‘———

@@ O@

¢ ‘ .
. ; ' ..
- #
L : I Il -l
Y .
I .
. ’
P
N,
i .
e 2
, . . 1
o
4 .l
.y I
PN :
: 9
x,
)
o N
* e if ..
{ ke
T
N
i
¥
¥
L
A

Eﬁlzlentere
Softwareentwicklung
im Team durch
'Komponenten

Stefan Lieser

.

Effizientere Softwareentwicklung
im Team durch Komponenten

Komponentenorientierung als Mittel der
Arbeitsorganisation

Stefan Lieser

Dieses Buch kénnen Sie hier kaufen
http://leanpub.com/komponentenorientierung

Diese Version wurde auf 2014-06-07 veroffentlicht

Leanpub

Das ist ein Leanpub-Buch. Leanpub bietet Autoren und Verlagen
mit Hilfe des Lean-Publishing-Prozesses ganz neue Moglichkeiten
des Publizierens. Lean Publishing bedeutet die permanente,
iterative Veré6ffentlichung neuer Beta-Versionen eines E-Books
unter der Zuhilfenahme schlanker Werkzeuge. Das Feedback der
Erstleser hilft dem Autor bei der Finalisierung und der
anschliefenden Vermarktung des Buches. Lean Publishing
unterstiitzt de Autor darin ein Buch zu schreiben, das auch gelesen
wird.

©2014 Stefan Lieser

http://leanpub.com/komponentenorientierung
http://leanpub.com
http://leanpub.com/manifesto

Kaum ein anderer Begriff der Softwareentwicklung wird so inhalts-
leer verwendet, wie der Begriff Komponente. Entwickler diskutieren
munter, wie sie ein Problem angehen wollen und verwenden dabei
Komponente synonym mit Klasse, Assembly, GUI-Control und an-
derem. Auf Nachfrage ist den Entwicklern oft nicht bewusst, dass
sie keine Definition fiir den Begriff nennen konnen. Oft weichen
sie auf andere aus, wie etwa Modul, zu dem sie dann ebenfalls
keine Definition nennen konnen. Einerseits ist das verwunder-
lich, andererseits findet sich auch in der Literatur meist nur eine
schwammige oder viel zu komplizierte Definition. Doch lag in
der Komponentenorientierung nicht einige Jahre die Hoffnung der
Softwareentwicklungsbranche? Endlich wie die Automobilindustrie
vorgefertigte Teile zusammenstecken und nicht immer wieder alles
neu bauen? Wieso ist davon so wenig in der Softwareentwicklung
angekommen? Dieses Buch befasst sich mit Komponenten. Insofern
diirfen Sie davon ausgehen, dass ich die Komponentenorientierung
weder fiir gescheitert noch fiir einen alten Hut halte. Und damit von
Anfang an Klarheit herrscht, nenne ich Ihnen hier meine Definition
von Komponente:

Eine Komponente ist eine bindre Funktionseinheit mit sepa-
ratem Kontrakt.

Punkt. Das ist alles. So einfach kann es sein.

Inhaltsverzeichnis

1 Einleitung
1.1 Danksagungen
1.2 Zum AufbaudesBuchs

2 Herausforderung Arbeitsorganisation
2.1 Feature Developer vs. Feature Team
2.2 Typische Herausforderungen

2.2.1 Wildwuchs von Abhangigkeiten, ungeplante
Abhéngigkeiten L.
2.2.2 Keine Ubersicht iiber die Abhingigkeiten . .
2.2.3 Konflikte bei der Quellcodeorganisation . . .
2.2.4 Zu breiter Scope, zu geringer Fokus
2.3 Arten von Abhéngigkeiten
2.3.1 Variante 1: X1, X2, X3 sind von A abhangig .
2.3.2 Variante 2: X ist von A1, A2, A3 abhangig . .

3 Verwendete Notation
3.1 Funktionseinheiten

31.1 Portal
3.1.2 Provider
313 Logik.

3.2 Abhéngigkeiten. oL
33 Datenflusse

4 Komponentenorientierung am Beispiel
41 Anforderungen

INHALTSVERZEICHNIS

4.2
4.3
4.4

4.5

4.6

Entwurf 22
Zerlegung in Komponenten 26
Erstellen der Kontrakte 28
44.1 DerKontraktICat. 28
442 DerKontraktIUi 29
4.43 Der Kontrakt IKommandozeile 29
4.4.4 Der Kontrakt ITextdatei 30
Implementieren der Komponenten 31
45.1 Die KomponenteCat 31
4.5.2 Die KomponenteUI. 32
453 Die Komponente Kommandozeile 34
4.5.4 Die Komponente Textdatei 35

Implementierender App 35

1 Einleitung

Komponenten sind ein Mittel der Arbeitsorganisation. Es geht in
diesem Buch also nicht um Entwurf oder Architektur, sondern
,nur” darum, wie die Arbeit in einem Team technisch gesehen so or-
ganisiert wird, dass das Team mit maximaler Geschwindigkeit und
bester Qualitat arbeiten kann. Erst Komponentenorientierung er-
moglicht arbeitsteiliges Vorgehen. Damit ist sie Voraussetzung da-
fiir, dass mehrere Entwickler am gleichen Softwaresystem arbeiten.
Das mag sich banal anhdren und Sie fragen sich moglicherweise,
wieso Sie dazu Komponenten benétigen. Weiter oben habe ich von
»maximaler Geschwindigkeit“ und ,bester Qualitit“ geschrieben.
Natiirlich besteht rein technisch keine zwingende Notwendigkeit,
Software aus Komponenten zusammenzusetzen. Nicht selten habe
ich Softwaresysteme gesehen, die aus einer Visual Studio Solution
bestanden. Manchmal waren darin viele Projekte zu finden. Manch-
mal sehr viele... Eine wirklich komponentenorientierte Losung habe
ich selten gesehen.

Aber vergleichen Sie das mit der Automobilindustrie. Rein tech-
nisch gesehen kann ein Auto natiirlich aus Einzelteilen auf kleinster
Ebene zusammengesetzt werden. Aus Schrauben, Muttern, Wellen,
Achsen, Zahnriadern, Blechen, Gussteilen, usw. Doch dann wiirde
die Arbeitsteilung unendlich komplex. Erst klare Schnittstellen
an den Komponentengrenzen machen es moglich, dass Motor,
Fahrwerk, Sitze, Reifen und viele andere Bestandteile von unter-
schiedlichen Herstellern in unterschiedlichen Werken hergestellt
werden. Mir ist bewusst, dass der Vergleich von Softwareindustrie
und Automobilbau viele Fallstricke liefert. Doch in einem bin ich
sicher: wir, in der Softwareindustrie, konnen den Automobilbauern
noch einiges abschauen. Ohne ein Komponentenkonzept miisste
die Automobilindustrie jeden Motor erst in ein Auto einbauen und

Einleitung 2

damit auf die Autobahn fahren, um ihn zu tGberpriifen. Macht sie
aber nicht. Dafiir gibt es Prifstdnde. Der Motor ,merkt“ gar nicht,
ob er in einem Auto oder in einem Priifstand eingebaut wurde. So
lange der Prifstand die Schnittstelle des Motors korrekt bedient,
ist alles in Ordnung. Diese Form der Zerlegung in Komponenten
und die daraus resultierende Arbeitsteilung ist auch in der Soft-
wareentwicklung méglich und notwendig. Und dafiir steht dieses
Buch. Sie werden nach dem Lesen feststellen, dass eigentlich alles
ganz einfach ist. Und moglicherweise werden Sie sich sogar fragen,
warum Sie nicht schon immer so gearbeitet haben.

