BUILD POWFERFUL WEB APPLICATIONS QUICKLY!

Practical
Keystone.js

Node.js, Express & MongoDB

A

Manikanta Panata

Practical Keystone.js

A Hands On Introduction To Keystone.js Using a
Real-World Project

Manikanta Panati
This book is for sale at http://leanpub.com/keystonejs

This version was published on 2016-02-28

)

Leanpub

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and
many iterations to get reader feedback, pivot until you have the right book and build traction once

you do.

© 2016 Manikanta Panati

http://leanpub.com/keystonejs
http://leanpub.com
http://leanpub.com/manifesto

Tweet This Book!

Please help Manikanta Panati by spreading the word about this book on Twitter!
The suggested hashtag for this book is #keystonejs.

Find out what other people are saying about the book by clicking on this link to search for this
hashtag on Twitter:

https://twitter.com/search?q=#keystonejs

http://twitter.com
https://twitter.com/search?q=%23keystonejs
https://twitter.com/search?q=%23keystonejs

This book is dedicated to my Dad, Mom, Gundi, Gundma & My Love!

Contents

Introduction 1
What are web frameworks? o Lo
The Model-View-Template design pattern
Introducing the IncTicket Project 2
Errata and Suggestions 2

Chapter 1. Meet Keystone.js 3
Why use Keystone.js 3
What is Keystone.js Best for? L 4
Keystone.js Versions e 4
Installing MongoDB and Node.js 4
How toinstall Node.js 6
Useful Development and Debugging Tools. 8
Summary 14

Chapter 2. Building the IncTicket Application 15
Installing Keystone.js e 15
Creating a new Keystone.js Application, 16
Configuring Your Keystone.js Application 18
Project Structure 19
Creating Your First Model/List, 21
Creating an administration site for yourmodels 23
Creating Your First Route 31
Creating Your First View L e 34
Creating templates for your views L o o 37
Adding pagination L 42

Summary e 45

Introduction

Keystone.js is an open source Node.js based CMS and web application framework created by Jed
Watson in 2013. The framework makes it very easy to build database-driven websites, applications
& APIs and is built upon Express, the defacto web server for Node.js and uses Mongo DB as its storage
backend. Mongo DB is a very popular and powerful document store that is capable of storing data
without it being structured in a schema.

Keystone.js philosophy

Keystone is designed to make complicated things simple, without limiting the power or flexibility
of node.js or the frameworks it is built on.

What are web frameworks?

A web framework aims to assist a developer in delivering web applications quicker and easily.
The term framework is relatively loosely defined and can include anything from a collection of
components to a complete abstraction of workflow in an application. A framework typically provides
a certain style and/or a certain structure that assists the developer and this structure is generally
based on specific design patterns. Some of the well-known web frameworks include Ruby on Rails,
Laravel, Django and Symfony. Ruby on Rails follows the popular MVC (Model-View-Controller)
design pattern where as Django and Keystone.js follow the MVT (Model-View-Template) design
pattern. Both the MVC and MVT design patterns allow for the logical separation of code and are
very similar conceptually. Web frameworks encourage loose coupling and strict separation between
pieces of application.

The Model-View-Template design pattern

Keystone.js is based on a design pattern called Model-View-Template. A good understanding of this
concept is the basis for working with Keystone.js. Web application architecture generally comprises
of three pieces that work together - data access logic, business logic, and presentation logic. A
good framework will aim for the logical separation of these pieces in an application into distinct
subsystems so as to allow for high degree of re-usability of components. Here’s roughly how the M,
V, and T break down in Keystone.js:

M stands for “Model,” which represents the data access layer. Models typically contain definition of
the data and methods to interact with data like how to access it, how to validate it, which behaviors
it has, and the relationships between the data.

Introduction 2

V stands for “View,” which represents the business logic layer. Views contain the logic that access
the model, performs any calculations and defers the results to the appropriate template(s). View is
like a bridge between models and templates.

T stands for “Template,” which represents the presentation layer. Templates handle presentation-
related decisions: how something should be displayed on a Web page or other type of document.

If you’re familiar with other MVC Web-development frameworks, such as Laravel, you may consider
Keystone.js views to be the “controllers” and Keystone.js templates to be the “views”. In Keystone.js,
the “view” describes the data that gets presented to the user; it’s not necessarily just how the data
looks, but which data is presented. In contrast, Laravel and similar frameworks suggest that the
controller’s job includes deciding which data gets presented to the user, whereas the view is strictly
how the data looks, not which data is presented.

Both MVC and MVT are very similar and interpretation of these concepts varies slightly from
framework to framework and no one is more “correct” than the other. It is good to get a proper
understanding of the underlying concepts.

Introducing the IncTicket Project

The best way to learn about a new technology is to be able to visualize the various capabilities of the
technology in terms of using them in the implementation of a real world project. Throughout this
book, I will introduce Keystone.js features and syntax in conjunction with developing IncTicket, a
web based application that allows for the creation and management of incident tickets.

IncTicket will enable users to create tickets, assign statuses, set priorities, categories, and assign tikets
to users. Other users can then interact with the tickets, updating their state and more.

Errata and Suggestions

“Have no fear of perfection - you’ll never reach it”, said Salvador Dali. When it comes to writing
about the latest technology, I could’nt agree more!. I might have made mistakes in both code and
grammar, and probably completely misconstrued a few pieces of this text. If you would like to report
an error, ask a question or offer a suggestion, please reach me on twitter @jangreejelabi.

Chapter 1. Meet Keystone.js

This chapter will introduce Keystone.js along with its merits. We will cover how to install MongoDB
and Node.js that are needed create the IncTicket application using Keystone.js and run it.

This chapter will cover the following points:

Introduction to Keystone.js

Installing MongoDB

Installing Node.js

Useful development and debugging tools

Why use Keystone.js

Before we begin installing and using Keystone.js, we will first look at why we use Keystone.js
framework over other frameworks available online. Simply put, Keystone.js provides a standardized
set of components that allow for fast and easy development of web applications that can be quickly
developed, maintained and extended.

Keystone.js has a number of key features that makes it worth using including:

Modularity - Keystone will configure express - the de facto web server for node.js - for you
and connect to your MongoDB database using Mongoose, the leading ODM package.
Auto-generated Admin UI - Whether you use it while you’re building out your application,
or in production as a database content management system, Keystone’s Admin UI will save
you time and make managing your data easy.

Session Management - Keystone comes ready out of the box with session management and
authentication features, including automatic encryption for password fields.

Email Sending - Keystone makes it easy to set up, preview and send template-based emails
for your application. It also integrates with Mandrill.

Form Processing - Want to validate a form, upload an image, and update your database with
a single line? Keystone can do that, based on the data models you’ve already defined.
Database Fields - IDs, Strings, Booleans, Dates and Numbers are the building blocks of
your database. Keystone builds on these with useful, real-world field types like name, email,
password, address, image and relationship fields.

1

Chapter 1. Meet Keystone.js 4

What is Keystone.js Best for?

Keystone.js is a generic content management framework, meaning that it can be used for developing
a variety of web applications using Javascript. Because of its modular architecture and clean
separation of various functionality, it is especially suitable for developing large-scale applications
such as portals, forums, content management systems (CMS), e-commerce projects, RESTful Web
services, and so on.

Keystone.js Versions

Keystone.js currently has two major versions available: 0.3.x and 0.4. At the time of writing this
book, Version 0.3.x is the current generation of the framework and is in active development mode.
Version 0.4 is work in progress, adopting the latest technologies and protocols, including Mongoose
4, elemental UI and core changes.

