

Effizientere Softwareentwicklung
im Team durch Komponenten
Komponentenorientierung als Mittel der
Arbeitsorganisation

Stefan Lieser

Dieses Buch können Sie hier kaufen
http://leanpub.com/komponentenorientierung

Diese Version wurde auf 2014-06-07 veröffentlicht

Das ist ein Leanpub-Buch. Leanpub bietet Autoren und Verlagen
mit Hilfe des Lean-Publishing-Prozesses ganz neue Möglichkeiten
des Publizierens. Lean Publishing bedeutet die permanente,
iterative Veröffentlichung neuer Beta-Versionen eines E-Books
unter der Zuhilfenahme schlanker Werkzeuge. Das Feedback der
Erstleser hilft dem Autor bei der Finalisierung und der
anschließenden Vermarktung des Buches. Lean Publishing
unterstützt de Autor darin ein Buch zu schreiben, das auch gelesen
wird.

©2014 Stefan Lieser

http://leanpub.com/komponentenorientierung
http://leanpub.com
http://leanpub.com/manifesto

Kaum ein anderer Begriff der Softwareentwicklung wird so inhalts-
leer verwendet, wie der Begriff Komponente. Entwickler diskutieren
munter, wie sie ein Problem angehen wollen und verwenden dabei
Komponente synonym mit Klasse, Assembly, GUI-Control und an-
derem. Auf Nachfrage ist den Entwicklern oft nicht bewusst, dass
sie keine Definition für den Begriff nennen können. Oft weichen
sie auf andere aus, wie etwa Modul, zu dem sie dann ebenfalls
keine Definition nennen können. Einerseits ist das verwunder-
lich, andererseits findet sich auch in der Literatur meist nur eine
schwammige oder viel zu komplizierte Definition. Doch lag in
der Komponentenorientierung nicht einige Jahre die Hoffnung der
Softwareentwicklungsbranche? Endlich wie die Automobilindustrie
vorgefertigte Teile zusammenstecken und nicht immer wieder alles
neu bauen? Wieso ist davon so wenig in der Softwareentwicklung
angekommen? Dieses Buch befasst sich mit Komponenten. Insofern
dürfen Sie davon ausgehen, dass ich die Komponentenorientierung
weder für gescheitert noch für einen alten Hut halte. Und damit von
Anfang an Klarheit herrscht, nenne ich Ihnen hier meine Definition
von Komponente:

Eine Komponente ist eine binäre Funktionseinheit mit sepa-
ratem Kontrakt.

Punkt. Das ist alles. So einfach kann es sein.

Inhaltsverzeichnis

1 Einleitung . 1
1.1 Danksagungen . 2
1.2 Zum Aufbau des Buchs 2

2 Herausforderung Arbeitsorganisation 4
2.1 Feature Developer vs. Feature Team 5
2.2 Typische Herausforderungen 8

2.2.1 Wildwuchs von Abhängigkeiten, ungeplante
Abhängigkeiten 10

2.2.2 Keine Übersicht über die Abhängigkeiten . . 11
2.2.3 Konflikte bei der Quellcodeorganisation . . . 11
2.2.4 Zu breiter Scope, zu geringer Fokus 12

2.3 Arten von Abhängigkeiten 12
2.3.1 Variante 1: X1, X2, X3 sind von A abhängig . 13
2.3.2 Variante 2: X ist von A1, A2, A3 abhängig . . 14

3 Verwendete Notation 17
3.1 Funktionseinheiten 17

3.1.1 Portal . 18
3.1.2 Provider . 19
3.1.3 Logik . 19

3.2 Abhängigkeiten . 19
3.3 Datenflüsse . 19

4 Komponentenorientierung am Beispiel 21
4.1 Anforderungen . 21

INHALTSVERZEICHNIS

4.2 Entwurf . 22
4.3 Zerlegung in Komponenten 26
4.4 Erstellen der Kontrakte 28

4.4.1 Der Kontrakt ICat 28
4.4.2 Der Kontrakt IUi 29
4.4.3 Der Kontrakt IKommandozeile 29
4.4.4 Der Kontrakt ITextdatei 30

4.5 Implementieren der Komponenten 31
4.5.1 Die Komponente Cat 31
4.5.2 Die Komponente UI 32
4.5.3 Die Komponente Kommandozeile 34
4.5.4 Die Komponente Textdatei 35

4.6 Implementieren der App 35

1 Einleitung
Komponenten sind ein Mittel der Arbeitsorganisation. Es geht in
diesem Buch also nicht um Entwurf oder Architektur, sondern
„nur“ darum, wie die Arbeit in einem Team technisch gesehen so or-
ganisiert wird, dass das Team mit maximaler Geschwindigkeit und
bester Qualität arbeiten kann. Erst Komponentenorientierung er-
möglicht arbeitsteiliges Vorgehen. Damit ist sie Voraussetzung da-
für, dass mehrere Entwickler am gleichen Softwaresystem arbeiten.
Das mag sich banal anhören und Sie fragen sich möglicherweise,
wieso Sie dazu Komponenten benötigen. Weiter oben habe ich von
„maximaler Geschwindigkeit“ und „bester Qualität“ geschrieben.
Natürlich besteht rein technisch keine zwingende Notwendigkeit,
Software aus Komponenten zusammenzusetzen. Nicht selten habe
ich Softwaresysteme gesehen, die aus einer Visual Studio Solution
bestanden.Manchmal waren darin viele Projekte zu finden. Manch-
mal sehr viele… Einewirklich komponentenorientierte Lösung habe
ich selten gesehen.

Aber vergleichen Sie das mit der Automobilindustrie. Rein tech-
nisch gesehen kann ein Auto natürlich aus Einzelteilen auf kleinster
Ebene zusammengesetzt werden. Aus Schrauben, Muttern, Wellen,
Achsen, Zahnrädern, Blechen, Gussteilen, usw. Doch dann würde
die Arbeitsteilung unendlich komplex. Erst klare Schnittstellen
an den Komponentengrenzen machen es möglich, dass Motor,
Fahrwerk, Sitze, Reifen und viele andere Bestandteile von unter-
schiedlichen Herstellern in unterschiedlichen Werken hergestellt
werden. Mir ist bewusst, dass der Vergleich von Softwareindustrie
und Automobilbau viele Fallstricke liefert. Doch in einem bin ich
sicher: wir, in der Softwareindustrie, können den Automobilbauern
noch einiges abschauen. Ohne ein Komponentenkonzept müsste
die Automobilindustrie jeden Motor erst in ein Auto einbauen und

Einleitung 2

damit auf die Autobahn fahren, um ihn zu überprüfen. Macht sie
aber nicht. Dafür gibt es Prüfstände. Der Motor „merkt“ gar nicht,
ob er in einem Auto oder in einem Prüfstand eingebaut wurde. So
lange der Prüfstand die Schnittstelle des Motors korrekt bedient,
ist alles in Ordnung. Diese Form der Zerlegung in Komponenten
und die daraus resultierende Arbeitsteilung ist auch in der Soft-
wareentwicklung möglich und notwendig. Und dafür steht dieses
Buch. Sie werden nach dem Lesen feststellen, dass eigentlich alles
ganz einfach ist. Und möglicherweise werden Sie sich sogar fragen,
warum Sie nicht schon immer so gearbeitet haben.