1.1 Danksagungen

Dieses Buch wire ohne meinen Kollegen Ralf Westphal nicht ent-
standen. Ich habe seit Jahren das grofe Vergniigen, mit ihm gemein-
sam arbeiten zu konnen. In zahlreichen Seminaren haben wir das
Konzept der Komponentenorientierung unterrichtet, ausprobiert
und auch immer wieder verfeinert. Ohne Ralfs initiale Vorarbeit
wire das jedoch nicht moglich gewesen. Danke Ralf!

Ein weiterer Dank gebiihrt meiner Familie, die viel Geduld mit mir
bewiesen hat. Sie haben mich immer wieder ermuntert, weiter zu
schreiben und mir dann auch die Zeit eingeraumt.

1.2 Zum Aufbau des Buchs

Ein Team von Entwicklern sollte in optimaler Weise zusammenar-
beiten. Die Art und Weise, wie das Team seine Arbeit so organi-
siert, dass es effizient arbeiten kann, wird als Arbeitsorganisation
bezeichnet. Im nun folgenden Kapitel ,Herausforderung Arbeits-
organisation® sind die Herausforderungen beschrieben, denen sich
ein Team in Bezug auf die Arbeitsorganisation stellen muss. An
diesen Herausforderungen muss sich die Komponentenorientierung
messen lassen und Losungen anbieten.

Einleitung 3

Das darauf folgende Kapitel ,Verwendete Notation“ beschreibt die
im Buch verwendete Notation.

Um einen Eindruck davon zu vermitteln, wie ein Softwaresystem
aussieht, das komponentenorientiert entwickelt ist, folgt ein kon-
kretes Beispiel im Kapitel ,Komponentenorientierung am Bei-
spiel®. Das Beispiel ist bewusst klein gehalten, damit die Sicht
frei bleibt auf das Wesentliche, nidmlich die Art und Weise der
Zerlegung des Gesamtsystems in Komponenten.

Im anschlieSenden Kapitel ,Verzeichnisstruktur und Projekt-
organisation® wird die Verzeichnisstruktur detailliert beschrieben.
Eine solche Struktur ist im Prinzip unabhéngig davon, ob ein
Softwaresystem komponentenorientiert aufgebaut wird oder nicht.
Diese Struktur ist noch vor den Komponenten die Basis fiir ei-
ne reibungslose Zusammenarbeit mehrerer Entwickler an einem
Softwaresystem. Ferner wird die Organisation der Visual Studio
Solutions und Projekte beschrieben.

Es folgt das Kapitel ,Zerlegung in Komponenten® iiber die Zer-
legung eines Entwurfs in Komponenten. Hier wird der Begriff
der Komponenten definiert und die konkrete Umsetzung in .NET
beschrieben. Ferner wird dargelegt, nach welchen Kriterien die
Zerlegung in Komponenten erfolgt.

Nach der Zerlegung miissen die Komponenten zum grofien Gan-
zen zusammengefiigt werden. Die Integration ist das Thema des
anschlieSenden Kapitels ,Integration der Komponenten®. Dabei
geht es um das Zusammenfiigen der einzelnen Komponenten zu
einer lauffdhigen Software sowie um die Automatisierung der
Ubersetzung der einzelnen Bestandteile (Buildprozess).

Die hier vorgestellten konkreten Verfahren zur Komponentenori-
entierung sind mit .NET realisiert. Komponentenorientierung ist
natiirlich auch mit anderen Plattformen moglich und sinnvoll. Der
Inhalt des vorliegenden Buches ist mithin auf andere Plattformen
iibertragbar.

2 Herausforderung
Arbeitsorganisation

Software zu entwickeln ist meist eine komplexe Angelegenheit.
Software im Team zu entwickeln ist immer eine komplexe Ange-
legenheit. Das liegt daran, dass neben den Herausforderungen, die
das eigentliche Entwickeln der Software ohnehin schon mit sich
bringt, weitere Herausforderungen hinzu kommen. Um Software
mit mehreren Menschen im Team zu entwickeln, miissen diese
Menschen zunéchst einmal ein Team bilden. Das ist nicht so selbst-
verstandlich, wie es klingen mag. Zwar ist es heute iiblich, Software
mit mehreren Personen gemeinsam zu entwickeln, doch haufig
entsteht dabei lediglich eine Gruppe und noch kein Team. Der
wesentliche Unterschied zwischen Gruppe und Team liegt in der
Selbstorganisation. Entwickelt sich die Selbstorganisation so weit,
dass eine gemeinsame Verantwortung entsteht, spricht man von
einem Team. In einer Gruppe dagegen ist jeder Einzelne fiir seine
(Teil-)Ergebnisse verantwortlich. Nur im Team wird das Ergebnis
als gemeinsames Ergebnis betrachtet, wiahrend in Gruppen noch die
Einzelergebnisse im Vordergrund stehen.

Desweiteren ergeben sich durch Teamarbeit Herausforderungen im
technischen Sinne. Schon dadurch, dass mehrere Personen an der
Software arbeiten, entsteht schneller ein grofieres System, als bei
einer Einzelperson: es kommt in gleicher Zeit mehr Code zusam-
men. Vor allem muss nun aber die Zusammenarbeit so organisiert
werden, dass nur geringe Reibungsverluste entstehen. Teams die
einfach drauf los entwickeln, werden schnell die Grenzen einer ad-
hoc Arbeitsorganisation feststellen.

Herausforderung Arbeitsorganisation 5

2.1 Feature Developer vs. Feature Team

Eine der wichtigsten Fragen der Arbeitsorganisation lautet, wie die
Zustandigkeit fiir ein Feature organisiert ist. Dabei ist ein Feature
ein kleiner Ausschnitt aus den gesamten Anforderungen. Fiir die
weitere Betrachtung ist eine trennscharfe Definition von Feature
von geringerer Bedeutung. Es geniigt, sich ein Feature als Teil-
funktionalitit oder Ausschnitt aus den Anforderungen vorzustellen.
Nun gibt es zwei Moglichkeiten, die Umsetzung eines Features
zu organisieren: es kann entweder jedes Feature einem einzelnen
Entwickler zugeordnet werden, oder das gesamte Team setzt Fea-
ture fiir Feature gemeinsam um. Im ersten Fall spricht man von
Feature Developer. Jeder Entwickler arbeitet an ,seinem Feature.
Eine wirkliche Zusammenarbeit findet nicht statt. Zwangslaufig
ergibt sich fiir eine Gruppe von Entwicklern daraus die Konse-
quenz, dass jeweils mehrere Features gleichzeitig in Bearbeitung
sind. Ubrigens ergibt sich aus der Organisation mehrerer Feature
Developer auch die Notwendigkeit fiir Daily-Standups in Scrum.
Die Entwickler miissen nicht miteinander reden, solange jeder an
,seinem” Code arbeitet. Logischerweise muss man dann das Reden
im Team organisieren, da es sich nicht von selbst ergibt. Fiir mich
ist das hochstens die zweitbeste Losung. Naturlich hilft organisiert
vereinbartes Reden dem Team dabei, zusammen zu wachsen. Doch
viel wichtiger ist es, die Arbeit so zu organisieren, dass wirklich
zusammen gearbeitet wird. Dann entsteht die Notwendigkeit oder
sogar der Wunsch, miteinander zu Reden, ganz natirlich von
alleine.

Arbeitet das komplette Team gemeinsam an einem einzigen Feature,
spricht man von einem Feature Team. Damit ein Team in der Lage
ist, parallel am selben Feature zu arbeiten, muss die Arbeit natiirlich
so organisiert sein, dass dies iiberhaupt effizient moglich ist. Es
bedarf vor allem einiger technischer Losungen, weil das gesamte
Feature natiirlich in geeigneter Weise zerlegt werden muss, so dass
Einzelteile entstehen, die jeweils von einer Einzelperson umgesetzt

Herausforderung Arbeitsorganisation 6

werden konnen. An dieser Stelle kommen die Komponenten ins
Spiel. Sie bilden in einem Team die gréBte Einheit, an der ein Ent-
wickler alleine arbeiten kann. Doch bevor ich zur Losung tibergehe,
mochte ich noch darauf eingehen, warum die Organisation der
Arbeit in Form von Feature Teams unbedingt erstrebenswert ist.