Installing MongoDB and Node.js

Let’s start by looking at the process of installing MongoDB on a windows workstation. MongoDB is
an open source, document-oriented database that is designed to be both scalable and easy to work
with. MongoDB stores data in JSON-like documents with dynamic schema instead of storing data
in tables and rows like a relational database, for example MySQL.

Let’s install MongoDB database in a standalone mode. This is the quickest way to start a MongoDB
server for the purpose of development.

How to install MongoDB

+ Navigate to the downloads page on the MongoDB official website, http://www.mongodb.org/
downloads.

« Click on the download link for the latest stable release Zip Archive under Windows 32-bit or
64-bit depending on your machine architecture.

Find the architecture of your machine by typing in the following command into the command
prompt:

wmic os get osarchitecture

The output will be similar to:

http://www.mongodb.org/downloads
http://www.mongodb.org/downloads

Chapter 1. Meet Keystone.js 5

1 OSArchiecture
2 64-bit

+ Once the download completes, move the ZIP archive to the C:\ drive and extract it.

 Rename the extracted folder (mongodb-win32-xxx-a.b.c where a.b.c is the version number) to
mongodb.

+ Create the default database path (c:\data\db). This is the location where the database files used
by mongodb will reside.

1 c¢:\’mkdir data\db

+ To start the mongodb database, Open a CMD prompt window, and enter the following
commands:

1 ¢:\> cd mongodb\bin
2 c¢:\mongodb\bin>mongod

|
O
X

B¥ C:\Windows\System32\cmd.exe - mongod

32-bit s don't have journaling enabled by default. Please

[initandlisten] MongoDB ar I p port=2 dbpath
[initandlisten] ** NOTE: is a bit MongoDB binary running on

it build of M

of data (or

bit and is

bhd
minor=1, buil

Start MongoDB

If you find the console log indicating [initandlisten] waiting for connections on port 27017, then
the MongoDB server has started up correctly and is ready to accept connections from client.

Chapter 1. Meet Keystone.js 6

How to install Node.js

Next, we will look at the process of installing Node.js on a windows workstation. Node.js is an open-
source, cross-platform runtime environment for developing web applications. Node.js applications
are written in JavaScript and can be run within the Node.js runtime on OS X, Microsoft Windows,
Linux and a variety of other operating systems.

« Navigate to the downloads page on the Node.js official website, https://nodejs.org/en/download/.
+ Click on the download link for the latest stable release .MSI under Windows 32-bit or 64-bit
depending on your machine architecture.

Find the architecture of your machine by typing in the following command into the command
prompt:

1 wmic os get osarchitecture
The output will be similar to:

1 OSArchiecture
2 64-bit

+ Once the download is complete, double-click on the .msi file, which will launch the Node
installer.
+ Proceed through each step of the installation wizard.

4 Modejs Setup - ¥

Welcome to the Node.js Setup Wizard

n d c The Setup Wizard will install Node. js on your computer.

Back Cancel

Node.js Installer

https://nodejs.org/en/download/

O = W N =

Chapter 1. Meet Keystone.js 7

« At the custom setup screen during the installation, make sure that the wizard installs NPM
(Node Package Manager) and configures the PATH environment variable along with installing
the Node.js runtime. This should be enabled by default for all install.

ﬁ! Mode,js Setup — *
Custom Setup
Select the way you want features to be installed. n d ¢

Click the icons in the tree below to change the way features will be installed.

Install the core Mode.js runtime
(node.exe).

npm package manager
Online documentation shortcuts
Add to PATH

This feature requires 12MEB on your
hard drive. Ithas 2 of 2
subfeatures selected. The
subfeatures require 16KE on your
hard drive.

Browse...

Reset Disk Usage Back Cancel

Node.js Installer
Once these steps have been completed, both Node and npm should be installed on your system.

Testing whether Node.js is installed properly

After going through the Node.js installation wizard, let’s run a quick test to ensure everything is
working properly.

Run the following commands on a new command prompt window. You might need to open a new
instance of command prompt for the PATH variable changes to take effect.

c:\> node --version
v4.2.2

c:\> npm --version
2.14.7

If the Node installation was successful, you will see the version number that was installed as an
output on the screen as a response to running the above commands.

Chapter 1. Meet Keystone.js 8

Useful Development and Debugging Tools.

I would like to introduce a couple of useful tools that make it really easy for us to develop Node.js
and MongoDB based web applications. The first is Visual Studio Code, a code editor that offers
excellent Node.js development and debugging support. It is free and available on multiple platforms -
Linux, Mac OSX, and Windows. Visual Studio Code can be used for building and debugging modern
web and cloud applications and includes great built-in support for C#, and Node.js development
with TypeScript and JavaScript. It includes tooling for web technologies such as HTML, CSS,
Less, Sass, and JSON. Code also integrates with package managers and repositories, and builds
and other common tasks to make everyday workflows faster. Dowload Visual Studio Code from
https://code.visualstudio.com/*.

We can open up any folder on our filesystem using Visual Studio Code and get to editing files
directly. Let us explore the GUI to get a better understanding of the various features.

'https://code.visualstudio.com/

https://code.visualstudio.com/
https://code.visualstudio.com/

Chapter 1. Meet Keystone.js 9

>4 keystonejs - incticket - Visual Studio Code - - O X
File Edit View Goto Hel

lj\l EX] R keystone.js

4 WORKING FILES

require(’ /").load();

keystone = require(
swig = require(

: io._ s F- s({ -
4 INCTICKET swig.setDefaults({ cache:

(3%
B
+ node_modules

b public

b+ routes keystone.init({

» updates

rconfig

.gitattributes

.gitignore
Jshintrc

gulpfilejs =": swig.renderFile,
keysto

gejson

Ln99,Col 19 UTF-8 LF JavaScript @

Visual Studio Code

The left pane has two sections; the first one has icons for the file explorer, file search, git integration
and for debugging. The screenshot shows the explorer pane open. Visual Studio Code lists the files
that are currently being worked upon in the working files section. Below the working files section
is the list of files in the current directory that can be opened up for editing. The main area of the
editor shows the file being edited and allows for multiple files to be opened at a time. The editor
also has a split view allowing us to look at two files side by side.

Debugging in Visual Studio Code is very easy. To start off, we need to define a launch configuration
that can tell the editor about the starting point to our app and other configuration data. Below is the
configuration setting we can use to debug Keystone.js

O N O O & W N~

W W W W WNDNDDNDDDDNDNDDNDDNDNDDNDSS A 2~ B2 2 2 2
B O NP2 OO O 00 N0 0k WA O© N0 O N~ ©

Chapter 1. Meet Keystone.js

10

||@-2-®u/

"name": "Launch",
"type": "node",
"request": "launch",
"program": "${workspaceRoot}/keystone. js",
"stopOnEntry": false,
"args": [],
"ewd": "${workspaceRoot}",
"runtimeExecutable": null,
"runtimeArgs": [
"--nolazy"

] 7

"env'": {

"NODE_ENV": "development”
3,
"externalConsole": false,
"sourceMaps": false,

"outDir": null

"name": "Attach",

"type": "node",

"request": "attach",

"port": 5858,

"sourceMaps": false,

"outDir": null,

"localRoot": "${workspaceRoot}",
"remoteRoot": null

{
"version":
"configurations": [
{
}/
{
}
]
}

Set the configuration information by clicking on the debug icon on the left pane and then click the
gear icon on the top bar. Once the configuration information is set, hit F5 to launch the application

in debug mode.

