LaravelCoding.com, uses the same blogging application developed here.

Conventions Used This Book

There are a few conventions used throughout this book.

Code is indented two spaces

The standard indentation for PHP code is 4 spaces. Since this book is available in a variety of eBook
formats and some devices with small screens don’t have much horizontal space, code within this
book is indented 2 spaces instead of 4 to save space.

for ($i = 1; $i <= 10; $i++) {

echo "I can count to $i\n";

}

Lines that end with backslash (\) should be continued

If you see any line ending with a backslash, that means the code should continue uninterrupted with
text from the next line.

⁷https://github.com/ChuckHeintzelman/l5beauty

https://github.com/ChuckHeintzelman/l5beauty
https://github.com/ChuckHeintzelman/l5beauty
https://github.com/ChuckHeintzelman/l5beauty

Chapter 1 - Introduction 3

$ here_is_a_really_really_long_command that_has_a_long list of_arguments\

which should continue

In the above line, even though two lines are shown you should type in everything, excluding the
backlash into one line.

Be Careful of This One
When you’re typing code and miss this it can cause an issue. When in doubt check the
GitHub l5beauty repository.

Different prompts used for Windows, OS X (or Linux), and Homestead

Whenever a Windows command prompt is used, the prompt always begins with C: and ends with
the > symbol.

C:\some\path>

Whenever the OS X Console or Linux console is used, the prompt also ends with the > symbol, but
slashes are used instead of backslashes. Often there’s a tilde (∼) in the path.

~/some/path>

Whenever the console is generic (meaning it could be Windows, OS X, or Linux console depending
on your host operating system) a prompt ending with a percent sign % is used.

/some/path%

Finally, whenever the console for the Homestead Virtual Machine is used, the standard dollar sign
$ prompt is used. (The majority of the book uses the Homestead Virtual Machine.)

~/somepath$

With the Homestead Virtual Machine, your prompt actually shows the username and hostname
before the path. For example: vagrant@homestead:∼$, but the username and hostname are only
occasionally illustrated.

Sometimes the path is missing
Whenever the path is omitted from the prompt in one of the versions of the console
windows, it is assumed you are in the current project directory.

Chapter 1 - Introduction 4

Have Fun

I hope you enjoy this book and learn Laravel 5.1 with it. Be sure and follow along, set up your
development machine, and create the application step-by-step, chapter-by-chapter.

Above all. Have fun. Coding in Laravel 5.1 is great fun.

Chapter 2 - Required Software and
Components
This chapter discusses what software and components are required to develop applications with
Laravel 5.1 and why they’re required. Instructions to install VirtualBox and Vagrant are provided.

Chapter Contents

• The Rise of the Virtual Machines
• About Laravel Homestead
• Installing Virtual Box
• Installing Vagrant
• Where Do I Execute Things?
• Recap

The Rise of the Virtual Machines

Over the last few years, virtual machines have come into their own. Virtual Machines (or VMs)
allow one computer system (the host operating system) to emulate another one. Sure, VMs have
been around for a while, but now with increased processor speed and cheap memory VMs can be
on every developer’s desktop.

Laravel embraces VM technology and packages it’s own “box” with the most common requirements
for web applications. This pre-packaged development environment is called Laravel Homestead⁸.

About Laravel Homestead

One of the driving philosophies behind Laravel is to make PHP development both fun and easy.
To this end Laravel provides a development environment called Laravel Homestead. Vagrant⁹ is
used to manage the virtual machine. Under the hood VirtualBox¹⁰ provides the interface to the host
operating system.

⁸http://laravel.com/docs/5.1/homestead
⁹http://vagrantup.com
¹⁰http://virtualbox.org

http://laravel.com/docs/5.1/homestead
http://vagrantup.com
http://virtualbox.org
http://laravel.com/docs/5.1/homestead
http://vagrantup.com
http://virtualbox.org

Chapter 2 - Required Software and Components 6

A car is the perfect metaphor for how this all works together. Homestead is the driver’s seat of
the car, Vagrant is the car’s frame, and VirtualBox is the engine. Once Vagrant and VirtualBox are
installed, there’s no need to worry about them again. All interaction with the VM occurs through
Homestead. (Just like when driving a car, there’s no need to worry about the frame or engine.)

Laravel Homestead allows you to use a virtual Ubuntu Linux machine, pre-installed with the
software required for web development. This VM includes:

• Ubuntu 14.04
• PHP 5.6
• HHVM
• Nginx
• MySQL
• PostgresSQL
• Node (With Bower, Grunt, and Gulp)
• Redis
• Memcached
• Beanstalkd
• Laravel Envoy
• Fabric + HipChat Extension

And best of all, Laravel Homestead allows the same development environment to be used on
Windows, OS X, or Linux systemswithout worrying about conflicting software on the host machine.

Installing Virtual Box

Vagrant requires a back-end provider to provide the virtual machine it will manage. If you already
have VirtualBox, VMWare, or another compatible provider¹¹ you can skip this step.

But if you don’t yet have a back-end installed, use the VirtualBox platform package. It’s free and
works on every major platform.

¹¹https://docs.vagrantup.com/v2/getting-started/providers.html

https://docs.vagrantup.com/v2/getting-started/providers.html
https://docs.vagrantup.com/v2/getting-started/providers.html

Chapter 2 - Required Software and Components 7

VirtualBox Download Page

Go to ‘www.virtualbox.org](https://www.virtualbox.org/wiki/Downloads), download and install
the package for your operating system.

Installing Vagrant

Once you have VirtualBox (or another back-end provider) installed, you need to install Vagrant.

Vagrant Home Page

Go to www.vagrantup.com, download and install the package for your operating system.

When the Vagrant installation is complete, you may need to reboot your machine. After the reboot,
verify Vagrant is installed by opening the console (command prompt in Windows, terminal in OS X
or Linux) and checking the version.

Chapter 2 - Required Software and Components 8

Checking the Vagrant Version

% vagrant --version

Vagrant 1.6.5

Vagrant Windows Install Location
Unlike most software installed within Windows, Vagrant is not available in
the Windows Start menu. It installs into the C:\HashiCorp directory and adds
C:\HashiCorp\Vagrant\bin to your Windows system path.

Where Do I Execute Things?

After going through the next few chapters installing and running Laravel Homestead a common
question is “Where do I run …?” or “Where does … run?” This section provides a brief overview of
the major components of Laravel development within Homestead and answers the questions.

The Web Server

The Web Server runs in the Homestead Virtual Machine.

Nginx is the web server used to serve the web pages. The Host OS can access the web pages using
the standard HTTP port (80) at the address 192.168.10.10. The Host OS can also access web pages at
127.0.0.1 on port 8000.

Editing Files

Always edit your source code from the Host OS.

The edited files are immediately available in the Homestead VM through shared folders.

MySQL

MySQL runs within the Homestead Virtual Machine.

You can access MySQL from your Host OS with the following information.

Setting Name Setting Value

Host 127.0.0.1
Port 33060
Username homestead
Password secret

Chapter 2 - Required Software and Components 9

Memcached

Memcached is an in-memory key/value cache. It runs within the Homestead Virtual Machine.

Beanstalkd

Beanstalkd is a simple and fast work queue. It runs within the Homestead Virtual Machine.

Git or Subversion

Run from your Host OS.

Although you can run these version control systems from either place, it is strongly recommended
to only run them from your Host OS. Consistently running them in one location avoids potential
conflicts.

For example, let’s say you install subversion in the Homestead Virtual Machine and it’s version 1.8.
You check out source code within the Homestead Virtual Machine and then try to check it in from
your Host OS. If subversion v1.7 is installed on your Host OS you won’t be able to do anything until
upgrading subversion on your Host OS.

Bower

Bower is a simple to use package manager for the web. You can run this from either place if bower’s
installed on your Host OS.

Gulp

Gulp is a simple build system Laravel Elixir uses to concatenate assets, minify assets, combine assets,
copy assets, and automate unit tests.

ONLY run this from your Host OS.

When runningGulp from your Host OS, growl-like notifications will appear in your OSwhen certain
tasks are performed (such as LESS files compiled). If you execute Gulp within the Homestead Virtual
Machine there will be warning errors when these notification attempts are made.

Composer

Only run Composer from your Host OS.

If you’re Host OS is OS X or Linux you can run from either place, but if your Host OS is Windows
then Composer creates necessary batch files required to operate correctly.

Chapter 2 - Required Software and Components 10

Artisan

Only run artisan from the Homestead Virtual Machine. The main reason for this is that any specific
database, queue, and cache drivers are installed within Homestead and may not be available (or
installed) on your Host OS. Also, the database setting of localhost is from the Homestead VM
perspective, not from your Host OS’s perspective.

The rule for running commands in the console
The rule is:Only run artisan in the Homestead VM. Everything else can or must be executed
from your Host OS.

Recap

In this chapter we discussed the various software required to develop applications in Laravel 5.1 and
installed VirtualBox and Vagrant.

If your machine is a Windows box, continue to the next chapter, Setting up a Windows Machine.
Otherwise, skip to the chapter Setting up an OS X or Linux Machine.

Chapter 3 - Setting up a Windows
Machine
This chapter goes through the steps required to set up and install the supporting software for Laravel
Homestead on a Windows machine. It is assumed VirtualBox and Vagrant were already installed
from the previous chapter.

If you’re using OS X or Linux, please skip to the next chapter.