1.1 Danksagungen

Dieses Buch wäre ohne meinen Kollegen Ralf Westphal nicht ent-
standen. Ich habe seit Jahren das große Vergnügen, mit ihm gemein-
sam arbeiten zu können. In zahlreichen Seminaren haben wir das
Konzept der Komponentenorientierung unterrichtet, ausprobiert
und auch immer wieder verfeinert. Ohne Ralfs initiale Vorarbeit
wäre das jedoch nicht möglich gewesen. Danke Ralf!

Ein weiterer Dank gebührt meiner Familie, die viel Geduld mit mir
bewiesen hat. Sie haben mich immer wieder ermuntert, weiter zu
schreiben und mir dann auch die Zeit eingeräumt.

1.2 Zum Aufbau des Buchs

Ein Team von Entwicklern sollte in optimaler Weise zusammenar-
beiten. Die Art und Weise, wie das Team seine Arbeit so organi-
siert, dass es effizient arbeiten kann, wird als Arbeitsorganisation
bezeichnet. Im nun folgenden Kapitel „Herausforderung Arbeits-
organisation“ sind die Herausforderungen beschrieben, denen sich
ein Team in Bezug auf die Arbeitsorganisation stellen muss. An
diesen Herausforderungenmuss sich die Komponentenorientierung
messen lassen und Lösungen anbieten.

Einleitung 3

Das darauf folgende Kapitel „Verwendete Notation“ beschreibt die
im Buch verwendete Notation.

Um einen Eindruck davon zu vermitteln, wie ein Softwaresystem
aussieht, das komponentenorientiert entwickelt ist, folgt ein kon-
kretes Beispiel im Kapitel „Komponentenorientierung am Bei-
spiel“. Das Beispiel ist bewusst klein gehalten, damit die Sicht
frei bleibt auf das Wesentliche, nämlich die Art und Weise der
Zerlegung des Gesamtsystems in Komponenten.

Im anschließenden Kapitel „Verzeichnisstruktur und Projekt-
organisation“ wird die Verzeichnisstruktur detailliert beschrieben.
Eine solche Struktur ist im Prinzip unabhängig davon, ob ein
Softwaresystem komponentenorientiert aufgebaut wird oder nicht.
Diese Struktur ist noch vor den Komponenten die Basis für ei-
ne reibungslose Zusammenarbeit mehrerer Entwickler an einem
Softwaresystem. Ferner wird die Organisation der Visual Studio
Solutions und Projekte beschrieben.

Es folgt das Kapitel „Zerlegung in Komponenten“ über die Zer-
legung eines Entwurfs in Komponenten. Hier wird der Begriff
der Komponenten definiert und die konkrete Umsetzung in .NET
beschrieben. Ferner wird dargelegt, nach welchen Kriterien die
Zerlegung in Komponenten erfolgt.

Nach der Zerlegung müssen die Komponenten zum großen Gan-
zen zusammengefügt werden. Die Integration ist das Thema des
anschließenden Kapitels „Integration der Komponenten“. Dabei
geht es um das Zusammenfügen der einzelnen Komponenten zu
einer lauffähigen Software sowie um die Automatisierung der
Übersetzung der einzelnen Bestandteile (Buildprozess).

Die hier vorgestellten konkreten Verfahren zur Komponentenori-
entierung sind mit .NET realisiert. Komponentenorientierung ist
natürlich auch mit anderen Plattformen möglich und sinnvoll. Der
Inhalt des vorliegenden Buches ist mithin auf andere Plattformen
übertragbar.

2 Herausforderung
Arbeitsorganisation

Software zu entwickeln ist meist eine komplexe Angelegenheit.
Software im Team zu entwickeln ist immer eine komplexe Ange-
legenheit. Das liegt daran, dass neben den Herausforderungen, die
das eigentliche Entwickeln der Software ohnehin schon mit sich
bringt, weitere Herausforderungen hinzu kommen. Um Software
mit mehreren Menschen im Team zu entwickeln, müssen diese
Menschen zunächst einmal ein Team bilden. Das ist nicht so selbst-
verständlich, wie es klingen mag. Zwar ist es heute üblich, Software
mit mehreren Personen gemeinsam zu entwickeln, doch häufig
entsteht dabei lediglich eine Gruppe und noch kein Team. Der
wesentliche Unterschied zwischen Gruppe und Team liegt in der
Selbstorganisation. Entwickelt sich die Selbstorganisation so weit,
dass eine gemeinsame Verantwortung entsteht, spricht man von
einem Team. In einer Gruppe dagegen ist jeder Einzelne für seine
(Teil-)Ergebnisse verantwortlich. Nur im Team wird das Ergebnis
als gemeinsames Ergebnis betrachtet, während in Gruppen noch die
Einzelergebnisse im Vordergrund stehen.

Desweiteren ergeben sich durch Teamarbeit Herausforderungen im
technischen Sinne. Schon dadurch, dass mehrere Personen an der
Software arbeiten, entsteht schneller ein größeres System, als bei
einer Einzelperson: es kommt in gleicher Zeit mehr Code zusam-
men. Vor allem muss nun aber die Zusammenarbeit so organisiert
werden, dass nur geringe Reibungsverluste entstehen. Teams die
einfach drauf los entwickeln, werden schnell die Grenzen einer ad-
hoc Arbeitsorganisation feststellen.

Herausforderung Arbeitsorganisation 5

2.1 Feature Developer vs. Feature Team

Eine der wichtigsten Fragen der Arbeitsorganisation lautet, wie die
Zuständigkeit für ein Feature organisiert ist. Dabei ist ein Feature
ein kleiner Ausschnitt aus den gesamten Anforderungen. Für die
weitere Betrachtung ist eine trennscharfe Definition von Feature
von geringerer Bedeutung. Es genügt, sich ein Feature als Teil-
funktionalität oder Ausschnitt aus denAnforderungen vorzustellen.
Nun gibt es zwei Möglichkeiten, die Umsetzung eines Features
zu organisieren: es kann entweder jedes Feature einem einzelnen
Entwickler zugeordnet werden, oder das gesamte Team setzt Fea-
ture für Feature gemeinsam um. Im ersten Fall spricht man von
Feature Developer. Jeder Entwickler arbeitet an „seinem“ Feature.
Eine wirkliche Zusammenarbeit findet nicht statt. Zwangsläufig
ergibt sich für eine Gruppe von Entwicklern daraus die Konse-
quenz, dass jeweils mehrere Features gleichzeitig in Bearbeitung
sind. Übrigens ergibt sich aus der Organisation mehrerer Feature
Developer auch die Notwendigkeit für Daily-Standups in Scrum.
Die Entwickler müssen nicht miteinander reden, solange jeder an
„seinem“ Code arbeitet. Logischerweise muss man dann das Reden
im Team organisieren, da es sich nicht von selbst ergibt. Für mich
ist das höchstens die zweitbeste Lösung. Natürlich hilft organisiert
vereinbartes Reden dem Team dabei, zusammen zu wachsen. Doch
viel wichtiger ist es, die Arbeit so zu organisieren, dass wirklich
zusammen gearbeitet wird. Dann entsteht die Notwendigkeit oder
sogar der Wunsch, miteinander zu Reden, ganz natürlich von
alleine.

Arbeitet das komplette Team gemeinsam an einem einzigen Feature,
spricht man von einem Feature Team. Damit ein Team in der Lage
ist, parallel am selben Feature zu arbeiten, muss die Arbeit natürlich
so organisiert sein, dass dies überhaupt effizient möglich ist. Es
bedarf vor allem einiger technischer Lösungen, weil das gesamte
Feature natürlich in geeigneter Weise zerlegt werden muss, so dass
Einzelteile entstehen, die jeweils von einer Einzelperson umgesetzt

Herausforderung Arbeitsorganisation 6

werden können. An dieser Stelle kommen die Komponenten ins
Spiel. Sie bilden in einem Team die größte Einheit, an der ein Ent-
wickler alleine arbeiten kann. Doch bevor ich zur Lösung übergehe,
möchte ich noch darauf eingehen, warum die Organisation der
Arbeit in Form von Feature Teams unbedingt erstrebenswert ist.