Chapter 1. Meet Keystone.js 11

> newticket,js - incticket - Visual Studio Code — O *
File Edit View Goto Hel
Launch o =

4 VARIABLES eystone = require(’k
4 Local Ticket = keystone.list(
4 1 =: undefined

IncomingM

exports = module.exports = (reg, res) {
Ce rer = =
Serverh: view = keystone.View(req, res),
s: #<Object> locals = res.locals;

® 4 WATCH

locals.form = req.body;

{

view.on(init’, (next) {
q = keystone.list('User').model.find().select('_id us

q.exec((err, results) {
4 CALL STACK locals.data.users = results;

Paused on breakpoint. next(err);

h:

module.exports
handle
b
requireUser
handle yerjs view.on(s (next) {
next
next
= = -618 ms
next
next 05 signin 2808 276.668 ms
S ms
691.394 ms

next

nawvt rrurta ic
BREAKPOINTS

ST /signin
. GET /mytickets 484
LBl s R GET / 200 132.241 ms
newticki 6 ews\t

xceptions

Debugging with Visual Studio Code

As shown above, we can set breakpoints in code, add variables to watch and inspect the call stack.
At the bottom of the editor is the node console where we can see any console interactions like
console.log in our application. The node console also allows us to inspect variables inline.

Get more information on in-depth features of Visual Studio Code at https://code.visualstudio.com/docs?.

The next tool is Robomongo. Robomongo is a desktop application that allows us to manage
MongoDB databases. Robomongo runs on Mac OS X, Windows, and Linux and is free!. It allows
you to create new databases and view collections and to run queries. It has all the features that the
native MongoDB shell provides such as multiple connections, multiple results, and autocompletion.
Download and install Robomongo from http://robomongo.org’.

If you have MongoDB running locally, we can create a new connection as shown below:

®https://code.visualstudio.com/docs
*http://robomongo.org

https://code.visualstudio.com/docs
http://robomongo.org
https://code.visualstudio.com/docs
http://robomongo.org

Chapter 1. Meet Keystone.js

12

°

)
4

=

Create, edit, £

& Hey! This version could be the last release of Robomongo, a few days remain to change it

— Bl Connection Settings X
0

Connection Authentication Advanced

Name

Name: [Localhosf]

Choose any connection name that will help you to identify
this connection.

Address: [localhost | : [27017]

Specify host and port of MongoD8 server. Host can be
either 1P or domain name.

Logs

[E connect Cancel

Connect to MongoDB using Robomongo

After connecting to the instance, we can browse all the collections using the sidebar.

Chapter 1. Meet Keystone.js 13

& Robomongo 0.9.0-RC4

File View Options Window Help

Q'j' b ol

v [H Localhost (2)
System
v [incticket
v Collections (7)
System
app_sessions
app_updates
tags
tickets
userprofiles
users
Functions
Users

Browse MongoDB collections

We can issue queries against our MongoDB and collections using the query bar and visually inspect
the returned documents.

Chapter 1. Meet Keystone.js 14

& Robomongo 0.9.0-RC4 - - [} Pe
File View Options Window Help
@ M D - 0’ Hey! This version could be the last release of Robomongo, a few days remain to change it.

v @ Localhost (2)

System
v B incticket Localhost (=] localhost:27017 incticket

db.getCollection('tickats')....

v Collections (7)

System
LS tickets (U 0 sec.
app_updates Key Value Type
tags ~ &3 (1) Objectld("56d3191f79d4d0242bb74d8b") {13 fields }
tickets L id Objectld("56d3191f79d4d0242bb74d8b")
userprofiles = slug nested-scrollbars-messing-up-the-ui
users I assignedTo Objectld("56d318ec79d4d0242bb74d88")
Functions. LI createdBy Objectld("56d3190779d4d0242bb74d8a")
Users [description nested scrollbars need to be removed

@ tags [0 elements]

7 updatedAt 2016-02-28 15:58:23.5647
createdAt 2016-02-28 15:58:23.5647

7 status New

category Bug

priority Low

nested scrollbars messing up the Ul
0

Logs

Query MongoDB collections

Summary

We have reached the end of the second chapter and we’ve covered the necessary requirements to
begin building the IncTicket application. Onwards!

Chapter 2. Building the IncTicket
Application

This chapter will cover how to create the IncTicket application using Keystone.js. At the end of this
chapter you should have a general idea of how the framework works, understand how the different
pieces interact with each other, and give you an understanding on how to easily create Keystone.js
projects with basic functionality. This chapter will get you up and running with a project without
too many details to begin with.

This chapter will cover the following points:

Installing Keystone.js and creating your first project
Designing models and understanding Mongo collections

Keystone.js Administration site for your models

Working with Mongoose.js
Building views, routes and templates

Adding pagination to lists

Installing Keystone.js

This section will walk you through installing Keystone.js on a windows machine. The installation
process does not differ much from OS to OS as most of the dependent components are cross platform
compatible. Since Keystone.js is written in JavaScript, the installation is pretty simple.

Prerequisites

To setup Keystone.js, you are going to need a few prerequisites. These are:

« Node.js

« Yeoman

« NPM
Mongo DB

15

Chapter 2. Building the IncTicket Application 16

We already saw how to install Node.js, NPM and MongoDB in the previous chapter.

Keystone.js uses Node.js as the platform and uses Mongo DB as the storage backend. NPM is
the Node Package Manager which enables easy management of Node.js packages from online
repositories. It simplifies dependency management so that developers no longer have to manually
download and manage scripts. NPM comes preinstalled with a Node.js installation generally.

The easiest way of installing Keystone.js by using Yeoman, a helpful installer that will guide step
by step through the process of installing Keystone.js. Yeoman is a set of tools for automating
development workflow. It scaffolds out a new application along with writing build configuration,
pulling in build tasks and NPM dependencies needed for the build. Keystone.js provides a very handy
generator to generate a new project.

First, let’s start by installing yo.

c:\> npm install -g yo

Next, to install the yo keystone app generator, use the following command
c:\> npm install -g generator-keystone

This installs the generator as a global package and can be used to generate new projects without
needing to reinstall the Keystone.js generator.

Creating a new Keystone.js Application

With yo installed, its time to get down to business! We will start off creating the Locally application,
since it will be used to understand much of the instructional material in this book. Setting up a new
Keystone.js application is pretty trivial, thanks to the handy yo keystone application generator. Let’s
start off by creating a directory to save our project.

c:\> mkdir incticket
and change into that directory.
c:\> cd incticket

Now we can use the ‘yo’ command from Yeoman to generate the project. The generator will guide
you through setting up the project with a few questions and then build the project by installing
dependencies from npm. Most of the defaults will suffice for the creation of a project. All the settings
can be later changed within the new application.

1

1

Chapter 2. Building the IncTicket Application

c:\incticket> yo keystone

B yo

C:\>cd incticket

C:\incticket>yo keystone

Welcome to Keystonels.

What is the name of your project? (My Site) IncTicket
What is the name of your project?

Would you like

to use Jade, Swig, Nunjucks or Handlebars for templates?

Which CSS pre-processor would you like?

Would you like
Would you like
Would you like
What would you
Enter an email
Enter a password for the first Admin user:

Would you like
Would you like

KeystonelS integrates with Mandrill (from Mailchimp) for email sending.
Would you like to include Email configuration in your project? (Y/n) Y

to include a Blog?

to include an Image Gallery?

to include a Contact Form?

like to call the User model?
address for the first Admin user:

to include gulp or grunt?
to create a new directory for your project?