Chapter Contents

• Multiple Ways to Setup Windows
• Step 1 - Installing PHP Natively
• Step 2 - Install Node.js
• Step 3 - Install Composer
• Step 4 - Install GIT and set up SSH Key
• Step 5 - Adding the Homestead box
• Step 6 - Installing Homestead
• Step 7 - Bring up the Homestead VM
• Step 8 - Setting up PuTTY
• Step 9 - Installing Laravel’s Installer
• Recap

Multiple Ways to Setup Windows

WithWindows, there’s quite a few different paths you can go down to install the required software. I
tried multiple methods searching for the combination presented below. This chapter has been tested
with Windows 8.1 but should work fine with Windows 7.

Step 1 - Installing PHP Natively

The first step is to get PHP running on Windows.

Chapter 3 - Setting up a Windows Machine 12

Step 1.1 - Download / Unzip PHP

Go to windows.php.net/download¹² and download the latest Zip file for your machine. For my
machine I downloaded the VC11 x64 Thread Safe version. (php-5.6.10-Win32-VC11-x64.zip at
the time of this writing.)

Unzip this file into the C:\Php directory.

Step 1.2 - Update PHP.INI

Open up a command prompt and do the following to create the php.ini file.

Copy php.ini-development to php.ini

C:\Users\Chuck> cd \php

C:\Php> copy php.ini-development php.ini

Then edit php.ini in a text editor and change the following lines.

Changes in php.ini

// change

; extension_dir = "ext"

// to

extension_dir = "ext"

// change

;extension=php_openssl.dll

// to

extension=php_openssl.dll

// change

;extension=php_mbstring.dll

// to

extension=php_mbstring.dll

Now, within the C:\Php directory, you should be able to execute php.

¹²http://windows.php.net/download

http://windows.php.net/download
http://windows.php.net/download

Chapter 3 - Setting up a Windows Machine 13

Checking the PHP version

C:\Php> php --version

PHP 5.6.10 (cli) (built: Oct 30 2014 16:05:53)

Copyright (c) 1997-2014 The PHP Group

Zend Engine v2.6.0, Copyright (c) 1998-2014 Zend Technologies

Step 1.3 - Add C:\Php to the path

• Open up theWindows Control Panel
• Search for env in the top right corner
• Click on the Edit environment variables for your account link
• If PATH is already in your User variables, then [Edit…] it, adding ;C:\Php to the end, otherwise
add it.

Adding PHP to Windows Path

The next time you open up a command prompt, php will be available in your path.

Step 2 - Install Node.js

We’ll install Node.js natively in Windows because later it’ll make it easy to use Gulp directly from
the Windows command prompt.

Go to nodejs.org/download¹³ and download the Windows Installer for your version of windows.
(Either 32-bit or 64-bit.)

¹³http://nodejs.org/download

http://nodejs.org/download
http://nodejs.org/download

Chapter 3 - Setting up a Windows Machine 14

Node.js Download Page

Install using defaults. Once installed, open up a new command prompt and check the installation by
looking at the versions installed.

Checking node and npm versions

C:\Users\Chuck> node --version

v0.10.33

C:\Users\Chuck> npm --version

1.4.28

Installing gulp globally

C:\Users\Chuck> npm install -g gulp

C:\Users\Chuck\AppData\Roaming\npm\gulp -> C:\Users\Chuck\AppData/

Roaming\npm\node_modules\gulp\bin\gulp.js

gulp@3.8.10 C:\Users\Chuck\AppData\Roaming\npm\node_modules\gulp

[snip]

Checking the gulp version

C:\Users\Chuck> gulp --version

[10:13:44] CLI version 3.8.10

Optionally Install Bower
You can optionally install bower globally if youwish to run bower from aWindows prompt.
Personally, I usually run bower within the Homestead Virtual Machine, but it’s your choice.

Using the Node package manager (NPM), install bower globally.

Chapter 3 - Setting up a Windows Machine 15

Installing bower globally

C:\Users\Chuck> npm install -g bower

C:\Users\Chuck\AppData\Roaming\npm\bower -> C:\Users\Chuck\AppData\

Roaming\npm\node_modules\bower\bin\bower

bower@1.3.12 C:\Users\Chuck\AppData\Roaming\npm\node_modules\bower

[snip]

Checking the bower version

C:\Users\Chuck> bower --version

1.3.12

Remember this only installs the programs globally
If you use gulp (or bower) within a particular project you’ll still need to install them locally
within that project with a npm install (omitting the -g option). This will be covered later.

Step 3 - Install Composer

Composer is the package manager for PHP.

Composer Page

Download and install the Windows setup program, Composer-Setup.exe¹⁴. Use the defaults when
installing and if it asks you the path to PHP, enter C:\Php\php.exe.

Once Composer installs, close any command prompts and open up a new one. Check the version of
composer to see if installed correctly.

¹⁴https://getcomposer.org/Composer-Setup.exe

https://getcomposer.org/Composer-Setup.exe
https://getcomposer.org/Composer-Setup.exe

Chapter 3 - Setting up a Windows Machine 16

Checking the Composer version

C:\Users\Chuck> composer --version

Composer version 1.0-dev (b23a3cd36870ff0eefc161a4638d9fcf49d998ba)\

2014-11-21 17:59:11

Installing Composer Updates Your Path
The installation will move C:\Php from your personal path and add it to the system path.
It will also add C:\ProgramData\ComposerSetup\bin to your system path.

Step 4 - Install GIT and set up SSH Key

For Windows we’ll install the native GIT application and use GIT BASH for setting up the SSH Key.
Any other GIT usage in Windows will be through the Windows command prompt.

Step 4.1 - Download the git installer

Go to git-scm.com/downloads¹⁵ and click on the [Downloads for Windows] button. This will
download the latest version of Git for windows.

(At the time of this writing, the file downloaded is named Git-1.9.4-preview20140920.exe.)

Step 4.2 - Install, choosing the ‘Use Git from Command Prompt’
option

Run the file just downloaded and choose default options until you get to the following screen.

Git Path Option

Make sure you select the Use Git from the Windows Command Prompt option.

Use the defaults for the rest of the installation.

¹⁵http://git-scm.com/downloads

http://git-scm.com/downloads
http://git-scm.com/downloads

Chapter 3 - Setting up a Windows Machine 17

Step 4.3 - Checking the Git Version

Close any existing command prompts and open a new command prompt. Make sure Git installed
successfully by executing the command below.

Checking the Git Version

C:\Users\Chuck> git --version

git version 1.9.4.msysgit.2

Step 4.4 - Setup the SSH Key

Find Git Bash in the Windows Start Menu and execute the ssh-keygen command below. Press
[Enter] all the way through to use the defaults and set up the SSH key with no pass phrase.

Creating SSH Key in Git Bash

Chuck@Windows ~

$ ssh-keygen -t rsa -C "your@email.com"

Generating public/private rsa key pair.

Enter file in which to save the key (/c/Users/Chuck/.ssh/id_rsa):

Created directory '/c/Users/Chuck/.ssh'.

Enter passphrase (empty for no passphrase):

Enter same passphrase again:

$

Step 5 - Adding the Homestead box

This step downloads the Laravel Homestead Vagrant box.

Adding the Homestead box in Windows

C:\Users\Chuck> vagrant box add laravel/homestead

==> box: Loading metadata for box 'laravel/homestead'

box: URL: https://vagrantcloud.com/laravel/homstead

[snip]

It can take a while to download on slow connections.

Chapter 3 - Setting up a Windows Machine 18

Step 6. Installing Homestead

Nowwe’ll use composer to install the homestead command. This command line utility makes it easy
to control the Homestead VM.

Step 6.1 - Globally requiring Homestead

Globally requiring Homestead 2.0

C:\Users\Chuck> composer global require "laravel/homestead=~2.0"

Changed current directory to C:\Users/Chuck/AppData/Roaming/Composer

./composer.json has been updated

Loading composer repositories with package information

Updating dependencies (including require-dev)

- Installing symfony/process (v2.5.7)

Loading from cache

- Installing symfony/console (v2.5.7)

Loading from cache

- Installing laravel/homestead (v2.0.7)

Loading from cache

Writing lock file

Generating autoload files

Step 6.2 - Updating Path

Composer just installed Homestead into the vendor directory of your Composer installation. (For
example, C:\Users\YOU\AppData\Roaming\Composer).

In order to access homestead from any command prompt, add this path to your User path variable.

Follow the same steps to do this as you did back in Step 1.3 - Adding C:\Php to the path but this
time the path to add will be below (replacing YOU as appropriate).

Paths to add
C:\Users\YOU\AppData\Roaming\Composer\vendor\bin;vendor\bin

Notice the extra ‘vendor\bin’ in the path?
We’re adding this so any time you’re within the base directory of a Laravel project you can
easily access any vendor utilities provided in that project. For example, Phpunit is installed
in the vendor/bin directory of every Laravel application.

Chapter 3 - Setting up a Windows Machine 19

Step 6.3 - Verifying Homestead Installed

Close any existing command prompts and open a new command prompt so the latest changes to the
path will be in effect. Then check the version of homestead to verify it installed.

Checking the Homestead Version

C:\Users\Chuck>homestead --version

Laravel Homestead version 2.0.7

Step 6.4 - Initialize Homestead

Once you’ve installed the homestead command and added the composer bin directory to your path,
then you need to initialize Homestead.