Wir sind heute Rechner gewohnt, deren Prozessor mehrere Kerne
enthilt. Dadurch ist inzwischen echtes Multitasking moglich, also
das wirklich parallele Abarbeiten von Programmen. Doch obwohl
mehrere Kerne zur Verfiigung stehen, sind auch heute in der Regel
mehr Programme gleichzeitig aktiv, als Kerne zur Verfiigung ste-
hen. Der Trick dabei: der Prozessor wird reihum mehr oder weniger
gleichmaBig auf die diversen anstehenden Aufgaben verteilt. Zu
einem Zeitpunkt bearbeitet der Prozessor ein Programm. Durch
den schnellen Wechsel entsteht fir uns Anwender der Eindruck,
die Programme wiirden parallel ablaufen. Dagegen ist nichts ein-
zuwenden. Es entsteht aber die Frage, ob dies die beste Strategie
ist, wenn eine der Aufgaben besonders schnell abgearbeitet werden
soll. Ubertragen wir die Analogie auf ein Entwicklerteam. Das
Team hat die Moglichkeit, pseudo-gleichzeitig an mehreren Fea-
tures gleichzeitig zu arbeiten. Dadurch entsteht fiir den Betrachter
auflerhalb des Teams der Eindruck, alle Features waren in Arbeit.
Doch wird dabei jedes Feature in bestmdglicher Zeit fertig? Ganz
klar: nein. Ein Feature, das so schnell wie moglich fertig werden soll,
muss als einziges Feature vom gesamten Team bearbeitet werden.
Es muss das einzige Feature sein, das iiberhaupt in Bearbeitung
ist. Aus dieser Betrachtung ergibt sich eine Frage: Sollte ein Team
jeweils ein einzelnes Feature in bestmoglicher Zeit fertigstellen,
oder sollte es gleichzeitig an mehreren Features arbeiten, die dann
jedes fiir sich nicht in optimaler Zeit fertig werden? Bei der Beant-
wortung der Frage hilft ein Blick zur Theorie of Constraints'. Aus
ihr ergibt sich die Konsequenz, dass eine lokale Optimierung nicht
zwingend zum globalen Optimum fithrt. Ob also ein Entwickler

'Zur Theorie of Constraints siehe z.B. http://de.wikipedia.org/wiki/Theory_of
Constraints

http://de.wikipedia.org/wiki/Theory_of_Constraints
http://de.wikipedia.org/wiki/Theory_of_Constraints

Herausforderung Arbeitsorganisation 7

gerade Leerlaufzeit hat oder nicht, spielt eine untergeordnete Rolle.
Dieses lokale ,Problem® zu beseitigen, in dem ein Team an meh-
reren Features arbeitet, erhoht nicht die Wahrscheinlichkeit, dass
das Gesamtsystem optimal arbeitet. Im Gegenteil: meist fithrt die
lokale Optimierung zu groflen Problemen, die unerkannt bleiben.
Schon daraus lasst sich ableiten, dass Teams gut daran tun, immer
nur ein Feature in Bearbeitung zu haben und dies erst vollstandig
fertigstellen, bevor sie das néchste beginnen.

Eine weitere Betrachtung mag helfen, sich von der Organisation
als Feature Developer zu verabschieden. Sobald mehrere Features
gleichzeitig in Bearbeitung sind und ein systematischer Fehler
entdeckt wird, ist die Wahrscheinlichkeit hoch, dass der Fehler
mehrfach begangen wurde. Nehmen wir eine Architekturentschei-
dung als Beispiel. Wurde zu Beginn entschieden, fiir die Persistenz
eine relationale Datenbank einzusetzen, dann kann sich wahrend
der Implementation herausstellen, dass eine der nicht-funktionalen
Anforderungen auf diese Weise nicht oder nur schwer umsetzbar
ist. Beispielsweise konnte der geforderte Durchsatz an Benutzer-
transaktionen pro Zeiteinheit nicht erreichbar sein. Sind nun be-
reits mehrere Features in Bearbeitung, wirkt sich diese Erkenntnis
moglicherweise auf mehrere dieser Features aus. Vermutlich muss
dann an mehreren Features eine Anderung vorgenommen werden.
Waire nur ein einzelnes Feature in Bearbeitung, hitte die Erkenntnis
geringere Auswirkungen, denn dann wiirde sich die Nachbesserung
in engeren Grenzen bewegen. Vor allem konnte die Erkenntnis dann
bei den anderen Features sofort von Anfang an bedacht und genutzt
werden.

Am Ende steht also als klare Erkenntnis: Software sollte im Team
so entwickelt werden, dass immer ein Feature nach dem anderen
bearbeitet wird. Es gibt keine angefangene Arbeit, die ,auf Halde®
liegt, sondern ein begonnenes Feature wird erst vollstindig bear-
beitet, bevor mit dem néchsten begonnen wird.

Herausforderung Arbeitsorganisation 8

2.2 Typische Herausforderungen

Damit ein Team von Entwicklern gemeinsam an einem Feature
arbeiten kann, muss das Feature in kleinere Teile zerlegt wer-
den. Diese kleineren Teile bezeichne ich ganz abstrakt zunachst
als Funktionseinheiten. Konkrete Auspragung einer Funktionsein-
heit konnen sein, eine Methode, eine Klasse, eine Assembly, eine
Komponente, ein Programm, etc. Die im folgenden geschilderten
Herausforderungen sollen aufzeigen, welche Anforderungen an
Funktionseinheiten gestellt werden, die von einem Team parallel
entwickelt werden. Es ist klar, dass es dabei auf die Komponente als
zentralen Begriff dieses Buches hinauslauft. Doch ohne die Losung
gleich parat zu haben, welche Herausforderungen bietet denn diese
Form eines gemeinschaftlichen Entwicklungsprozesses? ### Vor-
gegebene zeitliche Entwicklungsreihenfolge durch Abhéangigkeiten
Sobald eine Funktionseinheit in kleinere Funktionseinheiten zerlegt
wird, ergibt sich die Frage nach den Abhangigkeiten. Manchmal
lassen sie sich vermeiden, aber am Ende bleiben immer Abhéngig-
keiten. Abhéngigkeiten konnen die Reihenfolge der Implementation
vorgeben. Dazu ein Beispiel: die Abbildung zeigt drei Funktionsein-
heiten A, B und C. Diese sind voneinander abhangig. A hingt ab
von B, B hingt ab von C.

In manchen Fallen mag die erzwungene Reihenfolge der Implemen-
tation unkritisch sein. Handelt es sich beispielsweise um Methoden,
stellt das aufgrund des Codeumfangs kein Problem dar. Sind die
Funktionseinheiten A,B und C jedoch Teile, an denen mehrere Ent-
wickler gleichzeitig arbeiten sollen, dann behindert die vorgegebene
Reihenfolge einen fliissigen Entwicklungsprozess. Aus den in der

Herausforderung Arbeitsorganisation 9

Abbildung gezeigten Abhéngigkeiten ergibt sich fir A, B und C
folgende Entwicklungsreihenfolge:

c s A

—>
Zeit

Die Losung der Herausforderungen: Komponenten benétigen Kon-
trakte. Durch diese wird die Reihenfolge der Entwicklung von den
Abhingigkeiten entkoppelt.