Wir sind heute Rechner gewohnt, deren Prozessor mehrere Kerne
enthält. Dadurch ist inzwischen echtes Multitasking möglich, also
das wirklich parallele Abarbeiten von Programmen. Doch obwohl
mehrere Kerne zur Verfügung stehen, sind auch heute in der Regel
mehr Programme gleichzeitig aktiv, als Kerne zur Verfügung ste-
hen. Der Trick dabei: der Prozessor wird reihummehr oder weniger
gleichmäßig auf die diversen anstehenden Aufgaben verteilt. Zu
einem Zeitpunkt bearbeitet der Prozessor ein Programm. Durch
den schnellen Wechsel entsteht für uns Anwender der Eindruck,
die Programme würden parallel ablaufen. Dagegen ist nichts ein-
zuwenden. Es entsteht aber die Frage, ob dies die beste Strategie
ist, wenn eine der Aufgaben besonders schnell abgearbeitet werden
soll. Übertragen wir die Analogie auf ein Entwicklerteam. Das
Team hat die Möglichkeit, pseudo-gleichzeitig an mehreren Fea-
tures gleichzeitig zu arbeiten. Dadurch entsteht für den Betrachter
außerhalb des Teams der Eindruck, alle Features wären in Arbeit.
Doch wird dabei jedes Feature in bestmöglicher Zeit fertig? Ganz
klar: nein. Ein Feature, das so schnell wiemöglich fertig werden soll,
muss als einziges Feature vom gesamten Team bearbeitet werden.
Es muss das einzige Feature sein, das überhaupt in Bearbeitung
ist. Aus dieser Betrachtung ergibt sich eine Frage: Sollte ein Team
jeweils ein einzelnes Feature in bestmöglicher Zeit fertigstellen,
oder sollte es gleichzeitig an mehreren Features arbeiten, die dann
jedes für sich nicht in optimaler Zeit fertig werden? Bei der Beant-
wortung der Frage hilft ein Blick zur Theorie of Constraints¹. Aus
ihr ergibt sich die Konsequenz, dass eine lokale Optimierung nicht
zwingend zum globalen Optimum führt. Ob also ein Entwickler

¹Zur Theorie of Constraints siehe z.B. http://de.wikipedia.org/wiki/Theory_of_
Constraints

http://de.wikipedia.org/wiki/Theory_of_Constraints
http://de.wikipedia.org/wiki/Theory_of_Constraints

Herausforderung Arbeitsorganisation 7

gerade Leerlaufzeit hat oder nicht, spielt eine untergeordnete Rolle.
Dieses lokale „Problem“ zu beseitigen, in dem ein Team an meh-
reren Features arbeitet, erhöht nicht die Wahrscheinlichkeit, dass
das Gesamtsystem optimal arbeitet. Im Gegenteil: meist führt die
lokale Optimierung zu großen Problemen, die unerkannt bleiben.
Schon daraus lässt sich ableiten, dass Teams gut daran tun, immer
nur ein Feature in Bearbeitung zu haben und dies erst vollständig
fertigstellen, bevor sie das nächste beginnen.

Eine weitere Betrachtung mag helfen, sich von der Organisation
als Feature Developer zu verabschieden. Sobald mehrere Features
gleichzeitig in Bearbeitung sind und ein systematischer Fehler
entdeckt wird, ist die Wahrscheinlichkeit hoch, dass der Fehler
mehrfach begangen wurde. Nehmen wir eine Architekturentschei-
dung als Beispiel. Wurde zu Beginn entschieden, für die Persistenz
eine relationale Datenbank einzusetzen, dann kann sich während
der Implementation herausstellen, dass eine der nicht-funktionalen
Anforderungen auf diese Weise nicht oder nur schwer umsetzbar
ist. Beispielsweise könnte der geforderte Durchsatz an Benutzer-
transaktionen pro Zeiteinheit nicht erreichbar sein. Sind nun be-
reits mehrere Features in Bearbeitung, wirkt sich diese Erkenntnis
möglicherweise auf mehrere dieser Features aus. Vermutlich muss
dann an mehreren Features eine Änderung vorgenommen werden.
Wäre nur ein einzelnes Feature in Bearbeitung, hätte die Erkenntnis
geringere Auswirkungen, denn dann würde sich die Nachbesserung
in engeren Grenzen bewegen. Vor allem könnte die Erkenntnis dann
bei den anderen Features sofort von Anfang an bedacht und genutzt
werden.

Am Ende steht also als klare Erkenntnis: Software sollte im Team
so entwickelt werden, dass immer ein Feature nach dem anderen
bearbeitet wird. Es gibt keine angefangene Arbeit, die „auf Halde“
liegt, sondern ein begonnenes Feature wird erst vollständig bear-
beitet, bevor mit dem nächsten begonnen wird.

Herausforderung Arbeitsorganisation 8

2.2 Typische Herausforderungen

Damit ein Team von Entwicklern gemeinsam an einem Feature
arbeiten kann, muss das Feature in kleinere Teile zerlegt wer-
den. Diese kleineren Teile bezeichne ich ganz abstrakt zunächst
als Funktionseinheiten. Konkrete Ausprägung einer Funktionsein-
heit können sein, eine Methode, eine Klasse, eine Assembly, eine
Komponente, ein Programm, etc. Die im folgenden geschilderten
Herausforderungen sollen aufzeigen, welche Anforderungen an
Funktionseinheiten gestellt werden, die von einem Team parallel
entwickelt werden. Es ist klar, dass es dabei auf die Komponente als
zentralen Begriff dieses Buches hinausläuft. Doch ohne die Lösung
gleich parat zu haben, welche Herausforderungen bietet denn diese
Form eines gemeinschaftlichen Entwicklungsprozesses? ### Vor-
gegebene zeitliche Entwicklungsreihenfolge durch Abhängigkeiten
Sobald eine Funktionseinheit in kleinere Funktionseinheiten zerlegt
wird, ergibt sich die Frage nach den Abhängigkeiten. Manchmal
lassen sie sich vermeiden, aber am Ende bleiben immer Abhängig-
keiten. Abhängigkeiten können die Reihenfolge der Implementation
vorgeben. Dazu ein Beispiel: die Abbildung zeigt drei Funktionsein-
heiten A, B und C. Diese sind voneinander abhängig. A hängt ab
von B, B hängt ab von C.

In manchen Fällen mag die erzwungene Reihenfolge der Implemen-
tation unkritisch sein. Handelt es sich beispielsweise umMethoden,
stellt das aufgrund des Codeumfangs kein Problem dar. Sind die
Funktionseinheiten A,B und C jedoch Teile, an denen mehrere Ent-
wickler gleichzeitig arbeiten sollen, dann behindert die vorgegebene
Reihenfolge einen flüssigen Entwicklungsprozess. Aus den in der

Herausforderung Arbeitsorganisation 9

Abbildung gezeigten Abhängigkeiten ergibt sich für A, B und C
folgende Entwicklungsreihenfolge:

Die Lösung der Herausforderungen: Komponenten benötigen Kon-
trakte. Durch diese wird die Reihenfolge der Entwicklung von den
Abhängigkeiten entkoppelt.