Initializing Homestead

C:\Users\Chuck> homestead init

Creating Homestead.yaml file...

Homestead.yaml file created at: C:\Users\Chuck\.homestead/Homestead.yaml

Remember
You only need to initialize Homestead once on your machine

Step 7 - Bring up the Homestead VM

To bring up Homestead for the first time we’ll create a Code directory to store our projects and use
the homestead up command.

Bringing up Homestead for the 1st time

C:\Users\Chuck> mkdir Code

C:\Users\Chuck> homestead up

Bringing machine 'default' up with 'virtualbox' provider...

==> default: Importing base box 'laravel/homestead'...

==> default: Matching MAC address for NAT networking...

==> default Checking if box 'laravel/homestead' is up to date...

[snip]

Chapter 3 - Setting up a Windows Machine 20

Now the Homestead Virtual Machine is running. If you exit theWindows command prompt, the VM
is still running. It’ll remain active until you issue a homestead halt command from the Windows
command prompt.

You can log onto the Homestead Virtual Machine, but onWindows we won’t use the homestead ssh

command, we’ll use PuTTY.

Step 8 - Setting up PuTTY

Windows does not provide a SSH client so we need to download and install one. For this book we’ll
use PuTTY and set it up to log onto the Homestead VM.

Step 8.1 - Download and install PuTTY

Download putty-0.63-installer¹⁶. Run this file to install PuTTY. You can just use the default
installation settings.

Step 8.2 - Convert the SSH Key

Next find PuTTYgen in the Windows Start Menu and run it. Select the Conversions menu and
then Import key. Navigate to the id_rsa file created in Step 4.4. Then click the [Save private key]
button. Yes, you want to save the key without a pass phrase, and save it to the same directory–in
my case it’s C:\Users\Chuck\.ssh–using the filename id_rsa.ppk.

Step 8.3 - Setup a Homestead PuTTY Session

Start up PuTTY and set the Connection | SSH | Auth private key to the id_rsa.ppk just created.
Set the Session Hostname to vagrant@127.0.0.1 and the port to 2222.

Save the session as the name homestead.

The first time you run this session you’ll have a confirmation box, but after that you’ll log onto the
Homestead Virtual Machine without having to type a password.

You may want to create a shortcut on your desktop. The item you want the shortcut to point to is:
"C:\Program Files (x86)\PuTTY\Putty.exe" -load homestead and name the shortcut homestead.

Change PuTTY’s Font
The default font PuTTY uses is Courier New, which to my eyes is ugly. You can go into
Window | Appearance in the PuTTY configuration and change the font, size, colors, etc.

¹⁶http://the.earth.li/~sgtatham/putty/latest/x86/putty-0.63-installer.exe

http://the.earth.li/~sgtatham/putty/latest/x86/putty-0.63-installer.exe
http://the.earth.li/~sgtatham/putty/latest/x86/putty-0.63-installer.exe

Chapter 3 - Setting up a Windows Machine 21

Step 8.4 - Connecting to Homestead via PuTTY

Execute the homestead session you just created in PuTTY and you should receive a screen similar
to the follows.

Homestead’s first screen

Using username "vagrant".

Authenticating with public key "imported-openssh-key"

Welcome to Ubuntu 14.04.1 LTS (GNU/Linux 3.13.0-11-generic x86_64)

* Documentation: https://help.ubuntu.com/

System information as of Fri Nov 28 04:24:01 UTC 2014

System load: 0.0 Processes: 92

Usage of /: 5.2% of 39.34GB Users logged in: 0

Memory usage: 33% IP address for eth0: 10.0.2.15

Swap usage: 0% IP address for eth1: 192.168.10.10

Graph this data and manage this system at:

https://landscape.canonical.com/

Get cloud support with Ubuntu Advantage Cloud Guest:

http://www.ubuntu.com/business/services/cloud

Last login: Fri Nov 28 04:24:01 2014 from 10.0.2.2

vagrant@homestead:~$

Step 9 - Installing Laravel’s Installer

For the last step we’ll install the Laravel installer

Chapter 3 - Setting up a Windows Machine 22

Globally requiring Laravel Installer

C:\Users\Chuck> composer global require "laravel/installer=~1.1"

Changed current directory to C:\Users/Chuck/AppData/Roaming/Composer

./composer.json has been updated

Loading composer repositories with package information

Updating dependencies (including require-dev)

- Installing guzzlehttp/streams (2.1.0)

Downloading: 100%

- Installing guzzlehttp/guzzle (4.2.3)

Downloading: 100%

- Installing laravel/installer (v1.1.3)

Downloading: 100%

Writing lock file

Generating autoload files

Since your path was already updated in Step 6.2 to contain composer’s bin directory, the laravel
command should already be accessible from a DOS Prompt. Verify it by checking the version.

Checking the Laravel Version

C:\Users\Chuck>laravel --version

Laravel Installer version 1.1

Congratulations!
You now have a virtual Ubuntu 64-bit machine, ready for developing your Laravel 5.1 web
applications.

Recap

This chapter was basically a laundry list of steps to follow in order to get Laravel Homestead up and
running on your Windows machine. The good news is, these steps only have to be performed once.

Now, skip to the Using Homestead chapter for some information about Laravel Homestead.

Chapter 4 - Setting up an OS X or
Linux Machine
This chapter goes through the steps required to set up and install the supporting software for Laravel
Homestead on an OS X or Linux machine. It is assumed VirtualBox and Vagrant were already
installed from the Required Software and Components chapter.

Chapter Contents

• Slight Variations with Linux
• Step 1 - Installing PHP
• Step 2 - Install Node.js
• Step 3 - Install Bower and Gulp
• Step 4 - Install Composer
• Step 5 - Adding SSH Keys
• Step 6 - Adding the Homestead box
• Step 7 - Installing Homestead
• Step 8 - Bring up the Homestead VM
• Step 9 - Installing the Laravel Installer
• Recap

Slight Variations with Linux

There are slight variations between the different Linux distributions. In particular, the package
manager. CentOS and Fedora use yum as the package manager, Ubuntu uses apt. There is no official
“package manager” with OS X other than the App Store, but homebrew is the unofficial OS X
package manager. Regardless of the differences, the essence is pretty much the same across all *nix
systems, including OS X.

Step 1 - Installing PHP

Often PHP will be pre-installed on your system. You can check the version from a terminal window.

Chapter 4 - Setting up an OS X or Linux Machine 24

Checking the PHP version

~> php --version

PHP 5.5.9-1ubuntu4.5 (cli) (built: Oct 29 2014 11:59:10)

Copyright (c) 1997-2014 The PHP Group

Zend Engine v2.5.0, Copyright (c) 1998-2014 Zend Technologies

with Zend OPcache v7.0.3, Copyright (c) 1999-2014, by Zend Technologies

Laravel 5.1 requires PHP version 5.5.9 or above. If you don’t have PHP installed, or it’s not at least
version 5.5.9, then you’ll need to use your package manager to install PHP.

OS X Yosemite
Yosemite (the version of OS X at the time of this writing) ships with PHP 5.5.14. So no
worries there.

Example installing PHP in Ubuntu

~> sudo apt-get install php5

Reading package lists... Done

Building dependency tree

Reading state information... Done

The following NEW packages will be installed:

php5

0 upgraded, 1 newly installed, 0 to remove and 0 not upgraded.

[snip]

Step 2 - Install Node.js

You’ll need Node.js installed to later use Gulp.

Often, Node.js is already installed. You can check the version of npm to see if Node.js is installed
on your system.

Checking the npm version

$> npm --version

1.5.0-alpha-4

Chapter 4 - Setting up an OS X or Linux Machine 25

If it’s not installed, there are a couple options for installing it. You can use your package manager to
install it. With OS X you can install it with Homebrew. Or you can just go to nodejs.org/download¹⁷
and download the correct version for your operating system.

Node.js Download Page

Once installed, be sure to check the version to make sure node and npm are available in your path.

Checking node and npm versions

~> node --version

v0.10.29

~> npm --version

1.5.0-alpha-4

Step 3 - Install Gulp

Gulp in an integral part of rapid Laravel development. Use the Node package manager (NPM) to
install gulp globally.

Installing gulp globally

~> npm install -g gulp

/usr/local/bin/gulp -> /usr/local/lib/node_modules/gulp/bin/gulp.js

gulp@3.8.10 /usr/local/lib/node_modules/gulp

[snip]

¹⁷http://nodejs.org/download

http://nodejs.org/download
http://nodejs.org/download

Chapter 4 - Setting up an OS X or Linux Machine 26

Checking the gulp version

~> gulp --version

[10:13:44] CLI version 3.8.10

Optionally Install Bower
You can optionally install bower globally if you wish to run bower from your Linux (or OS
X) console. Personally, I use bower both from my OS X console and within the Homestead
Virtual Machine, whichever I’m currently in.

Use the Node package manager (NPM), install bower globally.

Installing bower globally

~> npm install -g bower

/usr/local/bin/bower -> /usr/local/lib/node_modules/bower/bin/bower

bower@1.3.12 /usr/local/lib/node_modules/bower

[snip]

Checking the bower version

~> bower --version

1.3.12

Remember this only installs the programs globally
If you use gulp (or bower) within a particular project you’ll still need to install them locally
within that project with a npm install (omitting the -g option). This will be covered later.