Durch die Kontrakte ergibt sich fiir die Komponenten eine beliebige
Reihenfolge bei der Implementation. Zeitlich gesehen miissen erst
die Kontrakte realisiert werden. Die Reihenfolge fiir die Realisie-
rung der Kontrakte ist mehr oder weniger willkiirlich, weil zwi-
schen ihnen keine Abhéngigkeiten bestehen. Es konnen lediglich
Abhangigkeiten zu Datentypen existieren, die im Kontrakt stehen.
Die Kontrakte sind vergleichsweise schnell umgesetzt, weil hierzu
lediglich Interfaces erstellt werden miissen. Im Anschluss kénnen
die Komponenten in beliebiger Reihenfolge, vor allem auch zeit-
gleich, erstellt werden. In der folgenden Abbildung ist das dadurch
deutlich gemacht, dass die Komponenten iibereinander tiber einan-
der angeordnet sind und somit zum gleichen Zeitpunkt realisiert
werden konnen.

Herausforderung Arbeitsorganisation 10

>
Zeit
Losung: Kontrakte

2.2.1 Wildwuchs von Abhéangigkeiten,
ungeplante Abhdngigkeiten

Abhéngigkeiten lassen sich in Softwaresystemen nicht vermeiden.
Entwickeln sie sich jedoch ungeplant, entsteht ein Wildwuchs von
Abhangigkeiten, der nicht mehr zu durchschauen ist. Insofern muss
ein Entwicklerteam stets Sorge tragen, dass sich die Abhangigkeiten
in einer geordneten Art und Weise entwickeln. Werden die Ab-
hangigkeiten sozusagen sich selbst Uberlassen, verstarkt sich das
Problem selbst. Sogar bei gutem Willen ist es dann irgendwann
nicht mehr méglich, an der Situation etwas zu dndern. Die Losung
kann daher nur darin liegen, die Abhéngigkeiten zu planen. Statt
drauf los zu programmieren und zuzuschauen, wie sich die Ab-
hangigkeiten entwickeln, muss ein Team die Abhéngigkeiten vor
der Umsetzung planen. Des weiteren muss wahrend der Umsetzung
sichergestellt werden, dass die Abhéngigkeiten nicht vom Entwurf
abweichen.

Losung: contract-first

Herausforderung Arbeitsorganisation 11

2.2.2 Keine Ubersicht iiber die Abhingigkeiten

Eine Konsequenz aus der ungeplanten Entwicklung von Abhéngig-
keiten ist die Unitibersichtlichkeit. Sobald Abhéngigkeiten einfach
so entstehen, weil ein Entwickler sie nach Bedarf herstellt, geht die
Ubersicht verloren. Der Blick auf das grofie Ganze ist nur mog-
lich, wenn Strukturen existieren, die abstrakter sind als Quellcode.
Schon aus diesem Grund sind Kontrakte notwendig. Doch fiir die
Ubersicht ist es erforderlich, die Kontrakte vor der Umsetzung zu
entwerfen.

Losung: contract-first

2.2.3 Konflikte bei der Quellcodeorganisation

Sobald mehrere Entwickler beginnen, gemeinsam an einer Quell-
codebasis zu arbeiten, steht das Risiko von Konflikten beim Zugriff
im Raum. Selbstverstandlich wird dabei natiirlich ein Versionskon-
trollsystem eingesetzt. Doch selbst beim Einsatz eines noch so leis-
tungsfihigen Merge-Tools ist die effizientere Alternative stets, ohne
Konflikte auszukommen. Einerseits soll das Team gemeinsam an ei-
nem Feature arbeiten, andererseits sollen dabei aber keine Konflikte
auf Quellcodeebene auftreten. Dieser scheinbare Widerspruch wird
aufgeldst, in dem jede Komponente eine abgeschlossene Einheit
bildet, auch auf Quellcodeebene. Fiir NET bedeutet das konkret,
jede Komponente in einer eigenen Solution abzulegen. Innerhalb
der Solution befinden sich dann die bendtigten Projekte: in der
Regel mindestens eines fiir die Implementation der Komponente,
sowie ein weiteres fiir die zugehorigen Tests. Ergebnis dieser so ge-
nannten Komponentenwerkbank ist eine Assembly, die an anderer
Stelle weiterverwendet wird. Die Details zur Ausgestaltung einer
Komponentenwerkbank folgen im Kapitel Verzeichnisstruktur und
Projektorganisation.

Losung: Komponentenwerkbénke

Herausforderung Arbeitsorganisation 12

2.2.4 Zu breiter Scope, zu geringer Fokus

Jeder Entwickler hat schon die sprichwortliche Situation erlebt,
vor lauter Baumen den Wald nicht mehr zu sehen. Plétzlich hat
man so viele Dinge im Kopf, dass man nicht mehr weify, wo
man anfangen soll. Gibt der Quellcode dann keinen Rahmen vor,
verliert man sich schnell und wird véllig unproduktiv. Statt im
Quellcode jeweils alles zu sehen, sollte der Scope deutlich enger
gefasst sein und dadurch Fokus bieten. Auch diese Herausforderung
wird mit Hilfe von Komponentenwerkbinken gemeistert. In einer
Komponentenwerkbank sehe ich jeweils nur den Quellcode, der
genau zu dieser einen Komponente gehort. Das schafft Klarheit und
bietet Fokus.

Losung: Komponentenwerkbénke

2.3 Arten von Abhangigkeiten

Bis hier her wurde nun bereits mehrfach betont, dass Abhangigkei-
ten in einem Softwaresystem unvermeidbar sind. Im weiteren Ver-
lauf wird mit der Komponentenorientierung eine Losung beschrie-
ben, wie damit auf der Ebene der Arbeitsorganisation umzugehen
ist. Doch zuvor soll noch auf zwei grundsatzlich unterschiedliche
Formen von Abhéngigkeiten eingegangen werden. Daraus lassen
sich hilfreiche Schlisse fiir den Umgang mit Abhéngigkeiten zie-
hen. Es gibt zwei grundsétzlich verschiedene Arten von Abhéngig-
keiten: « Viele Funktionseinheiten sind von einer anderen Funkti-
onseinheit abhéngig. « Eine Funktionseinheit ist von vielen anderen
Funktionseinheiten abhingig. Natiirlich gibt es dazwischen alle
moglichen Varianten. Dennoch hilft es, sich Gedanken zu machen
tiber diese beiden Extremfille.

Herausforderung Arbeitsorganisation 13

2.3.1 Variante 1: X1, X2, X3 sind von A abhangig

Bei Variante 1 sind X1, X2 und X3 von A abhingig und dadurch
potentiell von jeder Anderung an A betroffen. Da viele von A ab-
hingig sind, haben Anderungen an A jeweils starke Auswirkungen.
Nun geht es nicht darum, diese Form der Abhéngigkeit zu verteu-
feln mit dem Ziel, sie zu vermeiden. Es gibt immer wieder gute
Griinde dafiir, dass Abhangigkeiten in dieser Weise auftreten. Wenn
das der Fall ist, sollten wir jedoch eine Konsequenz daraus ziehen:
wir sollten uns fragen, ob wir an der Beschaffenheit der X1, X2 und
X3 und des A etwas tun kénnen, so dass die Auswirkungen keine
grole Bedeutung haben. Zu betrachten sind dabei zwei Aspekte: die
Haufigkeit mit der A gedndert wird, sowie das Maf} der Auswirkung
auf X1, X2 und X3.