Durch die Kontrakte ergibt sich für die Komponenten eine beliebige
Reihenfolge bei der Implementation. Zeitlich gesehen müssen erst
die Kontrakte realisiert werden. Die Reihenfolge für die Realisie-
rung der Kontrakte ist mehr oder weniger willkürlich, weil zwi-
schen ihnen keine Abhängigkeiten bestehen. Es können lediglich
Abhängigkeiten zu Datentypen existieren, die im Kontrakt stehen.
Die Kontrakte sind vergleichsweise schnell umgesetzt, weil hierzu
lediglich Interfaces erstellt werden müssen. Im Anschluss können
die Komponenten in beliebiger Reihenfolge, vor allem auch zeit-
gleich, erstellt werden. In der folgenden Abbildung ist das dadurch
deutlich gemacht, dass die Komponenten übereinander über einan-
der angeordnet sind und somit zum gleichen Zeitpunkt realisiert
werden können.

Herausforderung Arbeitsorganisation 10

Lösung: Kontrakte

2.2.1 Wildwuchs von Abhängigkeiten,
ungeplante Abhängigkeiten

Abhängigkeiten lassen sich in Softwaresystemen nicht vermeiden.
Entwickeln sie sich jedoch ungeplant, entsteht ein Wildwuchs von
Abhängigkeiten, der nicht mehr zu durchschauen ist. Insofern muss
ein Entwicklerteam stets Sorge tragen, dass sich die Abhängigkeiten
in einer geordneten Art und Weise entwickeln. Werden die Ab-
hängigkeiten sozusagen sich selbst überlassen, verstärkt sich das
Problem selbst. Sogar bei gutem Willen ist es dann irgendwann
nicht mehr möglich, an der Situation etwas zu ändern. Die Lösung
kann daher nur darin liegen, die Abhängigkeiten zu planen. Statt
drauf los zu programmieren und zuzuschauen, wie sich die Ab-
hängigkeiten entwickeln, muss ein Team die Abhängigkeiten vor
der Umsetzung planen. Des weiteren muss während der Umsetzung
sichergestellt werden, dass die Abhängigkeiten nicht vom Entwurf
abweichen.

Lösung: contract-first

Herausforderung Arbeitsorganisation 11

2.2.2 Keine Übersicht über die Abhängigkeiten

Eine Konsequenz aus der ungeplanten Entwicklung von Abhängig-
keiten ist die Unübersichtlichkeit. Sobald Abhängigkeiten einfach
so entstehen, weil ein Entwickler sie nach Bedarf herstellt, geht die
Übersicht verloren. Der Blick auf das große Ganze ist nur mög-
lich, wenn Strukturen existieren, die abstrakter sind als Quellcode.
Schon aus diesem Grund sind Kontrakte notwendig. Doch für die
Übersicht ist es erforderlich, die Kontrakte vor der Umsetzung zu
entwerfen.

Lösung: contract-first

2.2.3 Konflikte bei der Quellcodeorganisation

Sobald mehrere Entwickler beginnen, gemeinsam an einer Quell-
codebasis zu arbeiten, steht das Risiko von Konflikten beim Zugriff
im Raum. Selbstverständlich wird dabei natürlich ein Versionskon-
trollsystem eingesetzt. Doch selbst beim Einsatz eines noch so leis-
tungsfähigenMerge-Tools ist die effizientere Alternative stets, ohne
Konflikte auszukommen. Einerseits soll das Team gemeinsam an ei-
nem Feature arbeiten, andererseits sollen dabei aber keine Konflikte
auf Quellcodeebene auftreten. Dieser scheinbare Widerspruch wird
aufgelöst, in dem jede Komponente eine abgeschlossene Einheit
bildet, auch auf Quellcodeebene. Für .NET bedeutet das konkret,
jede Komponente in einer eigenen Solution abzulegen. Innerhalb
der Solution befinden sich dann die benötigten Projekte: in der
Regel mindestens eines für die Implementation der Komponente,
sowie ein weiteres für die zugehörigen Tests. Ergebnis dieser so ge-
nannten Komponentenwerkbank ist eine Assembly, die an anderer
Stelle weiterverwendet wird. Die Details zur Ausgestaltung einer
Komponentenwerkbank folgen im Kapitel Verzeichnisstruktur und
Projektorganisation.

Lösung: Komponentenwerkbänke

Herausforderung Arbeitsorganisation 12

2.2.4 Zu breiter Scope, zu geringer Fokus

Jeder Entwickler hat schon die sprichwörtliche Situation erlebt,
vor lauter Bäumen den Wald nicht mehr zu sehen. Plötzlich hat
man so viele Dinge im Kopf, dass man nicht mehr weiß, wo
man anfangen soll. Gibt der Quellcode dann keinen Rahmen vor,
verliert man sich schnell und wird völlig unproduktiv. Statt im
Quellcode jeweils alles zu sehen, sollte der Scope deutlich enger
gefasst sein und dadurch Fokus bieten. Auch diese Herausforderung
wird mit Hilfe von Komponentenwerkbänken gemeistert. In einer
Komponentenwerkbank sehe ich jeweils nur den Quellcode, der
genau zu dieser einen Komponente gehört. Das schafft Klarheit und
bietet Fokus.

Lösung: Komponentenwerkbänke

2.3 Arten von Abhängigkeiten

Bis hier her wurde nun bereits mehrfach betont, dass Abhängigkei-
ten in einem Softwaresystem unvermeidbar sind. Im weiteren Ver-
lauf wird mit der Komponentenorientierung eine Lösung beschrie-
ben, wie damit auf der Ebene der Arbeitsorganisation umzugehen
ist. Doch zuvor soll noch auf zwei grundsätzlich unterschiedliche
Formen von Abhängigkeiten eingegangen werden. Daraus lassen
sich hilfreiche Schlüsse für den Umgang mit Abhängigkeiten zie-
hen. Es gibt zwei grundsätzlich verschiedene Arten von Abhängig-
keiten: • Viele Funktionseinheiten sind von einer anderen Funkti-
onseinheit abhängig. • Eine Funktionseinheit ist von vielen anderen
Funktionseinheiten abhängig. Natürlich gibt es dazwischen alle
möglichen Varianten. Dennoch hilft es, sich Gedanken zu machen
über diese beiden Extremfälle.

Herausforderung Arbeitsorganisation 13

2.3.1 Variante 1: X1, X2, X3 sind von A abhängig

Bei Variante 1 sind X1, X2 und X3 von A abhängig und dadurch
potentiell von jeder Änderung an A betroffen. Da viele von A ab-
hängig sind, haben Änderungen an A jeweils starke Auswirkungen.
Nun geht es nicht darum, diese Form der Abhängigkeit zu verteu-
feln mit dem Ziel, sie zu vermeiden. Es gibt immer wieder gute
Gründe dafür, dass Abhängigkeiten in dieserWeise auftreten.Wenn
das der Fall ist, sollten wir jedoch eine Konsequenz daraus ziehen:
wir sollten uns fragen, ob wir an der Beschaffenheit der X1, X2 und
X3 und des A etwas tun können, so dass die Auswirkungen keine
große Bedeutung haben. Zu betrachten sind dabei zwei Aspekte: die
Häufigkeit mit der A geändert wird, sowie dasMaß der Auswirkung
auf X1, X2 und X3.