Step 4 - Install Composer

Composer is the package manager for PHP. It can easily be installed from a terminal window in *nix
systems (including both OS X and Linux). An alternative method of installing Composer in OS X
using Homebrew is presented at the bottom of this section.

Chapter 4 - Setting up an OS X or Linux Machine 27

Installing Composer

~> curl -sS https://getcomposer.org/installer | php

#!/usr/bin/env php

All settings correct for using Composer

Downloading...

Composer successfully installed to: /Users/chuck/composer.phar

Use it: php composer.phar

Once you have composer.phar downloaded, move it to the global path.

Moving composer.phar

~> sudo mv composer.phar /usr/local/bin/composer

And then check the version to make sure it’s accessible.

Checking the Composer version

~> composer --version

Composer version 1.0-dev (b23a3cd36870ff0eefc161a4638d9fcf49d998ba)\

2014-11-21 17:59:11

Install using Homebrew
In OS X, if you are using Homebrew, you can install composer using the instructions below.

Alternative installation in OS X with Homebrew

~> brew update

~> brew tap homebrew/dupes

~> brew tap homebrew/php

~> brew install composer

Step 5 - Adding SSH Keys

If you haven’t already added a SSH key for your machine, you’ll need to do it.

Chapter 4 - Setting up an OS X or Linux Machine 28

Checking for SSH Keys

~> ls ~/.ssh

config id_rsa id_rsa.pub

If you don’t see id_rsa and id_rsa.pub create them with the following command. (Press [Enter] all
the way through to use the defaults and set up the SSH key with no pass phrase.)

Creating SSH Keys

~> ssh-keygen -t rsa -C "your@email.com"

Generating public/private rsa key pair.

Enter file in which to save the key (/Users/Chuck/.ssh/id_rsa):

Created directory '/Users/Chuck/.ssh'.

Enter passphrase (empty for no passphrase):

Enter same passphrase again:

Step 6 - Adding the Homestead box

This step downloads the Laravel Homestead Vagrant box.

Adding the Homestead box in Linux

~> vagrant box add laravel/homestead

==> box: Loading metadata for box 'laravel/homestead'

box: URL: https://vagrantcloud.com/laravel/homstead

[snip]

It can take a while to download on slow connections.

Step 7 - Installing Homestead

Now we’ll use composer to install the homestead command. The homestead command line utility
makes it easy to control the Homestead Virtual Machine.

Step 7.1 - Globally requiring Homestead

Chapter 4 - Setting up an OS X or Linux Machine 29

Globally requiring Homestead 2.0

~> composer global require "laravel/homestead=~2.0"

Changed current directory to /home/chuck/.composer

./composer.json has been updated

Loading composer repositories with package information

Updating dependencies (including require-dev)

- Installing symfony/process (v2.5.7)

Loading from cache

- Installing symfony/console (v2.5.7)

Loading from cache

- Installing laravel/homestead (v2.0.7)

Loading from cache

Writing lock file

Generating autoload files

Step 7.2 - Updating Path

Composer just installed Homestead into the vendor directory of your Composer installation. (For
example /home/chuck/.composer in Linux or /Users/Chuck/.composer in OS X).

In order to access homestead from any command prompt, add this path to your path variable. This
should be added to whatever the startup script is for your operating system. Common startup files
are: .bashrc, .bash_profile, .zshrc, etc.

At the bottom of your startup script add the following line:

Updating path in the startup script

export PATH="~/.composer/vendor/bin:vendor/bin:$PATH"

Notice the extra ‘vendor/bin’ in the path?
We’re adding this so any time you’re within the base directory of a Laravel project you can
easily access any vendor utilities provided in that project such as phpunit.

Step 7.3 - Verifying Homestead Installed

Close any existing terminal windows and open a new terminal window so the latest changes to the
path will be in effect. Then check the version of homestead to verify it installed.

Chapter 4 - Setting up an OS X or Linux Machine 30

Checking the Homestead Version

~>homestead --version

Laravel Homestead version 2.0.7

Step 7.4 - Initialize Homestead

Once you’ve installed the homestead command and added the composer bin directory to your path,
then you need to initialize Homestead.

Initializing Homestead

~> homestead init

Creating Homestead.yaml file...

Homestead.yaml file created at: /home/chuck/.homestead/Homestead.yaml

Remember
You only need to initialize Homestead once on your machine

Step 8 - Bring up the Homestead VM

To bring up Homestead for the first time we’ll create a Code directory to store our projects and use
the homestead up command.

Bringing up Homestead for the 1st time

~> mkdir Code

~> homestead up

Bringing machine 'default' up with 'virtualbox' provider...

==> default: Importing base box 'laravel/homestead'...

==> default: Matching MAC address for NAT networking...

==> default Checking if box 'laravel/homestead' is up to date...

[snip]

Now the Homestead VM is running. If you exit the terminal window, Homestead is still running.
It’ll remain active until you issue a homestead halt command from a terminal window.

Now you can log onto homestead with the homestead ssh command.

Chapter 4 - Setting up an OS X or Linux Machine 31

Shelling to homestead

~> homestead ssh

Welcome to Ubuntu 14.04.1 LTS (GNU/Linux 3.13.0-11-generic x86_64)

* Documentation: https://help.ubuntu.com/

System information as of Fri Nov 28 04:24:01 UTC 2014

System load: 0.0 Processes: 92

Usage of /: 5.2% of 39.34GB Users logged in: 0

Memory usage: 33% IP address for eth0: 10.0.2.15

Swap usage: 0% IP address for eth1: 192.168.10.10

Graph this data and manage this system at:

https://landscape.canonical.com/

Get cloud support with Ubuntu Advantage Cloud Guest:

http://www.ubuntu.com/business/services/cloud

Last login: Fri Nov 28 04:24:01 2014 from 10.0.2.2

vagrant@homestead:~$

Step 9 - Installing the Laravel Installer

For the last step we’ll install the Laravel installer. Do the following from your console (not from
within the Homestead Virtual Machine).

Globally requiring Laravel Installer

~> composer global require "laravel/installer=~1.1"

Changed current directory to /Users/chuck/.composer

./composer.json has been updated

Loading composer repositories with package information

Updating dependencies (including require-dev)

- Installing guzzlehttp/streams (2.1.0)

Downloading: 100%

- Installing guzzlehttp/guzzle (4.2.3)

Downloading: 100%

- Installing laravel/installer (v1.1.3)

Chapter 4 - Setting up an OS X or Linux Machine 32

Downloading: 100%

Writing lock file

Generating autoload files

Since your path was already updated in Step 7.2 to contain composer’s bin directory, the laravel
command should already be accessible from the Console window. Verify it by checking the version.

Checking the Laravel Version

~> laravel --version

Laravel Installer version 1.2.1

Congratulations!
You now have a virtual Ubuntu 64-bit machine, ready for developing your Laravel 5.1 web
applications.

Recap

This chapter contained a series steps to follow in order to get Laravel Homestead up and running
on your OS X or Linux machine. The good news is, these steps only have to be performed once.

The next chapter, Using Homestead, contains information about using Homestead.

Chapter 5 - Homestead and Laravel
Installer
This chapter explores the two composer tools previously installed: homestead and laravel. A typical
daily workflow is examined, as are the six steps to set up any new Laravel 5.1 project.

Chapter Contents

• The Homestead Tool
• Overview of Common Homestead Commands
• Examining Homestead.yaml
• Adding Software to the Homestead VM
• Daily Workflow
• Six Steps to Starting a New Laravel 5.1 Project

– Step 1 - Create the app skeleton
– Step 2 - Configure the web server
– Step 3 - Add the Host to Your Hosts File
– Step 4 - NPM Local Installs
– Step 5 - Create the app’s database
– Step 6 - Testing in the Browser

• Other Homestead Tips
• Recap

The Homestead Tool

Console Defined
Whenever you are prompted to do something from the console, context is important.

The homestead console means connecting to the Homestead VM via SSH. For Windows,
this means using PuTTY (explained in the chapter on setting up aWindows machine). With
other operating systems you can execute the homestead ssh command from within the
terminal. Whenever you see the $ prompt in this book you are in the homestead console.

The OS console means either the Windows command prompt or the terminal application
you use. (The % prompt in the book is used for your OS specific console.)

From the console of your host operating system, you can easily see what the valid homestead
commands are by typing the homestead command without any arguments.

Chapter 5 - Homestead and Laravel Installer 34

Homestead Commands

% homestead

Laravel Homestead version 2.0.9

Usage:

[options] command [arguments]

Options:

--help -h Display this help message.

--quiet -q Do not output any message.

--verbose -v|vv|vvv Increase the verbosity of messages: 1 for normal \

output, 2 for more verbose output and 3 for debug.

--version -V Display this application version.

--ansi Force ANSI output.

--no-ansi Disable ANSI output.

--no-interaction -n Do not ask any interactive question.

Available commands:

destroy Destroy the Homestead machine

edit Edit the Homestead.yaml file

halt Halt the Homestead machine

help Displays help for a command

init Create a stub Homestead.yaml file

list Lists commands

provision Re-provisions the Homestead machine

resume Resume the suspended Homestead machine

run Run commands through the Homestead machine via SSH

ssh Login to the Homestead machine via SSH

status Get the status of the Homestead machine

suspend Suspend the Homestead machine

up Start the Homestead machine

update Update the Homestead machine image

The main command you’ll use each day is the homestead up command to start the Homestead
Virtual Machine.