Create project using yo

17

The new project will connect to Mongo DB on local host by default. So if you have Mongo DB up
and running, we can serve up Keystone.js using the following command

c:\incticket> node keystone

The above command will serve up your project on port 3000. If you navigate to http://localhost:3000,
you should see the Keystone.js landing page.

Chapter 2. Building the IncTicket Application 18

3 Loclly x
L C' | [} localhost:3000

bt
n

Locally Home Sign In

m KeystoneJS

Welcome

This is your new KeystoneJS website.
It includes the latest versions of Bootstrap and jQuery.

Visit the Getting Started guide to learn how to customise it.

We have created a default Admin user for you with the email user@keystonejs.com
and the password admin.

m to use the Admin UI.

Remember to Star KeystoneJS on GitHub and follow @keystonejs on twitter for

LinAdatas s

Keystone.js Default Landing Page

Configuring Your Keystone.js Application

A typical web application goes through a number of deployments in its lifetime: a production push,
a staging site, and multiple instances in dev environments maintained by each developer. Although
each of those deployments might run the same code, each of these deploys will have environment-
specific configurations. The most common example would be database connection settings, such as
MongoDB connection url. Developers may share one instance of a development database, while the
staging site and production sites each have their own MongoDB instances. Another example would
be to use a different cache driver locally than you do on your production server.

A good solution to maintain separate application specific configuration is to use environment
variables, and keep the config data out of the code. We get a couple of advantages by using
environment variables for saving configuration data:

« The configuration data can be easily changed between environments and even isolated
deploys. This leads to less complex deploys which saves time and money.

Chapter 2. Building the IncTicket Application 19

« There is a decreased chance of the production data leaking out into the wrong hands which
reduces the chances that your database might accidentally be wiped.

Keystone.js uses an excellent node.js library, namely dotenv, to load the configuration data at
runtime. In a fresh Keystone.js installation, the root directory of your application will contain a
.env file. This file can be used to hold all our configuration data. All of the variables listed in this
tile will be loaded into the process.env global object when your application receives a request. It is
recommended you do not commit this file to version control.

Each of the variables in the .env is declared as a key value pair separated by an equals sign. Keys
are generally written in upper case. A fresh Keystone.js install .env file would be:

COOKIE_SECRET=0QQ*s0@pz5(bF4gpmoNwM | BDB~db+qwQ K> Ik~*R2D; ;F(8u["15<.=&Q9w+U1$E=
MANDRILL_API_KEY=NY8RRKyv1Bure9bdP8-TOQ

To access the configuration variables in our application, we can use them as:

var madrillApiKey = process.env.MANDRILL_API_KEY;

App in Production

To put a Keystone.js app into production mode, set the NODE_ENV=production key in the .env
file. Setting this enables certain features, including template caching, simpler error reporting and
html minification.

By default, Keystone.js tries to connect to a local instance of MongoDB and uses no authentication.
However, if you want to specify a MongoDB connection string, it is pretty easy to do so using the
.env file.

MONGO_URI=mongodb: //user :password@localhost:27017/databasename

Project Structure

Let us take a look at the new directory structure to better understand the different parts that make
up a Keystone.js project. Below is the default directory structure of a Keystone.js project:

Chapter 2. Building the IncTicket Application 20

--1ib
--models
--public

--routes
--api

--index.js
--middleware.js

--templates
--includes

--layouts

--mixins

--updates
--package.json

--keystone.js
Keystone.js Project Structure

The lib directory holds any additional libraries that could be needed by our project.

The models folder holds the data models that our project would need. Example model is a
User model that deals with user login and user preferences.

The public directory holds static content, related to the web application, such as images, CSS,
fonts, Javascript. The LESS processor included within the framework will make sure that LESS
files associated with the web application is compiled to CSS files during runtime.

The routes directory contains index.js, middleware.js, and API & views directories.

The index.js file initializes the application routes and associated views. Developers define
various routes that respond to HTTP GET, POST & other HTTP verbs. Each route consists
of an http protocol, a URL pattern and a view that can be invoked as a response or an inline
function.

Middleware.js contains custom code that can be invoked before and after a route has been
invoked. This gives the user a powerful option to do custom operations and checks related to
authorization, authentication, logging etc.

O 00 9 O O b W N =~

(AN
N =~ O

Chapter 2. Building the IncTicket Application 21

The APIs directory holds controllers that allow for REST interfaces to be exposed that allow
clients written in different languages to uniformly interact with our web application. To
understand the APIs better, take a look at the Restful API for Mobile and SPA applications
chapter.

The views directory contains our application views that respond to various routes. Each view
may interact with multiple models to fetch data related to a request and render a template
with the data.

The templates directory include html templates that will be rendered per request to a route.
The templates are generally composed during runtime by the inclusion of a master layout and
various blocks of the page included via separate partial files. The data that the view queries
with the help of models is combined with templates by a templating engine and converted to
plain HTML for the browser to render. Keystone.js supports various templating engines, each
having its own syntax. We will look at Swig, a node.js templating engine in a future chapter.
The layouts directory will generally contain the master page that defines various blocks of
the page where data can be injected before rendering. Each block has an identifying name.
When partial templates are included with the master page, the identifying name is used by
the templating engine to render the HTML appropriately. Pages can extend the master page
to inherit the layout for a consistent appearance throughout the application.

Creating Your First Model/List

Let us begin by creating our first Keystone.js model, also known as List 4€“ the Ticket model,
which will be used in the application to manage a list of incident tickets for a product. The term
model and list will be used interchangibly within the book. A model is a Javascript object that is
an instance of the Keystone.List object, in which each attribute represents a field. Keystone.js will
create a MongoDB collection for each model defined in the models folder. When you create a model,
Keystone offers you a practical API to query the database easily using Mongoose.js.

To begin, create a file named Ticket.js in the models directory with following code:

var keystone = require('keystone');

var Types = keystone.Field.Types;;

var Ticket = new keystone.List('Ticket', {

1)

autokey: { from: 'title', path: 'slug', unique: true },

Ticket.add({

title: { type: String, initial: true, default: '',6 required: true },
description: { type: Types.Textarea },
priority: { type: Types.Select, options: 'Low, Medium, High', default: '\

Low' },

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

Chapter 2. Building the IncTicket Application

category: { type: Types.Select, options: 'Bug, Feature, Enhancement', de\
fault: 'Bug' },

status: { type: Types.Select, options: 'New, In Progress, Open, On Hold,\
Declined, Closed', default: 'New' },

createdBy: { type: Types.Relationship, ref: 'User', index: true, many: f\
alse 1},

assignedTo: { type: Types.Relationship, ref: 'User', index: true, many: \
false },

createdAt: { type: Datetime, default: Date.now },

updatedAt: { type: Datetime, default: Date.now }

1
Ticket.defaultSort = '-createdAt';

Ticket.register();

22

We begin by requiring the Keystone library so we can use it. A keystone.js list allows us to define

the attributes for the model that we intend to work with. The first parameter is a key that is used
to identify collections uniquely in your MongoDB database. All documents related to the Ticket list

will be saved in a collection within MongoDB named as tickets.

The call to register on our keystone.js list finalizes the model with any attributes and options we set.