Vereinfacht gesagt erhoht sich die Wahrscheinlichkeit, dass an A
Anderungen vorgenommen werden miissen, mit dem Codeumfang.
Je mehr Code A enthélt, desto haufiger ist A von Anderungen

Herausforderung Arbeitsorganisation 14

betroffen. Und desto haufiger sind auch die X1, X2 und X3 von den
Anderungen betroffen. Folglich sollte es bei dieser Konstellation der
Abhiéngigkeiten erstrebenswert sein, A so einfach wie moglich zu
halten. Im Idealfall enthalt A tiberhaupt keinen Logikcode sondern
ist lediglich eine Datenstruktur. Betrachten wir auch den anderen
Aspekt, das Maf} der Auswirkungen auf X1, X2 und X3. Auch hier
gilt, dass die Auswirkungen deutlich sind, je mehr Logikcode A
enthélt. Denn je mehr Logik in A steckt, desto grof3er ist die Wahr-
scheinlichkeit, dass die X1, X2 und X3 an Anderungen dieser Logik
angepasst werden miissen. Auch hier lautet also die Folgerung, dass
A moglichst einfach gehalten sein soll, weil dann die Auswirkungen
auf X1, X2 und X3 nicht so grof3 sind.

2.3.2 Variante 2: X ist von A1, A2, A3 abhéngig

Im zweiten Fall haufen sich die Abhéingigkeiten in der anderen
Richtung. Ein X ist von vielen anderen Funktionseinheiten abhan-
gig. Damit muss X immer dann angepasst werden, wenn sich bei

Herausforderung Arbeitsorganisation 15

A1, A2 oder A3 etwas andert. Auch hier kdnnen wir berlegen,
welche Forderungen sich daraus ergeben. An der Struktur der
Abhiéngigkeiten wollen wir auch hier nicht ritteln. Die Anzahl
der Abhédngigkeiten zu verandern, scheidet somit als Strategie aus.
Daraus ergibt sich, dass X von den Anderungen an den A1l -
A3 immer betroffen ist, egal wie wir uns drehen und wenden.
Zu iberlegen ist daher, wie X beschaffen sein sollte, damit die
Auswirkungen dieser Anderungen leicht beherrschbar bleiben.

Betrachten wir, was passiert, wenn X komplizierte Logik enthalt.
Diese Logik muss potentiell bei einer Anderung an einem der
A1, A2, A3 angepasst werden. Ist die Logik kompliziert, fillt die
Anpassung vermutlich schwierig aus. Ist dariiber hinaus auch noch
sehr viel Logik enthalten, steigt die Wahrscheinlichkeit weiter, dass
X tatséchlich angepasst werden muss. Die Losung besteht also
darin, X moglichst einfach zu halten. Im Idealfall enthélt X keine
Logik, denn dann haben die Anderungen an A1, A2 oder A3 keinen
Einfluss auf X. Wenn denn ,keine Logik” nicht vorstellbar ist, dann
sollte die Logik wenigstens sehr einfach gehalten sein.

Zu erwahnen sei hier noch, dass sich die Betrachtung der ent-
haltenen Logik immer auf dieselbe Doméne beziehen muss. Ent-
halten die A’s und X’s beispielsweise Logik aus dem Bereich der
Anwendungslogik, gilt oben gesagtes uneingeschrénkt. Ein anderer
Fall liegt allerdings in folgendem Beispiel vor: ein IoC Container
ist dafiir zustandig, die Abhéngigkeiten zwischen Funktionseinhei-
ten wiahrend der Laufzeit aufzulésen. Dazu muss der Container
zwangslaufig alle Funktionseinheiten kennen, die zur Erfullung
von Abhéngigkeiten zur Verfiigung stehen. Somit liegt hier also
der Fall vor, dass ein Container A von vielen Typen X1, X2 und
X3 abhiangig ist. Die Folgerung wire somit, den Container A
so einfach wie moglich zu gestalten. Doch ein Container ist ein
ziemlich kompliziertes Stiick Software und enthalt daher sehr viel
Logik. Dieser scheinbare Widerspruch lost sich auf, sobald man
sich klarmacht, dass es hier um zwei unterschiedliche Doménen
geht. Die Typen, die vom Container verwaltet werden, enthalten

Herausforderung Arbeitsorganisation 16

zwar moglicherweise ebenfalls sehr viel Logik. Diese gehort jedoch
nicht zur Doméne des Containers. Gegenstand der Betrachtung
sollten Abhéngigkeiten sein, in denen die Logik von Abhéingigen
und Unabhéngigen sich in derselben Doméne befinden.

3 Verwendete Notation

Die in diesem Buch gewdéhlte Notation fiir Entwiirfe besteht aus
wenigen Symbolen. Das macht die Entwiirfe leicht verstandlich.
Vor allem soll es Teams ermutigen, gemeinsam zu entwerfen. Wenn
vor dem gemeinsamen Entwurf zundchst umfangreiche Symbol-
bibliotheken erlernt werden miissen, steht dies der Teamarbeit im
Weg. Ferner ist durch die Verwendung weniger, einfacher Symbole
kein Software-Werkzeug erforderlich: Papier und Stifte oder ein
Whiteboard gentigen véllig.

Die Notation besteht aus drei Symbolen fiir Funktionseinheiten
sowie zwei unterschiedlichen Verbindungen. Mit einer der Verbin-
dungen werden Abhdngigkeiten zwischen zwei Funktionseinheiten
notiert, mit der anderen Datenfliisse. Die iiberwiegende Anzahl
der Beispiele im Buch benétigen lediglich die Abhangigkeitsverbin-
dung. Im néichsten Kapitel Die Losung am Beispiel finden Sie ein
umfangreicheres Beispiel, in dem die Notation verwendet wird.

3.1 Funktionseinheiten

Funktionseinheiten koénnen in drei Ausprigungen vorliegen, je
nachdem zu welchem Aspekt der darin enthaltene Code gehort:

« Portal
« Provider
+ Logik

Verwendete Notation 18

Portal

Adapter

Als Aspekt wird hier eine Menge von zusammengehérigen Eigen-
schaften bezeichnet, die sich getrennt von einer anderen Menge von
Eigenschaften verandern. Es dient der Verstandlichkeit und somit
der Evolvierbarkeit, wenn Aspekte in Softwaresystemen getrennt
werden. Die drei Auspragungen Portal, Provider und Logik sind fiir
drei so fundamental unterschiedliche Aspekte verantwortlich, dass
es wichtig ist, diese schon im Entwurf anhand unterschiedlicher
Symbole zu unterscheiden.

3.1.1 Portal

Ein Portal ist eine Funktionseinheit, deren Aufgabe die Interaktion
mit dem Client ist. Der Begriff Client ist hier sehr weitgehend
gemeint. Es kann damit ein Anwender bezeichnet sein, der mithilfe
einer grafischen Benutzeroberfliche mit dem System interagiert.
In dem Fall wire das Portal vielleicht mit WPF oder WinForms
realisiert. Im anderen Fall kann es aber auch ein Anwender mit
einer Konsolenschnittstelle sein. Tatsache ist in beiden Féllen, dass
das Portal von einem bestimmten API wie beispielsweise WPF,
WinForms oder Console abhéngt.

Eine andere Auspragung von Client kann aber auch ein WebService
sein. In dem Fall stellt die WebService Schnittstelle das Portal
gegeniiber dem Client dar. Hier ist das Portal dann von einem API
wie beispielsweise WCF abhangig.

Verwendete Notation 19

3.1.2 Provider

Mit einem Provider® tritt das Softwaresystem mit seiner Umwelt
in Kontakt. Auch hier besteht eine Abhangigkeit zu einem API In
der Regel ist ein Provider von einem API abhéngig, der sich um
Ressourcen wie das Dateisystem, eine Datenbank, den Drucker, die
Systemzeit, oder dhnliches kiimmert. Wie auch das Portal dient
der Provider hier dazu, das Softwaresystem von der Umgebung
zu kapseln. Im Gegensatz zum Portal ist beim Provider jedoch das
System der Client.

3.1.3 Logik

Der ganze Rest von Funktionseinheiten wird mit Logik bezeichnet.
Dabei geht es in den meisten Fallen um die Geschéfts- oder Domé-
nenlogik in Abgrenzung zu ganz allgemeiner Logik.