Overview of Common Homestead Commands

Here’s a quick overview of commonly used Homestead commands.

Chapter 5 - Homestead and Laravel Installer 35

homestead up

Starts theHomestead VirtualMachine. It turns on the power to the VM. If you use the provision
option (homestead up --provision) then any new sites you’ve added will be provisioned.

homestead halt

Stops the Homestead Virtual Machine. In other words, powering off.

homestead suspend

Suspends the Homestead Virtual Machine. It’s like hibernate.

homestead resume

Resumes the suspended Homestead Virtual Machine.

homestead edit

Edit the Homestead.yaml file. This launches whatever editor is associated with YAML files on
your operating system.

homestead status

See the current status of the Homestead Virtual Machine.

Examining Homestead.yaml

The configuration settings for Laravel Homestead are contained in the Homestead.yaml file. This
file is located in the .homestead directory of your Host OS’s home directory.

If you view the contents of this file, you’ll see what’s below.

Contents of Homestead.yaml

ip: "192.168.10.10"

memory: 2048

cpus: 1

authorize: ~/.ssh/id_rsa.pub

keys:

- ~/.ssh/id_rsa

folders:

- map: ~/Code

to: /home/vagrant/Code

sites:

Chapter 5 - Homestead and Laravel Installer 36

- map: homestead.app

to: /home/vagrant/Code/Laravel/public

databases:

- homestead

variables:

- key: APP_ENV

value: local

Here’s a definition of each of the settings.

ip The internal IP used to access the machine.

memory
How much memory the VM will use.

cpus The number of CPUs the VM will use.

authorize
This should point to your public SSH key.

keys Your private SSH key.

folders
The shared folders. These are the directories in your Host Operating System and where
they will appear within the VM. For Windows the ∼/Code equates to something like
C:\Users\YOU\Code. In OS X, this is /Users/YOU/Code. Under Linux it’s usually something
like /home/YOU/Code. Whenever you edit a file in this directory tree on your host machine,
it’s instantly available to the Homestead Virtual Machine.

sites A list of sites (paths each domain points to) that will be set up on the Homestead Virtual
Machine each time you provision.

databases
A list of database Homestead should automatically create.

variables
Variables to make available to the homestead environment.

A configuration note
The only change I usually make to the configuration is to change the list of databases to
have one database named xhomestead instead of homestead. This way if I forget create an
app’s database when creating a new Laravel application, an error occurs. (Otherwise, since
the default database for a new application is homestead, no error will occur and I’ll be using
the homestead db without realizing it.)

Chapter 5 - Homestead and Laravel Installer 37

For now, don’t change any homestead configuration values except the databases setting (and then,
only if you want to.)

..

The Homestead Virtual Machine Details
What Value

Hostname homestead
IP Address 192.168.10.10
Username vagrant
SU Password vagrant
Database Host 127.0.0.1
Database Port 33060
Database Username homestead
Database Password secret

Adding Software to the Homestead VM

When you need to install new software inside the Homestead Virtual Machine, use the Ubuntu
utility apt-get.

It’s an easy two step process.

1. Upgrade Ubuntu
2. Install with apt-get

For example, here’s how to install unzip, a handy utility for dealing with zip archives.

First, Upgrade Ubuntu

Upgrading Latest Ubuntu Software

vagrant@homestead:~$ sudo apt-get update

vagrant@homestead:~$ sudo apt-get upgrade

You may have to choose “Y” to continue. If prompted during the installation to pick a configuration
it’s generally best to go with the existing or default.

After the Ubuntu OS within the Homestead VM is updated, install unzip.

Next, Install unzip with apt-get

Chapter 5 - Homestead and Laravel Installer 38

Installing unzip in the Homestead VM

vagrant@homestead:~$ sudo apt-get install unzip

Daily Workflow

The daily workflow when working with homestead consists of three steps:

Step 1 - homestead up - Start the day by booting your Homestead Virtual Machine.

Step 2 - homestead ssh or PuTTY - SSH to the Homestead VM to access files directly and execute
artisan commands.

Step 3 - write beautiful code - In your favorite code editor, on your host operating system, write
code.

Optional 4th Step - homestead halt - When you are done for the day, you can optionally power
off the Homestead Virtual Machine with the halt command.

Six Steps to Starting a New Laravel 5.1 Project

There are six simple steps to follow whenever starting a new Laravel 5.1 application.

Let’s say we want to create a project called test.app and use test as the project folder.

Step 1 - Create the app skeleton

Using the Laravel Installer (the laravel command installed in a previous chapter) it’s easy to create
a new project skeleton.

Creating a new app skeleton

~/Code % laravel new test

Crafting application...

Generating optimized class loader

Compiling common classes

Application key [rzUhyDksVxzTXFjzFYiOWToqpunI2m6X] set successfully.

Application ready! Build something amazing.

Step 2 - Configure the web server

After there’s an application skeleton in place you can set up the Nginx webserver within the
homestead environment to serve pages from your app’s public directory.

The homestead environment makes this easy with the serve command.

Chapter 5 - Homestead and Laravel Installer 39

Setting up a new virtual host in Homestead

~/Code$ serve test.app ~/Code/test/public

dos2unix: converting file /vagrant/scripts/serve.sh to Unix format ...

* Restarting nginx nginx [OK]

php5-fpm stop/waiting

php5-fpm start/running, process 2169

The serve command sets up a new configuration file in /etc/nginx/sites-available for the
domain we’ll be using (test.app) and a symbolic link to this file within the /etc/nginx/sites-

enabled directory.

Even when you reboot the machine, this configuration file will be there.

Why not edit Homestead.yaml
Yes. Another alternative is to set up the parameters for the test.app virtual host using the
homestead edit command and adding a new entry to the sites: section. But this is easier,
and there’s no need to continuously re-provision the Homestead VM.

But, if you’re setting up an app you always want configured, it’s not a bad idea to edit
Homestead.yaml and set up the configuration there.

Step 3 - Add the Host to Your Hosts File

Since test.app does not exist in any DNS, an entry must be added to the Host OS’s hosts file. Edit
/etc/hosts in Linux or OS X. In Windows the file is C:\Windows\System32\drivers\etc\hosts. In
this hosts file point test.app to the IP specified in Homestead.yaml.

Add the following line to this file.

Host entry for test.app

192.168.10.10 test.app

Windows requires admin privileges to edit hosts
In Windows you must launch your editor (such as Notepad, Wordpad, or Sublime Text) as
an administrator. In Linux or OS X you can use the sudo command.

Chapter 5 - Homestead and Laravel Installer 40

Editing hosts with Linux or OS X

sudo nano /etc/hosts

// or

sudo vi /etc/hosts

Step 4 - NPM Local Installs

In order to later use gulp it’s important to make sure all the required npm modules are locally
installed.

You can skip this step if you know you will not use gulp.

Change to your project directory in your Host OS’s console and execute the following.

NPM Local Installs

~% cd Code/test

~/Code/test% npm install

npm WARN package.json @ No repository field.

> v8flags@1.0.5 install /Users/chuck/Code/test/node_modules/gulp/\

node_modules/v8flags

> node fetch.js

flags for v8 3.14.5.9 cached.

[snip]

This will install everything required by gulp locally into the node_modules directory of your project.

Step 5 - Create the app’s database

If your application requires a database, it’s easy to create it within the Homestead VM using the
mysql console.

Creating a Database in the Homestead VM

$ mysql --user=homestead --password=secret

mysql> create database test;

mysql> exit;

Once the database is created, edit the .env file in your project’s root directory and change the
DB_NAME appropriately.

Chapter 5 - Homestead and Laravel Installer 41

Change DB_NAME in .env
// Change the following line

DB_DATABASE=homestead

// To the correct value

DB_DATABASE=test

Easy. Now you’ll be able to migrate and create tables. This is covered in a later chapter.

Step 6 - Testing in the Browser

Point your browser to http://test.app and you should see the page below.

Default Laravel Page

If you see anything else then something didn’t work.

Other Homestead Tips

Edit Source Code in your Host Operating System

Although this has been mentioned in an earlier chapter, it bears repeating. Always edit your source
code in your Host OS. Through the magic of shared folders, changes you make within the ∼/Code

directory are immediately seen within the Homestead Virtual Machine.

Use the .homestead/aliases file

Each time you re-provision Homestead with homestead up --provision or homestead provision,
the .homestead/aliases file updates the aliases in the Homestead Virtual Machine.

This is a handy place to add aliases, or functions, or even other environment variables.

Chapter 5 - Homestead and Laravel Installer 42

Keep the Homestead VM up-to-date

As mentioned earlier, two commands will keep the Ubuntu operating system within the Homestead
Virtual Machine up to date.

Keeping Ubuntu Updated

$ sudo apt-get update

$ sudo apt-get upgrade

Recap

This chapter provided details on the homestead and laravel commands. And the Six Steps to a New
Laravel 5.1 Project were outlined.

In the next chapter where we’ll do a bit of testing.

Chapter 6 - Testing
In this chapter we’ll create a project to use throughout the rest of the book and explore various
options for testing. We’ll create a class to convert Markdown formatted files to HTML. This class
will be created using TDD principles.