Let’s take a look at some of the fields we defined for our model:

title: This is the field for the ticket title. The field can hold a string describing the purpose
for the ticket. The default option can be used to specify any default value for the field if the
user does not input a value. The required option is useful to validate that the field has a value
before it is saved. A database index is also used to enforce this.

slug: The slug is used for SEO friendly URLs. The field is defined as part of the List options
using the autokey plugin. Autokey automatically generates a key for each model when it is
saved, based on the value of another field. The value of the key is accessible via the ‘slug’ field
on the object. In this case, we create a slug for each ticket from the title. The unique option
indicates that we expect the key to be unique throughout the collection. If we create a ticket
with the title set to ‘My First Ticket’ then the automatically generated slug would be similar
to ‘my-first-ticket’.

description: This is the field to will be used to store the description of the ticket. The Textarea
field type will display a text area within the admin UI.

priority: This is a field to the priority of the ticket. We use a select field type, so the value for
this field can be set to one of the given choices. The category & status fields are set up in a
similar manner.

createdBy: This field will hold a reference to the user that created a ticket. The field is like
a foreign key that defines many to one relationships in a relational database. This field is

Chapter 2. Building the IncTicket Application 23

displayed as an auto-suggest text box in the admin UI that allows us to pick a single user.
Setting the many option to false indicates that only a single user can be selected. Setting
the index option to true will tell keystone.js that we are interested in a database index to be
created for this field. The assignedTo field is a similar relationship field that is used to store
a reference to the user that the ticket is currently assigned to. This is the user that will be
incharge of resolving the issue mentioned in the ticket.

« createdAt: This datetime field indicates when the ticket was created by the user. Since we
are using the default value of Date.now, the date will be saved automatically when creating a
new ticket object.

As you can see, Keystone.js comes with different types of fields that you can use to define your
models. You can find all field types at http://keystonejs.com/docs/database/#fieldtypes*

By setting the defaultSort property on the model, We are telling keystone.js to sort results by the
createdAt field in descending order by default when we query the database. We specify descending
order by using the negative prefix.

After saving our model, let us restart our application. Use the below command to restart the
application via command line

node keystone. js

Restarting will cause keystone.js to create collections for our models. In our case, we should see the
tickets collection in MongoDB.

Creating an administration site for your models

Now that we have defined the Ticket model, let us see how to create an administration site to
manage tickets. Keystone.js comes with a built-in administration interface that is very useful for
editing content. The Keystone.js admin site is built dynamically by reading them model metadata
and providing a production-ready interface for editing content. You can use it out-of-the-box,
configuring how you want your models to be displayed in it.

Creating an admin user

To begin with, we would need a user to manage the admin site. Keystone.js includes code for the
creation of a admin user by default when the app is started for the first time. The user is created
using the updates framework provided by Keystone.js. Updates provide an easy way to seed your
database, transition data when your models change, or run transformation scripts against your
database.

The default admin is created with the below code that is stored at /updates/@.9.1-admins. js with
the following credentials:

“http://keystonejs.com/docs/database/#fieldtypes

http://keystonejs.com/docs/database/#fieldtypes
http://keystonejs.com/docs/database/#fieldtypes

Chapter 2. Building the IncTicket Application 24

« email - user@keystonejs.com
+ password - admin

exports.create = {
User: [
{ 'name.first': 'Admin', 'name.last': 'User', email: 'user@keystonejs.com',
password: 'admin', isAdmin: true }

};

This script automatically creates a default Admin user when an empty database is used for the first
time. Updates are run when the app is restarted using node keystone. js command. An update is not
applied twice, hence editing the file after starting keystone.js atleast once will not result in changes
to admin credentials. We will, however, be able to change the credentials through the admin site.

BEX Command Prompt - node keystone,js h - O X

C:\incticket>node keystone.js
{ [Error: Cannot find module

IncTicket: Successfully applied update ©.0.1-admins.

Successfully created:

KeystonelS Started:
IncTicket is ready on port 3000

The Keystone.js administration site

Start up our app using thenode keystone. js command and open http://127.0.0.1:3000/keystone/signin
in your browser. You should see the administration login page shown below.

Chapter 2. Building the IncTicket Application 25

Email

Password

KeystonelS

Powered by KeystoneJS

Log in using the credentials of the user created in the previous step. You will see the admin site index
page, as shown in the following screenshot:

+ IncTicket Users Sign Out

Manage

Users

OTHER

Tickets

IncTicket Powered by KeystoneJS version 0.3.16. Signed in as Admin User.

The user model seen on the page is automatically created for us by Keystone.js. If you click on Users
you will see the admin user created for us. You can edit the admin user’s email address and password
to suit your needs and use the new credentials to login to the application next time.

Modifying the admin menu

The menu items in the administration site can be easily configured in the /keystone. js file. The
menu items are stored an object in the configuration with ‘nav’ set to be the key. As evident in the

O Ol B W N~

O b W N =

Chapter 2. Building the IncTicket Application 26

screenshot above, Keystone.js classifies any new collections under the ‘OTHER’ header by default.
Let’s add the tickets menu item to the menu.

// Configure the navigation bar in Keystone's Admin UI

keystone.set('nav', {
'users': 'users',
'manageTickets': 'tickets'

});

The first parameter to the nav configuration item is label of the menu item. The second is the
collection. After making the above changes, restart the application and the new menu should reflect
as below:

IncTicket Users Manage Tickets Sign Out

Adding models to the administration site

When all the fields and options have been set on our model, a call to Ticket.register () will register
the list with Keystone and finalise its configuration.

var keystone = require('keystone');
var Ticket = new keystone.List(...);

Ticket.register();

When you register a model in Keystone.js, you get a user-friendly interface generated by inspecting
the models that allows you to list, edit, create, and delete objects in an intuitive way.

Click on the Tickets link and then click on the ‘Create Ticket’ link to add a new ticket. You will see
the create item form popup that Keystone.js has generated dynamically for the model, as shown in
the following screenshot:

Chapter 2. Building the IncTicket Application 27

Create a new Ticket

Title

The title field is shown with a text input field in this form as per our definition in the model. The
title field was marked with initial: true. This causes the field to be shown in the create item form, in
the Admin UL Let us create a ticket with title ‘My first ticket’. After creation, Keystone.js creates a
document in the MongoDB tickets collection and returns the object id. The Object id is a 24 character
unique identifier that can be used to identify a document across all collections.

« IncTicket uUsers Sign Out

New Ticket 56998672baf779fc31218dcd created.

Q - e Tickets key- my-first-ticket - + New Ticket
56998872baf779fc31218dc4
Title My first ticket
Description

Py
Priority Low % -
Category Bug % -
Status New x v
Created By -
Assigned To O~
Created At 2016-01-15 7:01:54 pm Now
Updated At 2016-01-15 7:01:54 pm Now

E reset changes jelete ticket

Keystone.js uses different form widgets for each type of field. Even complex fields such as DateTime
are displayed with an intuitive interface like a date and time picker form control.

Fill in the form and click on the Save button. You should be shown a successful message indicating

O b W N =

Chapter 2. Building the IncTicket Application 28

your changes were saved. Click on the tickets link to be redirected to the tickets list page as shown
in the following screenshot:

« IncTicket Users Sign Out

1 Ticket ordered by created at (descending)-

Search tickets Search Add Filter = Columns = Download

56998872baf7791c31218dcd

d by KeystonedJS version 0.3.16_ Signed in as Admin User.

Customizing the way models are displayed

On the tickets list page, we see tickets are listed with the object id. This is not very helpful for
managing tickets!. Let us now see how we can customize the admin site. Edit the Ticket.js file in the
models folder and include the following lines:

Ticket.defaultColumns = 'title|20%, status|15%, createdBy, assignedTo, createdAt\

Ticket.register();

We can set a few different options on the model to provide more information about how to display
the model in the admin site and how to interact with it. The defaultColumns option allows you
to set the fields of your model that you want to display in the admin list page. By default only the
object id is displayed. In the above piece of code we are specifying that the title, status, createdBy,
assignedTo and createdAt as the default columns to display in the Admin UI, with title and status
being given column widths.