Vereinfacht gesagt erhöht sich die Wahrscheinlichkeit, dass an A
Änderungen vorgenommenwerdenmüssen, mit dem Codeumfang.
Je mehr Code A enthält, desto häufiger ist A von Änderungen

Herausforderung Arbeitsorganisation 14

betroffen. Und desto häufiger sind auch die X1, X2 und X3 von den
Änderungen betroffen. Folglich sollte es bei dieser Konstellation der
Abhängigkeiten erstrebenswert sein, A so einfach wie möglich zu
halten. Im Idealfall enthält A überhaupt keinen Logikcode sondern
ist lediglich eine Datenstruktur. Betrachten wir auch den anderen
Aspekt, das Maß der Auswirkungen auf X1, X2 und X3. Auch hier
gilt, dass die Auswirkungen deutlich sind, je mehr Logikcode A
enthält. Denn je mehr Logik in A steckt, desto größer ist die Wahr-
scheinlichkeit, dass die X1, X2 und X3 an Änderungen dieser Logik
angepasst werden müssen. Auch hier lautet also die Folgerung, dass
Amöglichst einfach gehalten sein soll, weil dann die Auswirkungen
auf X1, X2 und X3 nicht so groß sind.

2.3.2 Variante 2: X ist von A1, A2, A3 abhängig

Im zweiten Fall häufen sich die Abhängigkeiten in der anderen
Richtung. Ein X ist von vielen anderen Funktionseinheiten abhän-
gig. Damit muss X immer dann angepasst werden, wenn sich bei

Herausforderung Arbeitsorganisation 15

A1, A2 oder A3 etwas ändert. Auch hier können wir überlegen,
welche Forderungen sich daraus ergeben. An der Struktur der
Abhängigkeiten wollen wir auch hier nicht rütteln. Die Anzahl
der Abhängigkeiten zu verändern, scheidet somit als Strategie aus.
Daraus ergibt sich, dass X von den Änderungen an den A1 –
A3 immer betroffen ist, egal wie wir uns drehen und wenden.
Zu überlegen ist daher, wie X beschaffen sein sollte, damit die
Auswirkungen dieser Änderungen leicht beherrschbar bleiben.

Betrachten wir, was passiert, wenn X komplizierte Logik enthält.
Diese Logik muss potentiell bei einer Änderung an einem der
A1, A2, A3 angepasst werden. Ist die Logik kompliziert, fällt die
Anpassung vermutlich schwierig aus. Ist darüber hinaus auch noch
sehr viel Logik enthalten, steigt die Wahrscheinlichkeit weiter, dass
X tatsächlich angepasst werden muss. Die Lösung besteht also
darin, X möglichst einfach zu halten. Im Idealfall enthält X keine
Logik, denn dann haben die Änderungen an A1, A2 oder A3 keinen
Einfluss auf X. Wenn denn „keine Logik“ nicht vorstellbar ist, dann
sollte die Logik wenigstens sehr einfach gehalten sein.

Zu erwähnen sei hier noch, dass sich die Betrachtung der ent-
haltenen Logik immer auf dieselbe Domäne beziehen muss. Ent-
halten die A’s und X’s beispielsweise Logik aus dem Bereich der
Anwendungslogik, gilt oben gesagtes uneingeschränkt. Ein anderer
Fall liegt allerdings in folgendem Beispiel vor: ein IoC Container
ist dafür zuständig, die Abhängigkeiten zwischen Funktionseinhei-
ten während der Laufzeit aufzulösen. Dazu muss der Container
zwangsläufig alle Funktionseinheiten kennen, die zur Erfüllung
von Abhängigkeiten zur Verfügung stehen. Somit liegt hier also
der Fall vor, dass ein Container A von vielen Typen X1, X2 und
X3 abhängig ist. Die Folgerung wäre somit, den Container A
so einfach wie möglich zu gestalten. Doch ein Container ist ein
ziemlich kompliziertes Stück Software und enthält daher sehr viel
Logik. Dieser scheinbare Widerspruch löst sich auf, sobald man
sich klarmacht, dass es hier um zwei unterschiedliche Domänen
geht. Die Typen, die vom Container verwaltet werden, enthalten

Herausforderung Arbeitsorganisation 16

zwar möglicherweise ebenfalls sehr viel Logik. Diese gehört jedoch
nicht zur Domäne des Containers. Gegenstand der Betrachtung
sollten Abhängigkeiten sein, in denen die Logik von Abhängigen
und Unabhängigen sich in derselben Domäne befinden.

3 Verwendete Notation
Die in diesem Buch gewählte Notation für Entwürfe besteht aus
wenigen Symbolen. Das macht die Entwürfe leicht verständlich.
Vor allem soll es Teams ermutigen, gemeinsam zu entwerfen. Wenn
vor dem gemeinsamen Entwurf zunächst umfangreiche Symbol-
bibliotheken erlernt werden müssen, steht dies der Teamarbeit im
Weg. Ferner ist durch die Verwendung weniger, einfacher Symbole
kein Software-Werkzeug erforderlich: Papier und Stifte oder ein
Whiteboard genügen völlig.

Die Notation besteht aus drei Symbolen für Funktionseinheiten
sowie zwei unterschiedlichen Verbindungen. Mit einer der Verbin-
dungen werden Abhängigkeiten zwischen zwei Funktionseinheiten
notiert, mit der anderen Datenflüsse. Die überwiegende Anzahl
der Beispiele im Buch benötigen lediglich die Abhängigkeitsverbin-
dung. Im nächsten Kapitel Die Lösung am Beispiel finden Sie ein
umfangreicheres Beispiel, in dem die Notation verwendet wird.

3.1 Funktionseinheiten

Funktionseinheiten können in drei Ausprägungen vorliegen, je
nachdem zu welchem Aspekt der darin enthaltene Code gehört:

• Portal
• Provider
• Logik

Verwendete Notation 18

Als Aspekt wird hier eine Menge von zusammengehörigen Eigen-
schaften bezeichnet, die sich getrennt von einer anderenMenge von
Eigenschaften verändern. Es dient der Verständlichkeit und somit
der Evolvierbarkeit, wenn Aspekte in Softwaresystemen getrennt
werden. Die drei Ausprägungen Portal, Provider und Logik sind für
drei so fundamental unterschiedliche Aspekte verantwortlich, dass
es wichtig ist, diese schon im Entwurf anhand unterschiedlicher
Symbole zu unterscheiden.

3.1.1 Portal

Ein Portal ist eine Funktionseinheit, deren Aufgabe die Interaktion
mit dem Client ist. Der Begriff Client ist hier sehr weitgehend
gemeint. Es kann damit ein Anwender bezeichnet sein, der mithilfe
einer grafischen Benutzeroberfläche mit dem System interagiert.
In dem Fall wäre das Portal vielleicht mit WPF oder WinForms
realisiert. Im anderen Fall kann es aber auch ein Anwender mit
einer Konsolenschnittstelle sein. Tatsache ist in beiden Fällen, dass
das Portal von einem bestimmten API wie beispielsweise WPF,
WinForms oder Console abhängt.

Eine andere Ausprägung von Client kann aber auch einWebService
sein. In dem Fall stellt die WebService Schnittstelle das Portal
gegenüber dem Client dar. Hier ist das Portal dann von einem API
wie beispielsweise WCF abhängig.

Verwendete Notation 19

3.1.2 Provider

Mit einem Provider¹ tritt das Softwaresystem mit seiner Umwelt
in Kontakt. Auch hier besteht eine Abhängigkeit zu einem API. In
der Regel ist ein Provider von einem API abhängig, der sich um
Ressourcen wie das Dateisystem, eine Datenbank, den Drucker, die
Systemzeit, oder ähnliches kümmert. Wie auch das Portal dient
der Provider hier dazu, das Softwaresystem von der Umgebung
zu kapseln. Im Gegensatz zum Portal ist beim Provider jedoch das
System der Client.