Chapter Contents

• Creating the l5beauty Project
• Running PHPUnit

– Laravel 5.1’s PHPUnit Configuration
– Laravel 5.1 Crawler Methods and Properties
– Laravel 5.1 PHPUnit Application methods and properties
– Laravel 5.1 PHPUnit Assertions

• Using Gulp for TDD
• Creating a Markdown Service

– Pulling in Markdown Packages
– Creating the Markdown Test Class
– Creating the Markdowner Service
– A Few More Tests

• Other Ways Test
– phpspec
– Unit Testing
– Functional / Acceptance Testing
– Behavior Driven Development

• Recap

Creating the l5beauty Project

Follow the Six Steps to Starting a New Laravel 5.1 Project below to create the l5beauty project.

First, from your Host OS, install the app skeleton.

Chapter 6 - Testing 44

Step 1 - Install the app skeleton

~/Code % laravel new l5beauty

Crafting application...

Generating optimized class loader

Compiling common classes

Application key [rzUhyDksVxzTXFjzFYiOWToqpunI2m6X] set successfully.

Application ready! Build something amazing.

Next, from within the Homestead VM, set up l5beauty.app as the virtual host.

Step 2 - Configure the web server

~/Code$ serve l5beauty.app ~/Code/l5beauty/public

dos2unix: converting file /vagrant/scripts/serve.sh to Unix format ...

* Restarting nginx nginx [OK]

php5-fpm stop/waiting

php5-fpm start/running, process 2169

Back in your Host OS, add the following line to your hosts file.

Step 3 - Add l5beauty.app to Your Hosts File

192.168.10.10 l5beauty.app

From your Host OS, do the step to install the NPM packages locally.

Step 4 - NPM Local Installs

~% cd Code/l5beauty

~/Code/l5beauty% npm install

|

> node-sass@2.0.1 install /Users/chuck/Code/l5beauty/node_modules/laravel-\

elixir/node_modules/gulp-sass/node_modules/node-sass

> node scripts/install.js

> node-sass@2.0.1 postinstall /Users/chuck/Code/l5beauty/node_modules/\

laravel-elixir/node_modules/gulp-sass/node_modules/node-sass

> node scripts/build.js

`darwin-x64-node-0.10` exists; testing

Binary is fine; exiting

Chapter 6 - Testing 45

gulp@3.8.11 node_modules/gulp

├── v8flags@2.0.2

├── pretty-hrtime@0.2.2

[snip]

Go back within the Homestead VM and create the database for this project.

Step 5 - Create the app’s database

$ mysql --user=homestead --password=secret

mysql> create database l5beauty;

Query OK, 1 row affected (0.00 sec)

mysql> exit;

Bye

Then edit the .env file, changing the database to l5beauty.

Changing DB_NAME in configuration

// Change the following line

DB_DATABASE=homestead

// To the correct value

DB_DATABASE=l5beauty

Finally, bring up http://l5beauty.app in your browser to make sure everything is working
correctly.

Default Laravel Page

Chapter 6 - Testing 46

Running PHPUnit

Laravel 5.1 comes out of the box ready for testing. There’s even a very simple unit test supplied to
make sure a web request to the application returns the expected 200 HTTP response.

To run PHPUnit, execute the phpunit command from the project’s root directory.

Running PHPUnit

~% cd Code/l5beauty

~/Code/l5beauty% phpunit

PHPUnit 4.7.4 by Sebastian Bergmann and contributors.

.

Time: 544 ms, Memory: 10.25Mb

OK (1 test, 2 assertions)

Did you get an error?
If you receive a command not found or a permissions denied error when attempting
to run the phpunit command it could be because of an installation bug. The phpunit

command should be found in the vendor/bin directory–and this directory was added to
the path in your Host OS back in Chapter 3 or 4. The problem is that the Laravel Installer
has a bug that doesn’t necessarily set the permissions correctly on phpunit and several
other utilities.

To fix this bug, follow the two steps below.

Step 1 - Delete the vendor directory. Just wipe it out using whatever command is
appropriate for your Host OS.

Step 2 - Recreate the vendor directory using the composer update command from your
project’s root directory. Do this from your Host Operating System.

That’s it. Then try executing the phpunit command again.

Laravel 5.1’s PHPUnit Configuration

In the root of each Laravel 5.1 project is the file phpunit.xml. This contains the configuration
PHPUnit uses when phpunit is executed from the project’s root directory.

Examination of the phpunit.xml will show the tests reside within the tests directory. There are
two files located there.

Chapter 6 - Testing 47

1. ExampleTest.php - Contains one test testBasicExample(). The ExampleTest class is derived
from the TestCase parent provided in the other file.

2. TestCase.php - The base class from which to derive Laravel tests.

Take a look at the testBasicExample() method in ExampleTest.php.

The testBasicExample() method

1 public function testBasicExample()

2 {

3 $this->visit('/')

4 ->see('Laravel 5');

5 }

This test says “Visit the home page and we should see the words ‘Laravel 5’.” Can tests get any
simpler than this?

The TestCase class provides additional Laravel 5.1 specific application methods and properties to
your unit tests. TestCase also provides a long list of additional assertion methods and crawler type
tests.

Laravel 5.1 Crawler Methods and Properties

The Crawler tests allow you to test pages in your web application. The nice thing is that many of
these tests are fluent and return $this, allowing you to build the ->visit()->see() type test in the
above example.

Here are some of the available properties and methods.

$response

The last response returned by the web application.

$currentUri

The current URL being viewed.

visit($uri)

(Fluent) Visit the given URI with a GET request.

get($uri, array $headers = [])

(Fluent) Fetch the given URI with a GET request, optionally passing headers.

post($uri, array $data = [], array $headers = [])

(Fluent) Make a POST request to the specified URI.

Chapter 6 - Testing 48

put($uri, array $data = [], array $headers = [])

(Fluent) Make a PUT request to the specified URI.

patch($uri, array $data = [], array $headers = [])

(Fluent) Make a PATCH request to the specified URI.

delete($uri, array $data = [], array $headers = [])

(Fluent) Make a DELETE request to the specified URI.

followRedirects()

(Fluent) Follow any redirects from latest response.

see($text, $negate = false)

(Fluent) Assert the given text appears (or doesn’t appear) on the page.

seeJson(array $data = null)

(Fluent) Assert the response contains JSON. If $data passed, also asserts the JSON value
exactly matches.

seeStatusCode($status)

(Fluent) Assert the response has the expected status code.

seePageIs($uri)

(Fluent) Assert current page matches given URI.

seeOnPage($uri) and landOn($uri)

(Fluent) Aliases to seePageIs()

click($name)

(Fluent) Click on a link with the given body, name or id.

type($text, $element)

(Fluent) Fill an input field with the given text.

check($element)

(Fluent) Check a checkbox on the page.

select($option, $element)

(Fluent) Select an option from a dropdown.

attach($absolutePath, $element)

(Fluent) Attach a file to a form field.

press($buttonText)

(Fluent) Submit a form using the button with the given text.

withoutMiddleware()

(Fluent) Disable middleware for the test.

Chapter 6 - Testing 49

dump()

Dump the content of the latest response.

Laravel 5.1 PHPUnit Application methods and properties

Here’s a brief rundown of some of the additional application methods and properties Laravel 5.1
provides to PHPUnit.

$app The instance of the Laravel 5.1 application.

$code

The latest code returned by artisan

refreshApplication()

Refreshes the application. Automatically called by the TestCase’s setup() method.

call($method, $uri, $parameters = [], $cookies = [], $files = [], $server = [], $content

= null)

Calls the given URI and returns the response.

callSecure($method, $uri, $parameters = [], $cookies = [], $files = [], $server = [],

$content = null)

Calls the given HTTPS URI and returns the response.

action($method, $action, $wildcards = [], $parameters = [], $cookies = [], $files =

[], $server = [], $content = null)

Calls a controller action and returns the response.

route($method, $name, $routeParameters = [], $parameters = [], $cookies = [], $files

= [], $server = [], $content = null)

Calls a named route and returns the response.

instance($abstract, $object)

Register an instance of an object in the container.

expectsEvents($events)

Specify a list of events that should be fired for the given operation.

withoutEvents()

Mock the event dispatcher so all events are silenced.

expectsJobs($jobs)

Specify a list of jobs that should be dispatched for the given operation.

withSession(array $data)

Set the session to the given array.

Chapter 6 - Testing 50

session(array $data)

Starts session and sets the session values from the array.

flushSession()

Flushes the contents of the current session.

startSession()

Starts the application’s session.

actingAs($user)

(Fluent) Sets the currently logged in user for the application.

be($user)

Sets the currently logged in user for the application.

seeInDatabase($table, array $data, $connection = null)

(Fluent) Asserts a given where condition exists in the database.

notSeeInDatabase($table, $array $data, $connection = null)

(Fluent) Asserts a given where condition does not exist in the database.

missingFromDatabase($table, array $data, $connection = null)

(Fluent) Alias to notSeeInDatabase().

seed()

Seeds the database.

artisan($command, $parameters = [])

Executes the artisan command and returns the code.

Any of these methods or properties can be accessed within your test classes. The provided
ExampleTest.php file contains a line using $this->call(...) inside the testBasicExample()

method.

Laravel 5.1 PHPUnit Assertions

In addition to the standard PHPUnit assertions (such as assertEquals(), assertContains(),
assertInstanceOf(), …), Laravel 5.1 provides many additional assertions to help write tests dealing
with the web application.

assertPageLoaded($uri, $message = null)

Assert the latest page loaded; throw exception with $uri/$message if not.

assertResponseOk()

Assert that the client response has an OK status code.