Restart the app, go back to your browser and reload the ticket list page. Now it will look like this:

Chapter 2. Building the IncTicket Application 29

« IncTicket Users Sign Out

1 Ticket ordered by created at (descending)-

hickels Search Add Filter = Columns = Download

D TITLE STATUS CREATED BY ASSIGNED TO CREATEDAT =

56998872baf779fc312. My first ticket New Admin User Admin User 2016-01-15 7:1:54 pm

by KeystoneJ$S version 0 Signed in as Admin User!

Keystone.js is clever enough to recognize that the createdBy and assignedTo are relationship fields
to the User model and pulls the user’s name for display purposes.

As you can also notice, the page heading indicates that the tickets are ordered by createdAt in a
descending order. This is due to another option we already setup on our model - the defaultSort
option

Ticket.defaultSort = '-createdAt';

The admin Ul automatically lets us sort data in all the custom columns we added to our default-
Columns option. Tickets can be sorted in ascending or descending order using the arrows next to
the column headers. Data can be sorted across columns irrespective of whether they hold string,
number, boolean or date values. How cool is that!.

Keystone.js provides very useful and intuitive ways of managing data through the powerful admin
interface. This, I believe is the key differentiating factor compared other existing CMS frameworks;
even across CMSes based on other programming languages.

Dynamically adding columns to Admin Ul

One of the most useful feature for looking at data in the admin interface is the ability to dynamically
add columns that we are interested in without having to modify the definition of the model in code.
The columns dropdown on the top right lists all the fields defined on our model. Columns that have
been listed in the defaultColumns option will appear with tick marks next to them. We can then
pick any additional columns that we are interested in working with.

W N -

Chapter 2. Building the IncTicket Application 30

Columns =

Title
Description

ATED BY ASSIGNED T Priority ¥

CR
Category

Admin User Admin User 5
Status
Created By
Assigned To
Created At

Updated At

If a custom field was chosen, it will be added to the end of the displayed column headers. We can
reset the list of displayed columns to the original state by using the ‘Reset to default’ option that
will appear in the dropdown once one or more columns have been selected.

Finding data using the Admin Ul

Perhaps the one feature that demonstrates the power of Keystone.js admin interface is the search
functionality. The search box below the page header can be used for searching for data. By default
the search will look for data in a field that has been specified in the autokey.from path. In the case
of searching for tickets that would be the title field. We can also specify a comma-delimited list of
fields to use for searching in Admin UL

var Ticket = new keystone.List('Ticket', {
autokey: { from: 'title', path: 'slug', unique: true },
searchFields: 'description',

});

Above, we have specified that we are interested in the description field also being included in the
search. When we search for a particular keyword, the search is performed using regular expressions
to match any part of the saved data. If the search returns only a single search result object, then
Keystone.js will automatically take us to the edit page for that result.

The add filter button allows us to select multiple conditions that we can use to filter the search
results. As seen in the screenshot below, the search filters are intelligent enough to provide logical
options for filtering based on the type of the field that has been specified in the model.

Chapter 2. Building the IncTicket Application 31

Search Add Filter «

7] Description

contains | exact match invert
= Category

is isnot v

= Created By

linked to | notlinked to v

o=

= Created At

on | after before hetween

‘ Search ‘

A string field such as description is presented with a text box with options for matching exactly or
on a contains condition. The invert option will try to find results that negate the selected condition
i.e. if exact match option was selected then it will try to find results that dont exactly match the
keywords and if contains was selected then it will try to find results that dont contain the keyword.

A select field such as category is presented with options to match the select choices with a ‘is’ and ‘is
not’ option. The dropdown for the select field is autopopulated with the predefined choices defined
in the model.

A relationship field such as user is presented with options to find results that are either linked to or
not linked to a related user. The Ul also provides a very useful ajax based autocomplete text box to
find the related user.

A datetime field such as createdAt is presented with multiple options to narrow down the search
results. Keystone.js can find results that were created on, created after or before a specific datetime
and between two date time ranges. These are critical pieces of functionality, that enhances the
usability of an admin UI, that come out of the box with a Keystone.js application.

Creating Your First Route

The first thing that comes to mind, after we visited the url http://localhost:3000 to see if Keystone.js
works, is how to create a page that is served as response. To create our own page, we need to define an
entry point to our application in the form of a URL and tell Keystone.js to call a particular Javascript
function when a visitor accesses this URL. This mapping of a URL to a Javacript function is called a
route and forms the core of routing in Keystone.js.

Routes are typically stored within the /routes/index. js file.

0 = O O b W N =~

Chapter 2. Building the IncTicket Application 32

Tickets Route

Let us define a couple of routes in Keystone.js that can be used to display a list of tickets and a ticket
in detail. The most basic Keystone.js route is simply a combination a URI, a HTTP verb (get, post
etc) and a Javascript function that accepts the request, response and an optional callback handler:

// Setup Route Bindings
exports = module.exports = function(app) {

app.get('/tickets', function(req, res){
res.send('We will show a list of tickets here');

});

If we add the above code to our routes index file and navigate to http://localhost:3000/tickets, we
should see the text - “We will show a list of tickets here’ displayed on the browser. The route we
defined will respond to a HTTP get request. Keystone.js routes can accept the following HTTP verbs:

o get

e post

* put

« head

« delete

- options
- trace

« copy

« lock

« mkcol

« move

. purge

« propfind
« proppatch
« unlock
 report

« mkactivity
« checkout
« merge

« m-search
« notify

O© 00 9 O O b W N =~

B W N -

Chapter 2. Building the IncTicket Application 33

« subscribe

« unsubscribe
+ patch

« search

« connect

The below piece of code demonstrates how we pass a parameter to a route. Add the below code to
the routes index file and we navigate to http://localhost:3000/tickets/test-ticket.

// Setup Route Bindings
exports = module.exports = function(app) {

app.get('/tickets/:ticketslug', function(req, res){
res.send('We will show a ticket that has a slug : ' + req.params.ticketslu\
9);
1

We should see the text - “We will show a ticket that has a slug : test-ticket’ displayed on the browser.
For this example, we have assumed that test-ticket is the slug for an existing ticket. The req.params
collection can be used to get a reference to the value that is bound to :ticketslug url parameter.

URLSs for models

In the above route, we saw that :ticketslug was used as a query parameter to refer to the slug for a
Ticket object. The complete URL for a ticket model would the /tickets/:ticketslug. This URL is not
part of the model yet and in every place we intend to use or link to a Ticket, we will need to manually
build the URL by concatenating the slug. To address this issue, we can use virtual functions to build
the canonical URL for Ticket objects. The convention we will follow is to add a url() virtual method
to the model that returns the canonical URL of the object. Edit your Ticket.js model file and add the
following before a call to the register() method:

Ticket.schema.virtual('url').get(function() {
return '/tickets/'+this.slug;

});

The Ticket.schema is a reference to the underlying Mongoose schema which is used by Key-
stone.List to interact with MongoDB. A virtual function exists on the model but is not persisted
to the database. Next, We will use the url() method in our templates rendered by our views.