3.2 Abhangigkeiten

Abhiangigkeiten zwischen Funktionseinheiten werden durch eine
Verbindungslinie mit einem Kuller am einen Ende dargestellt. Der
Kuller weist auf die Unabhangige Funktionseinheit. Die folgende
Abbildung zeigt, dass A von B abhéngig ist, bzw. umgekehrt, dass
B von A unabhingig ist.

A ® B

Abhingigkeit: A ist abhiangig von B

3.3 Datenfliisse

In vielen Fillen ist es hilfreich, zu verstehen, welche Daten zwi-
schen Funktionseinheiten flieBen. Mit Flow Design steht sogar

'In friiheren Texten haben wir Provider als Adapter bezeichnet.

Verwendete Notation 20

eine vollstindige Entwurfsmethode zur Verfiigung, die sich ganz
deutlich auf Datenflisse konzentriert. Im Kontext dieses Buches
tiber Komponentenorientierung werden Datenfliisse eine eher un-
tergeordnete Rolle spielen. Nichtsdestoweniger wird die Notation
hier eingefithrt, um sie an geeigneter Stelle einsetzen zu kénnen.

Datenfliisse werden durch Pfeile symbolisiert. Dabei flieflen die
Daten in Pfeilrichtung. In der folgenden Abbildung fliefen die
Daten von A nach B.

A—2) 5 g

Datenfluss: Daten X flieflen von A nach B

Am Pfeil wird notiert, um welche Art von Daten es sich handelt.

4 Komponentenorientierung
am Beispiel

Ein Beispiel soll nun zeigen, wie die komponentenorientierte Im-
plementation einer ganz einfachen Anwendung aussieht.

4.1 Anforderungen

Implementiert werden soll die Kommandozeilenanwendung cat.
Der aus der Unix Welt stammende Befehl cat gibt den Inhalt
mehrerer Textdateien auf der Konsole aus.

+ Die Dateinamen werden als Kommandozeilenparameter iiber-
geben.

« Die Ausgabe der Dateien erfolgt in der Reihenfolge der
Dateinamen.

Beispiele:

cat filel.txt

Gibt die Datei filel.txt Zeile fiir Zeile auf der Konsole aus.
cat filel.txt file2.txt file3.txt

Gibt den Inhalt der drei Dateien nacheinander auf der Konsole
aus. Die Ausgabe erfolgt in der Reihenfolge, in der die Dateinamen
angegeben sind.

Komponentenorientierung am Beispiel 22

B C\Windows\system32\cmd.exe o || =) &8

C=~bin>cat.application dateil.txt datei2.
Dies ist der Inhal

uon Datei 1.

Sie bhesteht aus drei Zeilen.

Datei 2 hat nur eine Zeile.

m| s

C:~hin>

4.2 Entwurf

Es gibt viele Moglichkeiten, diese Anforderungen umzusetzen. In
jedem Fall sollte vor der Implementation ein Entwurf stehen. Die
Implementation erfolgt in textueller Weise in einer Programmier-
sprache. Dabei geht es um sehr viele Details. Der Entwurf dagegen
soll einen Blick auf eine abstraktere Form ermdglichen, in der die
Details ganz bewusst noch nicht auftauchen. Nur in dieser abstrak-
ten Form lasst sich tiber mégliche Umsetzungen der Anforderungen
im Team diskutieren. Ferner liegt der Entwurf nicht in textueller
sondern in grafischer Weise vor, was die Diskussion dariiber gut
unterstiitzen kann.

Wie man zu einem geeigneten Entwurf kommt, ist eine spannende
Frage. Da mir jedoch in diesem Buch der Fokus auf die Arbeitsor-
ganisation ganz wichtig ist, wird es hier nicht darum gehen, wie
man zu einem Entwurf kommt. Die Frage, die sich im Folgenden
stellt ist, wie man einen vorhandenen Entwurf auf Komponenten
verteilt.

Die folgende Abbildung zeigt einen Entwurf fiir die Umsetzung der
Anforderungen. In diesem Entwurf wird mit Klassen gearbeitet, die
zueinander in Abhéngigkeiten stehen. Die einzelnen Klassen sind
jeweils fiir einen Aspekt der Anwendung verantwortlich.

Komponentenorientierung am Beispiel 23

A\

Kommandozeile

\

Textdatei

Die Klasse Cat ist die zentrale Funktionseinheit dieses Entwurfs. Sie
ist von drei weiteren Klassen abhingig. Anhand der Formen der
Funktionseinheiten wird bereits deutlich, zu welcher Kategorie sie
gehoren:

o UI ist ein Portal. Hier findet die Ausgabe an den Benutzer
statt.

+ Kommandozeile ist ein Provider. Mit diesem Provider wird auf
die Ressource Kommandozeilenparameter in der Umwelt des
Systems zugegriffen.

Komponentenorientierung am Beispiel 24

+ Textdatei ist ein Provider. Er ist fiir den Zugriff auf die
Textdateien zustidndig, die ebenfalls als Ressource in der
Umwelt des Systems liegen.

« Cat enthilt die Logik des Systems.

Im Entwurf nicht dargestellt ist die Klasse Program, die fiir die
Integration der restlichen Klassen zustdndig ist. Erganzt man den
Entwurf um diese Klasse sowie die Abhéngigkeiten, entsteht fol-
gendes Bild:

Komponentenorientierung am Beispiel 25

Textdatei

Program

Die Abbildung wird durch die Erganzung der Abhéngigkeiten sehr
uniibersichtlich. Das liegt daran, dass die Klasse Program von allen
anderen Klassen abhéngig ist. Sie muss alle diese Klassen instanzie-
ren und die Abhangigkeiten dieser Klassen untereinander auflosen.
Weil die Klasse Program typischerweise von allen anderen Klassen
abhéngig ist und die Abbildungen dadurch sehr uniibersichtlich

Komponentenorientierung am Beispiel 26

werden, lassen wir sie in zukiinftigen Entwiirfen weg.

4.3 Zerlegung in Komponenten

Nun liegt also ein Entwurf vor, in dem die einzelnen Aspekte
des Systems auf Klassen verteilt wurden. Versetzen Sie sich nun
einmal gedanklich in die Situation, dass ein Team mit mehreren
Entwicklern jetzt mit der Implementation beginnen moéchte. Die
Herausforderung besteht darin, die gemeinsame Arbeit am System
so zu organisieren, dass alle Entwickler gleichzeitig arbeiten kon-
nen. Alle Klassen in ein und demselben Visual Studio Projekt an-
zulegen scheidet aus. Das wiirde dazu fithren, dass alle Entwickler
dasselbe Projekt 6ffnen und darin Klassen anlegen. Spatestens beim
Ubertragen in die Versionskontrolle kime es zu Problemen durch
Mergekonflikte. Es liegt daher nahe, die Klassen auf mehrere Visual
Studio Projekte zu verteilen. Das Beispiel ist bewusst klein gehalten,
damit der Uberblick gewahrt bleibt. Allerdings fithrt das nun dazu,
dass die Zerlegung des Systems in Komponenten etwas iibertrieben
erscheinen mag. Lassen Sie sich davon nicht irritieren. In realen
Systemen enthalten die Komponenten typischerweise mehr als eine
Klasse.

Die folgende Abbildung zeigt, wie eine Zuordnung der Klassen
zu Komponenten aussehen konnte. Ich habe fiir jede Klasse eine
eigene Komponente vorgesehen. Geleitet hat mich dabei, dass die
Klassen jeweils fiir vollig unterschiedliche Aspekte zustdandig sind.
Ich moéchte vermeiden, dass unterschiedliche Aspekte eines Systems
in einer Komponente zusammengefasst werden. Auf die Kriterien
fiir das Zerlegen eines Entwurfs in Komponenten wird spater noch
detaillierter eingegangen.