Chapter 6 - Testing 51

assertReponseStatus($code)

Assert that the client response has a given code.

assertViewHas($key, $value = null)

Assert that the response view has a given piece of bound data.

assertViewHasAll($bindings)

Assert that the view has a given list of bound data.

assertViewMissing($key)

Assert that the response view is missing a piece of bound data.

assertRedirectedTo($uri, $with = [])

Assert whether the client was redirected to a given URI.

assertRedirectedToRoute($name, $parameters = [], $with = [])

Assert whether the client was redirected to a given route.

assertRedirectedToAction($name, $parameters = [], $with = [])

Assert whether the client was redirected to a given action.

assertSessionHas($key, $value = null)

Assert that the session has given key(s)/value(s).

assertSessionHasAll($bindings)

Assert that the session has a given list of values.

assertSessionHasErrors($bindings = [])

Assert that the session has errors bound.

assertHasOldInput()

Assert that the session has old input.

Using Gulp for TDD

Gulp¹⁸ is a build and automation system written in JavaScript. It allows common tasks such as
minification of source files to be automated. Gulp can even watch your source code for changes and
automatically run tasks when this occurs.

Laravel 5.1 includes Laravel Elixir¹⁹ which allows Gulp tasks to be built in easy ways. Elixir adds an
elegant syntax to gulp. Think of it this way … what Laravel is to PHP, Elixir is to Gulp.

One of the most common uses of Gulp is to automate unit tests. We’ll follow the TDD (Test Driven
Development) process here and let Gulp automatically run our tests.

First, edit the gulpfile.js file in the l5beauty project’s root directory to match what’s below.

¹⁸http://gulpjs.com/
¹⁹http://laravel.com/docs/5.1/elixir

http://gulpjs.com/
http://laravel.com/docs/5.1/elixir
http://gulpjs.com/
http://laravel.com/docs/5.1/elixir

Chapter 6 - Testing 52

Configuring Gulp to run PHPUnit Tests

var elixir = require('laravel-elixir');

elixir(function(mix) {

mix.phpUnit();

});

Here we call the elixir() function, passing a function. The mix object this function receives is a
stream on which multiple things can occur. You might want to build LESS files into CSS files here,
then concatenate those CSS files together, and then provide versioning on the resulting concatenated
files. All of those things can be specified by using a fluent interface on the mix object.

But for now, we’re only running PHPUnit tests.

Next, from the project root on your Host OS, run gulp to see what happens.

Running Gulp

~% cd Code/l5beauty

~/Code/l5beauty% gulp

[15:26:23] Using gulpfile ~/Code/l5beauty/gulpfile.js

[15:26:23] Starting 'default'...

[15:26:23] Starting 'phpunit'...

[15:26:25] Finished 'default' after 2.15 s

[15:26:25]

*** Debug Cmd: ./vendor/bin/phpunit --colors --debug ***

[15:26:28] PHPUnit 4.7.4 by Sebastian Bergmann and contributors.

Configuration read from /Users/chuck/Code/l5beauty/phpunit.xml

Starting test 'ExampleTest::testBasicExample'.

.

Time: 2.07 seconds, Memory: 10.25Mb

OK (1 test, 2 assertions)

[15:26:28] gulp-notify: [Green!]

[15:26:28] Finished 'phpunit' after 4.96 s

You should have received a notification, a popup alert of some sort, on your Host OS. The notification
should be green which indicates everything tested successfully.

Chapter 6 - Testing 53

PHPUnit Success

To have gulp go into automatic mode for unit tests, use the gulp tdd command in your Host OS.

Running Gulp

~% cd Code/l5beauty

~/Code/l5beauty% gulp tdd

[15:29:49] Using gulpfile ~/Code/l5beauty/gulpfile.js

[15:29:49] Starting 'tdd'...

[15:29:49] Finished 'tdd' after 21 ms

The command will just hang there, watching for source file changes and running unit tests when
needed.

To see how this works, let’s break the existing unit test.

Change the see() line in tests/ExampleTest.php to what’s below.

Breaking ExampleTest.php

1 ->see('Laravel 5x');

When you save this file, gulp will notice and run PHPUnit again. The will fail and you will see a
notice on your computer similar to the one below.

PHPUnit Failure

Change the line back to what it was before, save it, and again gulp will run PHPUnit. This time you
should receive a notice indicating you are “back to green”.

To exit Gulp’s tddmode
Press Ctrl+C

Creating a Markdown Service

The blogging application we’ll be building will allow editing posts in Markdown format. Markdown
is an easy-to-read and easy-to-write format that transforms easily to HTML.

To illustrate testing, we’ll build a service to convert markdown text to HTML text using TDD.

Chapter 6 - Testing 54

Pulling in Markdown Packages

There are many PHP packages out there for converting Markdown to HTML. If you go to
http://packagist.org and search for markdown, there are twenty pages of packages.

We’ll use the package created by Michel Fortin because there’s another package called SmartyPants
by the same author that converts quotation marks to the nice looking curly quotes.

From your Host OS’s console do the following to pull in the packages.

Adding Markdown and SmartyPants

~/Code/l5beauty% composer require michelf/php-markdown

Using version ^1.5 for michelf/php-markdown

./composer.json has been updated

Loading composer repositories with package information

Updating dependencies (including require-dev)

- Installing michelf/php-markdown (1.5.0)

Downloading: 100%

Writing lock file

Generating autoload files

Generating optimized class loader

~/Code/l5beauty% composer require "michelf/php-smartypants=1.6.0-beta1"

./composer.json has been updated

Loading composer repositories with package information

Updating dependencies (including require-dev)

- Installing michelf/php-smartypants (1.6.0-beta1)

Loading from cache

Writing lock file

Generating autoload files

Generating optimized class loader

Did you notice that the specific version of the package was specified when requiring SmartyPants?
This is because at the time of this writing there isn’t a stable package that can be pulled in
automatically.

Creating the Markdown Test Class

The first thing to do when starting a TDD session is to fire up Gulp in TDD mode.

Chapter 6 - Testing 55

Starting Gulp in TDD mode

~/Code/l5beauty% gulp tdd

[19:41:38] Using gulpfile ~/Code/l5beauty/gulpfile.js

[19:41:38] Starting 'tdd'...

[19:41:38] Finished 'tdd' after 23 ms

Now that Gulp is watching for changes and ready to run PHPUnit as soon as it detects any, let’s
create the test class.

In the tests directory, create a new folder named Services and a file called MarkdownerTest.php.

Initial tests/Services/MarkdownerTest.php

1 <?php

2

3 class MarkdownerTest extends TestCase

4 {

5

6 protected $markdown;

7

8 public function setup()

9 {

10 $this->markdown = new \App\Services\Markdowner();

11 }

12

13 public function testSimpleParagraph()

14 {

15 $this->assertEquals(

16 "<p>test</p>\n",

17 $this->markdown->toHTML('test')

18);

19 }

20 }

Line 6
Store an instance of the markdown object

Line 8
Have the setup() method create a new instance of the Markdowner class. (Yes, this doesn’t
exist yet.)

Line 13
A simple test we know should work.

Chapter 6 - Testing 56

You should have received a failure notice. (If you didn’t Ctrl+C out of Gulp and restart it.)

Even though a notice appeared saying the test failed, sometimes it’s useful to look at the console
to determine what the failure was. In this case, it’s pretty obvious. The App\Services\Markdowner
class doesn’t exist.

Creating the Markdowner Service

What we’ll do here is create a simple service that wraps the php-markdown and php-smartypants
packages we imported earlier.

In the app\Services directory create a Markdowner.php file with the following contents.

Contents of app/Services/Markdowner.

1 <?php

2

3 namespace App\Services;

4

5 use Michelf\MarkdownExtra;

6 use Michelf\SmartyPants;

7

8 class Markdowner

9 {

10

11 public function toHTML($text)

12 {

13 $text = $this->preTransformText($text);

14 $text = MarkdownExtra::defaultTransform($text);

15 $text = SmartyPants::defaultTransform($text);

16 $text = $this->postTransformText($text);

17 return $text;

18 }

19

20 protected function preTransformText($text)

21 {

22 return $text;

23 }

24

25 protected function postTransformText($text)

26 {

27 return $text;

28 }

29 }

Chapter 6 - Testing 57

Line 3
Don’t forget the namespace.

Lines 5 and 6
The classes we’ll be using.

Line 11
The toHTML() method which runs the text through the transformations.

Line 14
Notice we’re using the Markdown Extra version of the library.

Line 20
In case we want to later do our own transformations before anything else.

Line 25
Like preTransformText(), but this time if we later want to add our own final transformations.

When you save this file, Gulp should notice and you will receive a “GREEN” alert telling you
everything worked as expected.

If you don’t receive the green alert, go back and check for typos in both the App\Services\Markdowner
and MarkdownerTest classes.

A Few More Tests

Admittedly, this isn’t a great example of TDD because it’s simple a test and a complete class created
to fix the test. In actual practice TDD would have many more iterations, resulting in a flow like the
one below:

• Create MarkdownerTest w/ testSimpleParagraph()
• Tests Fail
• Create Markdowner class, hard-coding toHTML() to pass the test
• Tests Succeed
• Update Markdowner class to use MarkdownExtra
• Tests Succeed
• Add a testQuotes() to MarkdownerTest class
• Tests Fail
• Update Markdowner class to use SmartyPants
• Tests Succeed

Chapter 6 - Testing 58

And so forth. Even the structure of our Markdowner class is flawed when it comes to testing. To do
pure unit testing on this class it should be structured such that instances of both the MarkdownExtra
and SmartyPants classes are injected into the constructor. This way our unit test could inject mock
objects and only verify the behavior of MarkdownExtra and not the subordinate classes it calls.