O O b W N~

© 00 N O U b W N =

_ R
wWw N =~

Chapter 2. Building the IncTicket Application 34

Creating Your First View

In the previous section we were able to execute a piece of code in response to a HTTP request. Let
us now see how we generate useful responses rather than just plain text. A view in Keystone.js
terminology is a regular Javascript function attached to the keystone.View object that responds to a
page request by generating a response. This response can be the rendered HTML content of a Web
page, or a redirect, or a 404 error, or an XML document, or an image or anything.

Views are typically stored in /routes/views directory.

Create the following directories and files inside your application directory:

routes/
views/
index. js
tickets/
ticketlist. js
singleticket. js

Since we have already defined the necessary routes, let us create a view that can respond to those
routes. Then, finally, we will create HTML templates to render the data generated by the views.
Each view will render a template passing variables to it and will return an HTTP response with the
rendered output.

Creating Ticket list and detail views

Let’s start by creating a view to display the list of Ticekts. Create a file named ticketlist.js in
/routes/views/tickets. Edit the new file and make it look like this:

var keystone = require('keystone');
exports = module.exports = function(req, res) {

var view = new keystone.View(req, res);
var locals = res.locals;

// locals.section is used to set the currently selected
// item in the header navigation.
locals.section = 'tickets';

locals.data = {
tickets: [],

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

Chapter 2. Building the IncTicket Application 35

};

// Load all tickets
view.on('init', function(next) {

var q = keystone.list('Ticket').model.find();

g.exec(function(err, results) {
locals.data.tickets = results;
next(err);

1)

1)
// Render the view

view.render('tickets/ticketlist');
4

You just created your first Keystone.js view. The tickets view takes the request and response object
as the parameters. Remember that these parameters are required by all views. In this view, we are
retrieving all the tickets when the view is initialized. The view.on('init'...) method is called
when the HTTP request comes through the route each time. We query our MongoDB inside this
method and set the results to our locals.data.tickets array. These can then be used within the template
when it is being rendered.

At the end of the code, we use the render() method provided by Keystone.js to render the list of tickets
with the given template. This function takes the the template path. If we specify only the name of
the template, Keystone.js will look for a template with that name under /templates/views folder.
A view returns a HttpResponse object with the rendered text (normally HTML code). The render()
function takes the response context into account, so any variable set within the response.localss
variable is accessible by the given template. Templates are rendered by Template Rendering Engines.
Keystone.js supports multiple rendering libraries such as Swig, Jade, Ebs. We will look at Swig in
depth in a future chapter.

Let’s create a second view to display a single ticket. Create a file named singleticket.js in
/routes/views/tickets. Edit the new file and make it look like this:

O N O O & W N~

DWW W W W W W W WwWwNDNDDNDDNDDNDNNDNNDDNDNDNDDNDAS AP,
© © 00 9 O Ol d W N O © 00 3O Ol WODN-» OO © 03O0 O b OWN O O

Chapter 2. Building the IncTicket Application 36

var keystone = require('keystone');
exports = module.exports = function(req, res) {

var view = new keystone.View(req, res);
var locals = res.locals;

// locals.section is used to set the currently selected
// item in the header navigation.
locals.section = 'tickets';

locals.data = {
ticket: {},
¥

// Load all tickets
view.on('init', function(next) {

var q = keystone.list('Ticket').model.findOne({slug: req.params.ticketslug});

g.exec(function(err, result) {
if(result != null)

{
locals.data.ticket = result;
}
else
{
return res.status(404).send(keystone.wrapHTMLError('Sorry, no ticl
(404)"));
}
next(err);
1);
1);

// Render the view
view.render('tickets/singleticket');

};

This is the ticket detail view. This view takes a ticket slug to retrieve a published ticket with the given
slug. Notice that when we created the Ticket model, we added the unique constraint parameter to

0 I O O & W N =~

Chapter 2. Building the IncTicket Application 37

the slug field. This way we ensure that there will be only one ticket with a slug for a given title,
and thus, we can retrieve single tickets by slug. In the detail view, we are using the res.status() to
return a HTTP 404 (Not found) exception if no object is found. Finally, we use the render() method
to render the retrieved ticket using a template.

Creating templates for your views

We have created routes and views for our application. Now it’s time to add templates to display
tickets in a user-friendly way.

Templates are typically stored in /templates/views directory.

Create the following directories and files inside your application directory:

templates/
layouts/
default.swig
views/
index.swig
tickets/
ticketlist.swig
singleticket.swig

The default.swig file will include the main HTML structure of the website and divide the content
into a main content area, header and a footer section. During installation, Keystone.js generates
some bootstrap boiler plate code within default.swig for us. The ticketlist.swig and singleticket.swig
files will inherit from the default.swig file and be rendered by the ticketlist and singleticket views
respectively.

Keystone.js supports many templating languages and Swig is one we will look at. Swig is a powerful
template language that allows you to specify how data is displayed on the browser. It is based on
template tags, which look like {# tag %} , template variables, which look like {{ variable }} and
template filters, which can be applied to variables and look like {{ variable|filter }}. You can
see all swig template tags and filters at http://paularmstrong.github.io/swig/docs/>.

Let’s look at the default.swig file. All the static assets related to our project such as js, css files are
stored in the /public directory. Let’s add a incticket.css stylesheet to the /public/styles folder. This
stylesheet will hold application specific styling.

Since Keystone.js uses express.static built-in middleware function in Express to serve static assets,
we reference assets as if they resided in the root of the root of the application as shown below:

*http://paularmstrong.github.io/swig/docs/

http://paularmstrong.github.io/swig/docs/
http://paularmstrong.github.io/swig/docs/

0 N O O & W N =

W W W W W WNDNDNDNDNDNDNNDMNDNDDNDDNDDNDAES =S, s
Oa & O N 0 © 00 O Ok NSO © 0 N0 Ol d W N~ OO ©

Chapter 2. Building the IncTicket Application 38

<link href="/styles/incticket.css" rel="stylesheet">

In default.swig, you can see that there are a few {% block %} tags. These tell Keystone.js that we
want to define a content block in that area. Templates that inherit from this template can fill the
blocks with content. There is a predefined block called content that we can take advantage of.

Let’s edit the tickets/ticketlist.html file and make it look like the following:

{% extends "../../layouts/default.swig" %}

{% block content %}

/span>

s}}

<div class="container">
<div class="panel panel-primary">
<!-- Default panel contents -->
<div class="panel-heading">Tickets</div>
<div class="panel-body">
<p>These are list of tickets in the system.</p>
</div>

<I-- Table -->
<table class="table table-striped">
{% for ticket in data.tickets %}
<tr>
<td>
<div class="' col-md-1"'>
{{ticket.status}}<\

</div>

{{ticket.title |capitalize}}<a>

<ul class="ticket-meta">
 </11i>

<small>Status</small>{{ticket.statu\

</1i>

<small>Priority</small>{{ticket.pri\

ority}}

</1i>
<1i>

36
37
38
39
40
41
42
43
44
45
46
47
48
49
90
o1
52
53

O O B W N~

Chapter 2. Building the IncTicket Application 39

<small>Category</small>{{ticket.cat\

egory}}
</1i>

<small>Last Updated</small>
<abbr class="last-updated">{{ticket._.createdAt. format('Do MMM\
M YYYY')}}</abbr>
</1li>

</td>
</tr>
{% endfor %}
</table>
<div class="panel-footer"></div>
</div>
</div>

{% endblock %}

With the {% extends %} template tag, we are telling Keystone.js to inherit from the layouts/de-
fault.swig template. Then we are filling the content blocks of the base template with content. We
iterate through the tickets and display their title, date, status, priority and category, including a link
in the title to the canonical URL of the ticket. In the title of the ticket, we are applying a template filter:
capitalize - to upper-case the first letter of the input and lower-case the rest. You can concatenate as
many template filters as you wish; each one will be applied to the output generated by the previous
one.