Komponentenorientierung am Beispiel 27

cat.ui

Ul

_ y

cat.kommandozeile

l]r N

cat.cat

Kommandozeile

cat.textdatei

j

cat.application

Textdatei y

Program

Fir die Bezeichnung der Komponenten verwende ich folgende
Konvention:

+ Alle Namen der Komponenten beginnen mit dem Namen des
Systems. In diesem Beispiel ist das cat.

+ Auf den Systemnamen folgt der Bezeichner fiir die Kompo-
nente, getrennt durch einen Punkt.

+ Die Bezeichnung der Komponenten erfolgt vollstandig in
Kleinbuchstaben. Fir jede Komponente muss ein Visual Stu-
dio Projekt angelegt werden. Beim Anlegen eines Projektes

Komponentenorientierung am Beispiel 28

tbernimmt Visual Studio den Projektnamen als Default Na-
mespace. Die Verwendung von Kleinbuchstaben hat den Vor-
teil, dass damit auch der Default Namespace in Kleinbuch-
staben angelegt wird. Dadurch entstehen keine Konflikte zu
Klassennamen.

Speziell die Konvention, Komponenten mit Kleinbuchstaben zu
bezeichnen, sollten Sie unbedingt {ibernehmen. Bei einem kom-
ponentenorientierten System tritt hdufig der Fall ein, dass eine
Klasse genauso heifit, wie die Komponente. Da fiir jede Kompo-
nente ein Namespace angelegt wird, kime es immer zu einem
Konflikt zwischen Namespace und Klassenname. Man miisste dann
den Klassennamen jeweils durch den vorangestellten Namespace
qualifizieren, also zum Beispiel folgendes schreiben:

var cat = new Cat.Cat();

Durch Namespaces in Kleinbuchstaben entfillt die Notwendigkeit,
den Namespace vor den Klassennamen schreiben zu miissen.

4.4 Erstellen der Kontrakte

Fir das Erstellen der Kontrakte ist es natiirlich erforderlich, dass ein
Entwurf vorliegt. Bislang sind in den Abbildungen zum Entwurf al-
lerdings nur die Klassennamen gezeigt. Uber welche Methoden die
Klassen verfiigen, geht daraus noch nicht hervor. Selbstverstiandlich
ist das der zentrale Punkt eines Entwurfs: herauszufinden, welche
Funktionalitat benotigt wird und wie man sie auf Methoden, Klas-
sen und Komponenten verteilt. Da das Beispiel tiberschaubar ist und
der Fokus auf der Arbeitsorganisation mittels Komponenten liegt,
werde ich hier nicht weiter ausfihren, wie ich auf die Methoden
gekommen bin. Entwurf ist Thema fiir ein anderes Buch.

4.4.1 Der Kontrakt ICat

= O O B W N

O© 00 N O O b W N =

Komponentenorientierung am Beispiel 29

namespace cat.contracts

{
public interface ICat
{
void Run();
}
}

Die Run Methode ist der Einstiegspunkt der Anwendung. Sie wird
spater in der Program.Main Methode des EXE-Projektes aufgerufen.
Thre Aufgabe ist die Integration der anderen Funktionseinheiten.
Sie koordiniert den Aufruf der Methoden der anderen beteiligten
Klassen.

4.4.2 Der Kontrakt Ui
using System.Collections.Generic;

namespace cat.contracts

{
public interface IUi
{
void Ausgeben(IEnumerable<string> zeilen);
}
}

Die Komponente UI ist fiir die Ausgabe von Textzeilen zustandig.
Sie verfiigt dazu tiber die Methode Ausgeben, die eine Aufzahlung
von Strings als Parameter erhalt und diese auf die Konsole ausgibt.

4.4.3 Der Kontrakt IKommandozeile

© 00 N O O b w N =

O 0O N O O b W N =

Komponentenorientierung am Beispiel 30

using System.Collections.Generic;

namespace cat.contracts

{
public interface IKommandozeile
{
IEnumerable<string> Dateinamen();
}
}

Die Komponente Kommandozeile ist ein Provider fiir die Ressource
Kommandozeilenparameter, die sich in der Umwelt des zu erstellen-
den Systems befinden. Sie verfiigt iiber eine Methode Dateinamen,
mit der alle Dateinamen, die auf der Kommandozeile iibergeben
wurden, ermittelt werden.

4.4.4 Der Kontrakt ITextdatei
using System.Collections.Generic;

namespace cat.contracts

{

public interface ITextdatei

{

IEnumerable<string> Einlesen(string dateiname);

Der Zugriff auf den Inhalt der einzelnen Dateien erfolgt durch die
Komponente Textdatei. Sie enthalt die Methode Einlesen, die den
gesamten Inhalt einer Datei als Aufzahlung von Strings liefert.

O© 00 1 O O b W N =

[ENNEN
= O

12
13
14
15
16

Komponentenorientierung am Beispiel 31

4.5 Implementieren der Komponenten

Die Aufgabenstellung des Programms ist iiberschaubar. Daher sind
die Komponenten nicht sehr umfangreich. Jede Komponente ist als
einzelne Klasse realisiert. Das muss natiirlich nicht immer so sein. In
groBBeren Systemen bestehen Komponenten durchaus aus mehreren
Klassen.

4.5.1 Die Komponente Cat

Aufgabe der Komponente Cat ist die Integration der drei Kompo-
nenten UI, Textdatei und Kommandozeile. Voraussetzung dafiir ist,
dassCat die drei Komponenten kennt. Natiirlich darf hier aber keine
direkte Abhangigkeit zwischen den Komponenten entstehen. Cat
muss die Dienste der anderen Komponenten in jedem Fall tber
den Kontrakt in Anspruch nehmen. Die Kontrakte werden in C#
typischerweise durch Interfaces realisiert.

using cat.contracts;

namespace cat.cat
{
public class Cat : ICat
{
private readonly IUi ui;
private readonly ITextdatei textdatei;
private readonly IKommandozeile kommandozeile;

public Cat(IUi ui, ITextdatei textdatei, IKomma\
ndozeile kommandozeile) {
this.ui = ui;
this.textdatei = textdatei;

this.kommandozeile = kommandozeile;

17
18
19
20
21
22
23
24
25
26
27

Komponentenorientierung am Beispiel 32

public void Run() {
var dateinamen = kommandozeile.Dateinamen();
foreach (var dateiname in dateinamen) {
var zeilen = textdatei.Einlesen(dateina\
me);

ui.Ausgeben(zeilen);

Cat kann die benétigten Klassen nicht selbst instanzieren. Dazu
wire eine Referenz auf die Implementation der Komponenten er-
forderlich. Das wiirde die Komponentenorientierung ad absurdum
fihren. Aus diesem Grund werden die drei benétigten Kompo-
nenten dem Konstruktor von Cat als Parameter tibergeben und
in Feldern der Klasse abgelegt. Dadurch hat die Methode Run
Zugriff auf die Komponenten und kann deren Methoden in der
erforderlichen Weise aufrufen.

Am Beispiel der Komponente Cat kann man klar erkennen, dass Cat
implementiert werden kann, ohne dass die drei anderen Kompo-
nenten bereits existieren. Lediglich die Kontrakte miissen vorliegen.
Auf diese Weise wird eine Arbeitsorganisation im Team ermdglicht,
die ein gleichzeitiges Arbeiten an den Komponenten zulasst.

4.5.2 Die Komponente Ul

Die Ausgabe von Strings auf der Konsole ist die Aufgabe der
Komponente UI. Thre Methode Ausgeben erhilt eine Aufzéhlung
von Strings als Parameter. Dariiber iteriert die Methode in einer
Schleife und gibt jeden String mit Console.WriteLine auf die
Konsole aus.