But this isn’t a book on testing. In fact, this is the only chapter where testing occurs.

For now, we’ll leave the structure as is but add a few more tests.

Update MarkdownerTest to match what’s below.

Final Contents of app/Services/Markdowner.

1 <?php

2

3 class MarkdownerTest extends TestCase

4 {

5

6 protected $markdown;

7

8 public function setup()

9 {

10 $this->markdown = new \App\Services\Markdowner();

11 }

12

13 /**

14 * @dataProvider conversionsProvider

15 */

16 public function testConversions($value, $expected)

17 {

18 $this->assertEquals($expected, $this->markdown->toHTML($value));

19 }

20

21 public function conversionsProvider()

22 {

23 return [

24 ["test", "<p>test</p>\n"],

25 ["# title", "<h1>title</h1>\n"],

26 ["Here's Johnny!", "<p>Here’s Johnny!</p>\n"],

27];

28 }

29 }

Here we changed the test class to test multiple conversions at once and added three tests in
conversionsProvider(). Your tests should be green before moving forward.

Chapter 6 - Testing 59

Once the tests are green hit Ctrl+C in your Host OS console to stop Gulp.

Other Ways to Test

It’s not the intent here to provide a definitive list of all the ways to test with Laravel 5.1 because
there’s really no single way to do testing in PHP. Therefore, there’s no single way to test in Laravel
5.

But, we’ll explore some alternatives.

phpspec

Besides PHPUnit, Laravel 5.1 also provides phpspec²⁰ out of the box. This is another popular PHP
test suit with more of a focus on Behavior Driven Development.

Here’s a few notes on phpspec.

• The binary is in vendor/bin, thus you can call phpspec from your project’s root directory.
• The configuration file is in the project root. It’s named phpspec.yml.
• To run phpspec from Gulp, Laravel Elixir provides the phpSpec() function you can call on the
mix object.

• If you change your application’s namespace from App to something else, be sure to update
phpspec.yml accordingly.

Unit Testing

Although PHPUnit is the standard when it comes to PHP unit testing, there are other packages you
can use.

• Enhance PHP²¹ - A unit testing framework with support for mocks and stubs.
• SimpleTest²² - Another unit testing framework with mock objects.

Integration and Acceptance Testing

These tests actually use your application instead of just verifying that units of code within your
application work as expected. When using the fluent test methods Laravel 5.1 provides you can
do some integration tests using PHPUnit. ExampleTest.php shows a simple example. But there are
other testing frameworks that focus on integration and acceptance testing.

²⁰http://phpspec.net
²¹https://github.com/Enhance-PHP/Enhance-PHP
²²http://simpletest.org

http://phpspec.net
https://github.com/Enhance-PHP/Enhance-PHP
http://simpletest.org
http://phpspec.net
https://github.com/Enhance-PHP/Enhance-PHP
http://simpletest.org

Chapter 6 - Testing 60

• Codeception²³ - Problem the most popular framework for acceptance testing.
• Selenium²⁴ - Browser automation.
• Mink²⁵ - Brower automation.

Behavior Driven Development

BDD comes in two flavors: SpecBDD and StoryBDD.

SpecDD focuses on the technical aspects of your code. Laravel 5.1 includes phpspec which is the
standard for SpecDD.

StoryBDD emphasizes business or feature testing. Behat is the most popular StoryBDD framework.
Although, Codeception can also be used for StoryBDD.

Recap

The first thing we did in this chapter was creating a project named l5beauty. Then we explored
unit testing using PHPUnit within this project. Finally, we created a Markdowner service class for
the dual purposes of having something to test and to use later to convert markdown text to HTML.

This was a pretty long chapter because testing is a large topic and a single chapter cannot give it
justice. But, as I’ve mentioned, testing is not the focus of this book. There will be no more testing in
subsequent chapters.

How about something quicker? In the next chapter we’ll create a blog in 10 minutes.

²³http://codeception.com
²⁴http://seleniumhq.org
²⁵http://mink.behat.org

http://codeception.com
http://seleniumhq.org
http://mink.behat.org
http://codeception.com
http://seleniumhq.org
http://mink.behat.org

End of Preview
Although this was a very large sample, there’s so much more to this book.

Chapter 7 - The 10 Minute Blog

In this chapter we’ll turn the l5beauty project into a blog, complete with test data. Harnessing the
power of Laravel 5 a blog can be created in less than 10 minutes. This time is from start to finish,
without spending time reviewing the detailed discussions below. There’s not many bells or whistles,
and no administration of the blog, but what do you expect for less than 10 minutes of development
time.

Chapter 8 - Starting the Admin Area

In this chapter we’ll continue building on the l5beauty project and start developing the administra-
tion area. Laravel 5 provides some basic boilerplate for user authentication and registration. We’ll
use this to create the skeleton of our administration area.

Chapter 9 - Using Bower

In this chapter we’ll work on some of the supporting software the administration area will be built
on. Namely, how the assets are pulled in and which assets are used. The build system will use bower
and gulp to automatically download and combine jQuery, Bootstrap, Font Awesome, and DataTables
from the Internet.

Chapter 10 - Blog Tags

The basic blog built in the 10 Minute Blog chapter wasn’t very fancy. Most blogging platforms allow
blog posts to be categorized or “tagged” in different ways. In this chapter we’ll develop a tagging
system for the l5beauty project.

Chapter 11 - Upload Manager

In this chapter we’ll create an UploadManager for the blog administration. First, the local file system
will be used to store any uploaded files. Then, we’ll change the configuration to allow files to be
stored on Amazon’s S3 cloud storage.

End of Preview 62

Chapter 12 - Posts Administration

In this chapter we’ll finish the post functionality in the blog’s administration area. This includes
modifying the structure of the posts table with a new migration, pulling in some additional assets,
and adding the basic Create, Update, and Delete methods.

Chapter 13 - Cleaning Up the Blog

In this chapter we’ll get the front end of our blog cleaned up. This includes both the index page
showing the list of posts and the pages showing individual posts.

Chapter 14 - Sending Mail and Using Queues

In this chapter we’ll add a Contact Us form to the blog. To do this we’ll explore Laravel’s mailing
functions and set up a queue for asynchronous processing.

Chapter 15 - Adding Comments, RSS, and a Site Map

In this chapter we’ll add comments and social links to the blog. Then we’ll create a RSS feed for the
Laravel 5.1 Beauty blog. Finally, we’ll add a Site Map which finishes the project.

Chapter 16 - General Recap and Looking Forward

The L5Beauty project is complete, but there’s an additional chapter exploring various features of
Laravel 5.1.

	Table of Contents
	Thank You
	Feedback
	Other places to learn Laravel 5.1

	Chapter 1 - Introduction
	Chapter Contents
	Long Term Support
	Why This Book
	GitHub and the Blog
	What is the Application?
	Conventions Used This Book
	Have Fun

	Chapter 2 - Required Software and Components
	Chapter Contents
	The Rise of the Virtual Machines
	About Laravel Homestead
	Installing Virtual Box
	Installing Vagrant
	Where Do I Execute Things?
	Recap

	Chapter 3 - Setting up a Windows Machine
	Chapter Contents
	Multiple Ways to Setup Windows
	Step 1 - Installing PHP Natively
	Step 2 - Install Node.js
	Step 3 - Install Composer
	Step 4 - Install GIT and set up SSH Key
	Step 5 - Adding the Homestead box
	Step 6. Installing Homestead
	Step 7 - Bring up the Homestead VM
	Step 8 - Setting up PuTTY
	Step 9 - Installing Laravel's Installer
	Recap

	Chapter 4 - Setting up an OS X or Linux Machine
	Chapter Contents
	Slight Variations with Linux
	Step 1 - Installing PHP
	Step 2 - Install Node.js
	Step 3 - Install Gulp
	Step 4 - Install Composer
	Step 5 - Adding SSH Keys
	Step 6 - Adding the Homestead box
	Step 7 - Installing Homestead
	Step 8 - Bring up the Homestead VM
	Step 9 - Installing the Laravel Installer
	Recap

	Chapter 5 - Homestead and Laravel Installer
	Chapter Contents
	The Homestead Tool
	Overview of Common Homestead Commands
	Examining Homestead.yaml
	Adding Software to the Homestead VM
	Daily Workflow
	Six Steps to Starting a New Laravel 5.1 Project
	Other Homestead Tips
	Recap

	Chapter 6 - Testing
	Chapter Contents
	Creating the l5beauty Project
	Running PHPUnit
	Using Gulp for TDD
	Creating a Markdown Service
	Other Ways to Test
	Recap

	End of Preview
	Chapter 7 - The 10 Minute Blog
	Chapter 8 - Starting the Admin Area
	Chapter 9 - Using Bower
	Chapter 10 - Blog Tags
	Chapter 11 - Upload Manager
	Chapter 12 - Posts Administration
	Chapter 13 - Cleaning Up the Blog
	Chapter 14 - Sending Mail and Using Queues
	Chapter 15 - Adding Comments, RSS, and a Site Map
	Chapter 16 - General Recap and Looking Forward