3.1.3 Logik

Der ganze Rest von Funktionseinheiten wird mit Logik bezeichnet.
Dabei geht es in den meisten Fällen um die Geschäfts- oder Domä-
nenlogik in Abgrenzung zu ganz allgemeiner Logik.

3.2 Abhängigkeiten

Abhängigkeiten zwischen Funktionseinheiten werden durch eine
Verbindungslinie mit einem Kuller am einen Ende dargestellt. Der
Kuller weist auf die Unabhängige Funktionseinheit. Die folgende
Abbildung zeigt, dass A von B abhängig ist, bzw. umgekehrt, dass
B von A unabhängig ist.

Abhängigkeit: A ist abhängig von B

3.3 Datenflüsse

In vielen Fällen ist es hilfreich, zu verstehen, welche Daten zwi-
schen Funktionseinheiten fließen. Mit Flow Design steht sogar

¹In früheren Texten haben wir Provider als Adapter bezeichnet.

Verwendete Notation 20

eine vollständige Entwurfsmethode zur Verfügung, die sich ganz
deutlich auf Datenflüsse konzentriert. Im Kontext dieses Buches
über Komponentenorientierung werden Datenflüsse eine eher un-
tergeordnete Rolle spielen. Nichtsdestoweniger wird die Notation
hier eingeführt, um sie an geeigneter Stelle einsetzen zu können.

Datenflüsse werden durch Pfeile symbolisiert. Dabei fließen die
Daten in Pfeilrichtung. In der folgenden Abbildung fließen die
Daten von A nach B.

Datenfluss: Daten X fließen von A nach B

Am Pfeil wird notiert, um welche Art von Daten es sich handelt.

4 Komponentenorientierung
am Beispiel

Ein Beispiel soll nun zeigen, wie die komponentenorientierte Im-
plementation einer ganz einfachen Anwendung aussieht.

4.1 Anforderungen

Implementiert werden soll die Kommandozeilenanwendung cat.
Der aus der Unix Welt stammende Befehl cat gibt den Inhalt
mehrerer Textdateien auf der Konsole aus.

• Die Dateinamenwerden als Kommandozeilenparameter über-
geben.

• Die Ausgabe der Dateien erfolgt in der Reihenfolge der
Dateinamen.

Beispiele:

cat file1.txt

Gibt die Datei file1.txt Zeile für Zeile auf der Konsole aus.

cat file1.txt file2.txt file3.txt

Gibt den Inhalt der drei Dateien nacheinander auf der Konsole
aus. Die Ausgabe erfolgt in der Reihenfolge, in der die Dateinamen
angegeben sind.

Komponentenorientierung am Beispiel 22

4.2 Entwurf

Es gibt viele Möglichkeiten, diese Anforderungen umzusetzen. In
jedem Fall sollte vor der Implementation ein Entwurf stehen. Die
Implementation erfolgt in textueller Weise in einer Programmier-
sprache. Dabei geht es um sehr viele Details. Der Entwurf dagegen
soll einen Blick auf eine abstraktere Form ermöglichen, in der die
Details ganz bewusst noch nicht auftauchen. Nur in dieser abstrak-
ten Form lässt sich über mögliche Umsetzungen der Anforderungen
im Team diskutieren. Ferner liegt der Entwurf nicht in textueller
sondern in grafischer Weise vor, was die Diskussion darüber gut
unterstützen kann.

Wie man zu einem geeigneten Entwurf kommt, ist eine spannende
Frage. Da mir jedoch in diesem Buch der Fokus auf die Arbeitsor-
ganisation ganz wichtig ist, wird es hier nicht darum gehen, wie
man zu einem Entwurf kommt. Die Frage, die sich im Folgenden
stellt ist, wie man einen vorhandenen Entwurf auf Komponenten
verteilt.

Die folgende Abbildung zeigt einen Entwurf für die Umsetzung der
Anforderungen. In diesem Entwurf wird mit Klassen gearbeitet, die
zueinander in Abhängigkeiten stehen. Die einzelnen Klassen sind
jeweils für einen Aspekt der Anwendung verantwortlich.

Komponentenorientierung am Beispiel 23

Die Klasse Cat ist die zentrale Funktionseinheit dieses Entwurfs. Sie
ist von drei weiteren Klassen abhängig. Anhand der Formen der
Funktionseinheiten wird bereits deutlich, zu welcher Kategorie sie
gehören:

• UI ist ein Portal. Hier findet die Ausgabe an den Benutzer
statt.

• Kommandozeile ist ein Provider. Mit diesem Provider wird auf
die Ressource Kommandozeilenparameter in der Umwelt des
Systems zugegriffen.

Komponentenorientierung am Beispiel 24

• Textdatei ist ein Provider. Er ist für den Zugriff auf die
Textdateien zuständig, die ebenfalls als Ressource in der
Umwelt des Systems liegen.

• Cat enthält die Logik des Systems.

Im Entwurf nicht dargestellt ist die Klasse Program, die für die
Integration der restlichen Klassen zuständig ist. Ergänzt man den
Entwurf um diese Klasse sowie die Abhängigkeiten, entsteht fol-
gendes Bild:

Komponentenorientierung am Beispiel 25

Die Abbildung wird durch die Ergänzung der Abhängigkeiten sehr
unübersichtlich. Das liegt daran, dass die Klasse Program von allen
anderen Klassen abhängig ist. Sie muss alle diese Klassen instanzie-
ren und die Abhängigkeiten dieser Klassen untereinander auflösen.
Weil die Klasse Program typischerweise von allen anderen Klassen
abhängig ist und die Abbildungen dadurch sehr unübersichtlich

Komponentenorientierung am Beispiel 26

werden, lassen wir sie in zukünftigen Entwürfen weg.

4.3 Zerlegung in Komponenten

Nun liegt also ein Entwurf vor, in dem die einzelnen Aspekte
des Systems auf Klassen verteilt wurden. Versetzen Sie sich nun
einmal gedanklich in die Situation, dass ein Team mit mehreren
Entwicklern jetzt mit der Implementation beginnen möchte. Die
Herausforderung besteht darin, die gemeinsame Arbeit am System
so zu organisieren, dass alle Entwickler gleichzeitig arbeiten kön-
nen. Alle Klassen in ein und demselben Visual Studio Projekt an-
zulegen scheidet aus. Das würde dazu führen, dass alle Entwickler
dasselbe Projekt öffnen und darin Klassen anlegen. Spätestens beim
Übertragen in die Versionskontrolle käme es zu Problemen durch
Mergekonflikte. Es liegt daher nahe, die Klassen auf mehrere Visual
Studio Projekte zu verteilen. Das Beispiel ist bewusst klein gehalten,
damit der Überblick gewahrt bleibt. Allerdings führt das nun dazu,
dass die Zerlegung des Systems in Komponenten etwas übertrieben
erscheinen mag. Lassen Sie sich davon nicht irritieren. In realen
Systemen enthalten die Komponenten typischerweise mehr als eine
Klasse.

Die folgende Abbildung zeigt, wie eine Zuordnung der Klassen
zu Komponenten aussehen könnte. Ich habe für jede Klasse eine
eigene Komponente vorgesehen. Geleitet hat mich dabei, dass die
Klassen jeweils für völlig unterschiedliche Aspekte zuständig sind.
Ichmöchte vermeiden, dass unterschiedliche Aspekte eines Systems
in einer Komponente zusammengefasst werden. Auf die Kriterien
für das Zerlegen eines Entwurfs in Komponenten wird später noch
detaillierter eingegangen.