O 0O N O O b W N =

I O S =Y
O O b W N =~

Komponentenorientierung am Beispiel 33

Keine grofle Sache; moglicherweise entsteht daher der Wunsch,
diese Funktionalitdt im Hauptprogramm unterzubringen. Schlie3-
lich erscheint der Overhead fiir das Erstellen der Komponente
relativ grof3 im Verhaltnis zu den wenigen Zeilen Code, welche die
Funktionalitat erbringen. Doch es ist ganz wichtig, hier nicht die
falschen Kriterien anzulegen. Die Anzahl der Codezeilen sollte kein
Kriterium sein fiir die Frage, ob es sich ,lohnt®, eine weitere Kom-
ponente zu erstellen. Stattdessen sollte die Frage im Vordergrund
stehen, ob die Komponente dazu beitragt, die Aspekte des Systems
zu trennen. Und das ist hier bei der Komponente UI definitiv
gegeben. Die Komponente UI isoliert den Aspekt der Ausgabe der
Daten. Dieser Aspekt kann sich getrennt von anderen Aspekten des
Systems verdndern. Es konnte zum Beispiel der Wunsch entstehen,
das System mit einer grafischen Oberflache auszustatten. In diesem
Fall ware die Komponente UI zu dndern. Die anderen Komponenten
sollten nicht gedndert werden miissen. Andernfalls wire das ein
Hinweis darauf, dass die Aspekte nicht klar getrennt sind.

using System;
using System.Collections.Generic;

using cat.contracts;

namespace cat.ui

{
public class Ui : IUi
{
public void Ausgeben(IEnumerable<string> zeilen\
) |
foreach (var zeile in zeilen) {
Console.WritelLine(zeile);
}
}
}

© 0 N O O B wWw N =

I = S =Y
a b W N

Komponentenorientierung am Beispiel 34

4.5.3 Die Komponente Kommandozeile

Das Programm erhalt die Namen der auszugebenden Textdateien
als Parameter auf der Kommandozeile tibergeben. Fiir den Zugriff
auf diese Parameter ist die Komponente Kommandozeile zustindig.
Thre Methode Dateinamen liefert die Kommandozeilenparameter als
Aufzahlung von Strings.

Auch hier scheint die geringe Anzahl von Codezeilen dafiir zu
sprechen, die benétigte Funktionalitit im Hauptprogramm unter-
zubringen. Zumal die Methode Program.Main, die zur Laufzeit als
Einstiegspunkt in das Programm dient, die Kommandozeilenpara-
meter als Methodenparameter tibergeben kriegt. Doch auch hier
geht es darum, die Aspekte zu trennen. Die Anforderungen kénnten
sich beispielsweise so dndern, dass die Dateinamen nicht iber die
Kommandozeile iibergeben werden, sondern aus einer Steuerdatei
gelesen werden sollen. In diesem Fall ware lediglich die Komponen-
te Kommandozeile von der Anderung betroffen. Das Trennen der
Aspekte ist somit gut fir die Evolvierbarkeit des Systems.

using System;
using System.Collections.Generic;
using System.Linq;

using cat.contracts;

namespace cat.kommandozeile

{
public class Kommandozeile : IKommandozeile
{
public IEnumerable<string> Dateinamen() {
return Environment.GetCommandLineArgs().Ski\
p(1);

© 0O N O O B wWw N =

I = U =N
Bw N,

Komponentenorientierung am Beispiel 35

4.5.4 Die Komponente Textdatei

Das Lesen der Zeilen der Textdatei ist Aufgabe der Komponen-
te Textdatei. Sie verfiigt iiber eine Methode Einlesen, die den
Dateinamen der einzulesenden Datei als Parameter erhalt. Als
Ergebnis liefert die Methode den Inhalt der Datei als Aufzéhlung
von Strings.

using System.Collections.Generic;
using System.IO;
using cat.contracts;

namespace cat.textdatei

{
public class Textdatei : ITextdatei
{
public IEnumerable<string> Einlesen(string date\
iname) {
return File.ReadlLines(dateiname);
}
}
}

4.6 Implementieren der App

Die Funktionalitat des gesamten Systems ist nun auf die oben
beschriebenen Komponenten verteilt. Was nun noch fehlt, ist eine
App, die alle benétigten Komponenten referenziert und die beno-
tigten Klassen instanziert. SchliefSlich muss der Einstiegspunkt des
Systems, in diesem Fall die Methode Cat . Run, aufgerufen werden.

Das Visual Studio Projekt cat.application ist das einzige Projekt,
das Referenzen auf die Komponentenimplementationen erhilt. Alle
anderen Projekte referenzieren lediglich die Kontrakte. Auf diese

Komponentenorientierung am Beispiel 36

Weise wird erreicht, dass die Komponenten in beliebiger Reihen-
folge und auch parallel entwickelt werden koénnen. Die folgende
Abbildung zeigt die Referenzen des App Projekts.

@ o--udad »H|
Search Selution Explorer (Ctrl+) P~
fa] Sclution 'cat.application' (1 project)
4 cat.application
b Properties
4 @l References
-0 cat.cat
-0 cat.contracts
=B cat.kommandozeile
=B cat.textdatei
=B cat.ui
=B Systermn
=B Systermn.Core
B c* Program.cs

Mit der Implementation der App kann logischerweise erst begonnen
werden, wenn alle Implementationen der Komponenten vorliegen.
Allerdings miissen die Komponenten dazu nicht vollstandig imple-
mentiert sein, sondern es geniigt, die Visual Studio Projekte auf-
zusetzen. Die Implementationen der einzelnen Methoden kénnen
zunidchst leer gelassen werden. Im Ergebnis kann dann mit der
Arbeit an der App begonnen werden, da das App Projekt dann
bereits alle benétigten Komponenten referenzieren kann.

o N O O b W N =

11
12
13
14
15
16
17
18
19
20
21

Komponentenorientierung am Beispiel 37

using cat.cat;

using cat.kommandozeile;

using cat.textdatei;

using cat.ui;

namespace cat.application

internal class Program

{
{
private
var
var
var
var
ile);
cat.
}
}
}

static void Main() {

ui = new Ui();

kommandozeile = new Kommandozeile();
textdatei = new Textdatei();

cat = new Cat(ui, textdatei, kommandoze\

Run();

Die App der Anwendung Cat instanziert zundchst die drei Klas-
sen der Komponenten UI, Kommandozeile und Textdatei. An-
schliefend kann die Klasse Cat instanziert werden. Thr werden
im Konstruktor die drei anderen Instanzen der Klassen tibergeben.
Zum Abschluss ist nichts weiter zu tun, als mit cat.Run die An-
wendung zu starten.

	Inhaltsverzeichnis
	Einleitung
	Danksagungen
	Zum Aufbau des Buchs

	Herausforderung Arbeitsorganisation
	Feature Developer vs. Feature Team
	Typische Herausforderungen
	Wildwuchs von Abhängigkeiten, ungeplante Abhängigkeiten
	Keine Übersicht über die Abhängigkeiten
	Konflikte bei der Quellcodeorganisation
	Zu breiter Scope, zu geringer Fokus

	Arten von Abhängigkeiten
	Variante 1: X1, X2, X3 sind von A abhängig
	Variante 2: X ist von A1, A2, A3 abhängig

	Verwendete Notation
	Funktionseinheiten
	Portal
	Provider
	Logik

	Abhängigkeiten
	Datenflüsse

	Komponentenorientierung am Beispiel
	Anforderungen
	Entwurf
	Zerlegung in Komponenten
	Erstellen der Kontrakte
	Der Kontrakt ICat
	Der Kontrakt IUi
	Der Kontrakt IKommandozeile
	Der Kontrakt ITextdatei

	Implementieren der Komponenten
	Die Komponente Cat
	Die Komponente UI
	Die Komponente Kommandozeile
	Die Komponente Textdatei

	Implementieren der App