Let us also update our route to point to the ticketlist view that we created.

// Setup Route Bindings
exports = module.exports = function(app) {

app.get('/tickets', routes.views.tickets.ticketlist);

Open the command prompt and execute the command node keystone.js to restart the application
server. Open http://127.0.0.1:3000/tickets/ in your browser and you will see everything running. Note
that you need to have some tickets in order to see them here. You should see something like this:

0 N O O & W N~

B s s s
O 1 0 O b 0ON -~ O

Chapter 2. Building the IncTicket Application

40

IncTicket ~ Home

Open Keystone Sign Out

These are list of tickets in the system.

LZE3 create jquery lightbox for gallery page

Status Priority Category Last Updated

New Low Bug 17th January 2016

=3 Images not loading

Status Priority Category Last Updated
New High Bug 18th January 2016

Layout broken in ie§

Status Priority Category Last Updated

In Progress Medium Bug 18th January 2016

Need to add facebook sidebar widget

Status Priority Category Last Updated
In Progress Medium Feature 18th January 2016

Powered by KeystoneJs.

List of Tickets

Then, let’s edit the tickets/singleticket.swig file and make it look like the following:

{% extends "../../layouts/default.swig" %}

{% block content %}

an>

<div class="container">

<div class="panel panel-primary">

<!-- Default panel contents -->
<div class="panel-heading">Ticket details - {{data.ticket.title}}

</div>

<div class="panel-body">

{{data.ticket.status}}</sp\

<p>{{data.ticket.description}}</p>

</div>
<ul class="ticket-meta">

<small>Status</small>{{data.ticket.status}}

</1i>

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

Chapter 2. Building the IncTicket Application 41

<1li>
<small>Priority</small>{{data.ticket.priority}}\

<1i>
<small>Category</small>{{data.ticket.category}}\

</1i>
<1li>

<small>Last Updated</small>
<abbr class="last-updated">{{data.ticket._.createdAt.format('Do MMMM\
YYYY')}}</abbr>
</1li>

<div class="panel-footer"></div>
</div>

</div>
{% endblock %}

Now, you can go back to your browser and click on one of the ticket titles to see the detail view of
a ticket. You should see the template rendered like this:

IncTicket Home Open Keysione Sign Out

Ticket details - Images not loading

Some of the images do not load until the page is scrolled down. As you scroll down the page, you can see the images appear after a split second. Not sure what is [New |
causing this but it should definitely be fixed.

Status Priority Category Last Updated

New High Bug 18th January 2016

Powered by KeystoneJs

Ticket detail

Since we have created a SEO friendly URL for our tickets, the URL should look like http://127.0.0.1:3000/tickets/image
not-loading.

0 N O O B W N~

W W W W WM NDNIDNDDNDIDNDNDIDNDND DN B 1 1 1 1 8y iy
B WON -~ O O W30 O WNRAR O O W10 U W= O O

Chapter 2. Building the IncTicket Application 42
Adding pagination

As your application grows in terms of content, you will soon realize that you need to split the list
of tickets across several pages. Keystone.js has a built-in pagination functionality that allows you to
manage paginated data easily.

Edit the routes/views/ticketlist. js file as follows:

var keystone = require('keystone');
exports = module.exports = function(req, res) {

var view = new keystone.View(req, res);
var locals = res.locals;

// locals.section is used to set the currently selected
// item in the header navigation.
locals.section = 'tickets';

locals.data = {
tickets: [],
4

// Load all tickets
view.on('init', function(next) {

var q = keystone.list('Ticket').paginate({
page: req.query.page || 1,
perPage: 5,
maxPages: 5

});

g.exec(function(err, results) {
locals.data.tickets = results;
next(err);

});

});

// Render the view
view.render('tickets/ticketlist');

Chapter 2. Building the IncTicket Application 43

35
36 };

This is how pagination works:

We call the List.paginate() which returns a query object. It accepts the following options
— page - page to start at
— perPage - number of results to return per page
- maxPages - optional, causes the page calculation to omit pages from the beginning/mid-

dle/end
We get the page GET parameter that indicates the current page number.

If the page parameter is not an integer, we retrieve the first page of results.

We pass the retrieved objects to the template.
When you call exec on a paginated query, it will return a lot of metadata along with the results:

« total: all matching results (not just on this page)

« results: array of results for this page

« currentPage: the index of the current page

« totalPages: the total number of pages

« pages: array of pages to display

« previous: index of the previous page, false if at the first page
« next: index of the next page, false if at the last page

« first: the index of the first result included

« last: index of the last result included

Let us update our ticketlist.swig template to include the pagination links displayed below. We would
also need to iterate over data.tickets.results instead of just data.tickets as we did earlier.

1 {% for ticket in data.tickets.results %}

3 {% endfor %}

O N O O & W N~

NN N N N S S b s s
B WON P, O © 03O0 O b WO NN O O

Chapter 2. Building the IncTicket Application 44

<ul eclass="pagination">
{# if data.tickets.totalPages > 1 %}

{%# if data.tickets.previous %}
Previous</\

li>

{% else %}

Previous</1i>

{% endif %}

{# for i,p in data.tickets.pages %}

<a class="page-num {% if data.tickets.currentPage == p %} active {% endif %\
1" href="?page={% if p == '..." %} {% if i+1 == data.tickets.totalPages %} 1 {% \

else %} {{ p }} {% endif %}{% else %}{{ p }}{% endif %}">{{ p }}</1i>
{% endfor %}

{# if data.tickets.next %}

Next</1i>

{% else %}

Next</11i>
{% endif %}

{% endif %}

Now, open http://127.0.0.1:3000/tickets/ in your browser. You should see the pagination at the bottom
of the ticket list and you should be able to navigate through pages:

Chapter 2. Building the IncTicket Application 45

IncTicket Home Open Keysione Sign Out

These are list of tickets in the system.

I3 create jquery lightbox for gallery page

Stafus Priority Category Last Updated

New Low Bug 17th January 2016

= Images not loading

Status Priority Category Last Updated
New High Bug 18th January 2016

Layout broken in ie6

Status Priority Category Last Updated
In Progress Medium Bug 18th January 2016

Need to add facebook sidebar widget

Status Priority Category Last Updated
In Progress Medium Feature 18th January 2016

EE3 Add google+ button to blog posts

Status Priority Category Last Updated
New Low Enhancement 18th January 2016

Previous 1 2 Next

List tickets with pagination

Summary

In this chapter, you have learned the basics of the Keystone.js web framework by creating
functionality for basic ticket listing. You have designed the data models, views, templates, and URLs
for your application, including object pagination.

	Table of Contents
	Introduction
	What are web frameworks?
	The Model-View-Template design pattern
	Introducing the IncTicket Project
	Errata and Suggestions

	Chapter 1. Meet Keystone.js
	Why use Keystone.js
	What is Keystone.js Best for?
	Keystone.js Versions
	Installing MongoDB and Node.js
	How to install Node.js
	Useful Development and Debugging Tools.
	Summary

	Chapter 2. Building the IncTicket Application
	Installing Keystone.js
	Creating a new Keystone.js Application
	Configuring Your Keystone.js Application
	Project Structure
	Creating Your First Model/List
	Creating an administration site for your models
	Creating Your First Route
	Creating Your First View
	Creating templates for your views
	Adding pagination
	Summary