Komponentenorientierung am Beispiel 27

Für die Bezeichnung der Komponenten verwende ich folgende
Konvention:

• Alle Namen der Komponenten beginnen mit dem Namen des
Systems. In diesem Beispiel ist das cat.

• Auf den Systemnamen folgt der Bezeichner für die Kompo-
nente, getrennt durch einen Punkt.

• Die Bezeichnung der Komponenten erfolgt vollständig in
Kleinbuchstaben. Für jede Komponente muss ein Visual Stu-
dio Projekt angelegt werden. Beim Anlegen eines Projektes

Komponentenorientierung am Beispiel 28

übernimmt Visual Studio den Projektnamen als Default Na-
mespace. Die Verwendung von Kleinbuchstaben hat den Vor-
teil, dass damit auch der Default Namespace in Kleinbuch-
staben angelegt wird. Dadurch entstehen keine Konflikte zu
Klassennamen.

Speziell die Konvention, Komponenten mit Kleinbuchstaben zu
bezeichnen, sollten Sie unbedingt übernehmen. Bei einem kom-
ponentenorientierten System tritt häufig der Fall ein, dass eine
Klasse genauso heißt, wie die Komponente. Da für jede Kompo-
nente ein Namespace angelegt wird, käme es immer zu einem
Konflikt zwischen Namespace und Klassenname. Man müsste dann
den Klassennamen jeweils durch den vorangestellten Namespace
qualifizieren, also zum Beispiel folgendes schreiben:

var cat = new Cat.Cat();

Durch Namespaces in Kleinbuchstaben entfällt die Notwendigkeit,
den Namespace vor den Klassennamen schreiben zu müssen.

4.4 Erstellen der Kontrakte

Für das Erstellen der Kontrakte ist es natürlich erforderlich, dass ein
Entwurf vorliegt. Bislang sind in den Abbildungen zum Entwurf al-
lerdings nur die Klassennamen gezeigt. Über welche Methoden die
Klassen verfügen, geht daraus noch nicht hervor. Selbstverständlich
ist das der zentrale Punkt eines Entwurfs: herauszufinden, welche
Funktionalität benötigt wird und wie man sie auf Methoden, Klas-
sen undKomponenten verteilt. Da das Beispiel überschaubar ist und
der Fokus auf der Arbeitsorganisation mittels Komponenten liegt,
werde ich hier nicht weiter ausführen, wie ich auf die Methoden
gekommen bin. Entwurf ist Thema für ein anderes Buch.

4.4.1 Der Kontrakt ICat

Komponentenorientierung am Beispiel 29

1 namespace cat.contracts

2 {

3 public interface ICat

4 {

5 void Run();

6 }

7 }

Die Run Methode ist der Einstiegspunkt der Anwendung. Sie wird
später in der Program.MainMethode des EXE-Projektes aufgerufen.
Ihre Aufgabe ist die Integration der anderen Funktionseinheiten.
Sie koordiniert den Aufruf der Methoden der anderen beteiligten
Klassen.

4.4.2 Der Kontrakt IUi

1 using System.Collections.Generic;

2

3 namespace cat.contracts

4 {

5 public interface IUi

6 {

7 void Ausgeben(IEnumerable<string> zeilen);

8 }

9 }

Die Komponente UI ist für die Ausgabe von Textzeilen zuständig.
Sie verfügt dazu über die Methode Ausgeben, die eine Aufzählung
von Strings als Parameter erhält und diese auf die Konsole ausgibt.

4.4.3 Der Kontrakt IKommandozeile

Komponentenorientierung am Beispiel 30

1 using System.Collections.Generic;

2

3 namespace cat.contracts

4 {

5 public interface IKommandozeile

6 {

7 IEnumerable<string> Dateinamen();

8 }

9 }

Die Komponente Kommandozeile ist ein Provider für die Ressource
Kommandozeilenparameter, die sich in der Umwelt des zu erstellen-
den Systems befinden. Sie verfügt über eine Methode Dateinamen,
mit der alle Dateinamen, die auf der Kommandozeile übergeben
wurden, ermittelt werden.

4.4.4 Der Kontrakt ITextdatei

1 using System.Collections.Generic;

2

3 namespace cat.contracts

4 {

5 public interface ITextdatei

6 {

7 IEnumerable<string> Einlesen(string dateiname);

8 }

9 }

Der Zugriff auf den Inhalt der einzelnen Dateien erfolgt durch die
Komponente Textdatei. Sie enthält die Methode Einlesen, die den
gesamten Inhalt einer Datei als Aufzählung von Strings liefert.

Komponentenorientierung am Beispiel 31

4.5 Implementieren der Komponenten

Die Aufgabenstellung des Programms ist überschaubar. Daher sind
die Komponenten nicht sehr umfangreich. Jede Komponente ist als
einzelne Klasse realisiert. Dasmuss natürlich nicht immer so sein. In
größeren Systemen bestehen Komponenten durchaus aus mehreren
Klassen.

4.5.1 Die Komponente Cat

Aufgabe der Komponente Cat ist die Integration der drei Kompo-
nenten UI, Textdatei und Kommandozeile. Voraussetzung dafür ist,
dass Cat die drei Komponenten kennt. Natürlich darf hier aber keine
direkte Abhängigkeit zwischen den Komponenten entstehen. Cat
muss die Dienste der anderen Komponenten in jedem Fall über
den Kontrakt in Anspruch nehmen. Die Kontrakte werden in C#
typischerweise durch Interfaces realisiert.

1 using cat.contracts;

2

3 namespace cat.cat

4 {

5 public class Cat : ICat

6 {

7 private readonly IUi ui;

8 private readonly ITextdatei textdatei;

9 private readonly IKommandozeile kommandozeile;

10

11 public Cat(IUi ui, ITextdatei textdatei, IKomma\

12 ndozeile kommandozeile) {

13 this.ui = ui;

14 this.textdatei = textdatei;

15 this.kommandozeile = kommandozeile;

16 }

Komponentenorientierung am Beispiel 32

17

18 public void Run() {

19 var dateinamen = kommandozeile.Dateinamen();

20 foreach (var dateiname in dateinamen) {

21 var zeilen = textdatei.Einlesen(dateina\

22 me);

23 ui.Ausgeben(zeilen);

24 }

25 }

26 }

27 }

Cat kann die benötigten Klassen nicht selbst instanzieren. Dazu
wäre eine Referenz auf die Implementation der Komponenten er-
forderlich. Das würde die Komponentenorientierung ad absurdum
führen. Aus diesem Grund werden die drei benötigten Kompo-
nenten dem Konstruktor von Cat als Parameter übergeben und
in Feldern der Klasse abgelegt. Dadurch hat die Methode Run

Zugriff auf die Komponenten und kann deren Methoden in der
erforderlichen Weise aufrufen.

Am Beispiel der Komponente Cat kannman klar erkennen, dass Cat
implementiert werden kann, ohne dass die drei anderen Kompo-
nenten bereits existieren. Lediglich die Kontrakte müssen vorliegen.
Auf dieseWeise wird eine Arbeitsorganisation im Team ermöglicht,
die ein gleichzeitiges Arbeiten an den Komponenten zulässt.

4.5.2 Die Komponente UI

Die Ausgabe von Strings auf der Konsole ist die Aufgabe der
Komponente UI. Ihre Methode Ausgeben erhält eine Aufzählung
von Strings als Parameter. Darüber iteriert die Methode in einer
Schleife und gibt jeden String mit Console.WriteLine auf die
Konsole aus.

Komponentenorientierung am Beispiel 33

Keine große Sache; möglicherweise entsteht daher der Wunsch,
diese Funktionalität im Hauptprogramm unterzubringen. Schließ-
lich erscheint der Overhead für das Erstellen der Komponente
relativ groß im Verhältnis zu den wenigen Zeilen Code, welche die
Funktionalität erbringen. Doch es ist ganz wichtig, hier nicht die
falschen Kriterien anzulegen. Die Anzahl der Codezeilen sollte kein
Kriterium sein für die Frage, ob es sich „lohnt“, eine weitere Kom-
ponente zu erstellen. Stattdessen sollte die Frage im Vordergrund
stehen, ob die Komponente dazu beiträgt, die Aspekte des Systems
zu trennen. Und das ist hier bei der Komponente UI definitiv
gegeben. Die Komponente UI isoliert den Aspekt der Ausgabe der
Daten. Dieser Aspekt kann sich getrennt von anderen Aspekten des
Systems verändern. Es könnte zum Beispiel der Wunsch entstehen,
das Systemmit einer grafischen Oberfläche auszustatten. In diesem
Fall wäre die Komponente UI zu ändern. Die anderen Komponenten
sollten nicht geändert werden müssen. Andernfalls wäre das ein
Hinweis darauf, dass die Aspekte nicht klar getrennt sind.

1 using System;

2 using System.Collections.Generic;

3 using cat.contracts;

4

5 namespace cat.ui

6 {

7 public class Ui : IUi

8 {

9 public void Ausgeben(IEnumerable<string> zeilen\

10) {

11 foreach (var zeile in zeilen) {

12 Console.WriteLine(zeile);

13 }

14 }

15 }

16 }

Komponentenorientierung am Beispiel 34

4.5.3 Die Komponente Kommandozeile

Das Programm erhält die Namen der auszugebenden Textdateien
als Parameter auf der Kommandozeile übergeben. Für den Zugriff
auf diese Parameter ist die Komponente Kommandozeile zuständig.
IhreMethode Dateinamen liefert die Kommandozeilenparameter als
Aufzählung von Strings.

Auch hier scheint die geringe Anzahl von Codezeilen dafür zu
sprechen, die benötigte Funktionalität im Hauptprogramm unter-
zubringen. Zumal die Methode Program.Main, die zur Laufzeit als
Einstiegspunkt in das Programm dient, die Kommandozeilenpara-
meter als Methodenparameter übergeben kriegt. Doch auch hier
geht es darum, die Aspekte zu trennen. Die Anforderungen könnten
sich beispielsweise so ändern, dass die Dateinamen nicht über die
Kommandozeile übergeben werden, sondern aus einer Steuerdatei
gelesen werden sollen. In diesem Fall wäre lediglich die Komponen-
te Kommandozeile von der Änderung betroffen. Das Trennen der
Aspekte ist somit gut für die Evolvierbarkeit des Systems.

1 using System;

2 using System.Collections.Generic;

3 using System.Linq;

4 using cat.contracts;

5

6 namespace cat.kommandozeile

7 {

8 public class Kommandozeile : IKommandozeile

9 {

10 public IEnumerable<string> Dateinamen() {

11 return Environment.GetCommandLineArgs().Ski\

12 p(1);

13 }

14 }

15 }

Komponentenorientierung am Beispiel 35

4.5.4 Die Komponente Textdatei

Das Lesen der Zeilen der Textdatei ist Aufgabe der Komponen-
te Textdatei. Sie verfügt über eine Methode Einlesen, die den
Dateinamen der einzulesenden Datei als Parameter erhält. Als
Ergebnis liefert die Methode den Inhalt der Datei als Aufzählung
von Strings.

1 using System.Collections.Generic;

2 using System.IO;

3 using cat.contracts;

4

5 namespace cat.textdatei

6 {

7 public class Textdatei : ITextdatei

8 {

9 public IEnumerable<string> Einlesen(string date\

10 iname) {

11 return File.ReadLines(dateiname);

12 }

13 }

14 }

4.6 Implementieren der App

Die Funktionalität des gesamten Systems ist nun auf die oben
beschriebenen Komponenten verteilt. Was nun noch fehlt, ist eine
App, die alle benötigten Komponenten referenziert und die benö-
tigten Klassen instanziert. Schließlich muss der Einstiegspunkt des
Systems, in diesem Fall die Methode Cat.Run, aufgerufen werden.

Das Visual Studio Projekt cat.application ist das einzige Projekt,
das Referenzen auf die Komponentenimplementationen erhält. Alle
anderen Projekte referenzieren lediglich die Kontrakte. Auf diese

Komponentenorientierung am Beispiel 36

Weise wird erreicht, dass die Komponenten in beliebiger Reihen-
folge und auch parallel entwickelt werden können. Die folgende
Abbildung zeigt die Referenzen des App Projekts.

Mit der Implementation der App kann logischerweise erst begonnen
werden, wenn alle Implementationen der Komponenten vorliegen.
Allerdings müssen die Komponenten dazu nicht vollständig imple-
mentiert sein, sondern es genügt, die Visual Studio Projekte auf-
zusetzen. Die Implementationen der einzelnen Methoden können
zunächst leer gelassen werden. Im Ergebnis kann dann mit der
Arbeit an der App begonnen werden, da das App Projekt dann
bereits alle benötigten Komponenten referenzieren kann.

Komponentenorientierung am Beispiel 37

1 using cat.cat;

2 using cat.kommandozeile;

3 using cat.textdatei;

4 using cat.ui;

5

6 namespace cat.application

7 {

8 internal class Program

9 {

10 private static void Main() {

11 var ui = new Ui();

12 var kommandozeile = new Kommandozeile();

13 var textdatei = new Textdatei();

14

15 var cat = new Cat(ui, textdatei, kommandoze\

16 ile);

17

18 cat.Run();

19 }

20 }

21 }

Die App der Anwendung Cat instanziert zunächst die drei Klas-
sen der Komponenten UI, Kommandozeile und Textdatei. An-
schließend kann die Klasse Cat instanziert werden. Ihr werden
im Konstruktor die drei anderen Instanzen der Klassen übergeben.
Zum Abschluss ist nichts weiter zu tun, als mit cat.Run die An-
wendung zu starten.

	Inhaltsverzeichnis
	Einleitung
	Danksagungen
	Zum Aufbau des Buchs

	Herausforderung Arbeitsorganisation
	Feature Developer vs. Feature Team
	Typische Herausforderungen
	Wildwuchs von Abhängigkeiten, ungeplante Abhängigkeiten
	Keine Übersicht über die Abhängigkeiten
	Konflikte bei der Quellcodeorganisation
	Zu breiter Scope, zu geringer Fokus

	Arten von Abhängigkeiten
	Variante 1: X1, X2, X3 sind von A abhängig
	Variante 2: X ist von A1, A2, A3 abhängig

	Verwendete Notation
	Funktionseinheiten
	Portal
	Provider
	Logik

	Abhängigkeiten
	Datenflüsse

	Komponentenorientierung am Beispiel
	Anforderungen
	Entwurf
	Zerlegung in Komponenten
	Erstellen der Kontrakte
	Der Kontrakt ICat
	Der Kontrakt IUi
	Der Kontrakt IKommandozeile
	Der Kontrakt ITextdatei

	Implementieren der Komponenten
	Die Komponente Cat
	Die Komponente UI
	Die Komponente Kommandozeile
	Die Komponente Textdatei

	Implementieren der App

