learnbyexample

UNDERSTANDING

& 300+ examples
¢ 100+ exercises

Sundeep Agarwal

Table of contents

Preface
Prerequisites e e e e e e e
Conventions e e e e e e e e e e e
Acknowledgements L e e e e
Feedback and Errata e
Authorinfo e e e e
License e e e e e e e e e
Book version L e e e e e e e e e e e e e

Why is it needed?
How this book is organized e

RegExp introduction
Console and documentationo
test() method e e e e
Flags o o e e e e e e e e e e
RegExp constructorand reuse e
replace() method
Cheatsheet and Summary e e
ExXercises e e e e e e e e e e

Anchors
Stringanchors L e e e e e
Line anchors L e e e e e e
Word anchors e e e e e e e e e
Opposite Word Anchor e e e e e e
Cheatsheet and Summary e e
EXercises e e e e e e e e e e e e

Alternation and Grouping
Alternation L L L e e e e e
Grouping o v o e e e e e e e e e e e e e e e e e
Precedencerules e e e e e
Cheatsheet and Summary e e
EXEercises e e e e e e e e e e e e e e e e

Escaping metacharacters
Escaping with backslash o
Dynamically escaping metacharacters,
Dynamically building alternation oo
source and flags properties e e e e e e e
Escaping the delimiter e
Escape sequences oo e e e e e e e e e
Cheatsheet and Summary e e
Exercises L L e e e e e

>R R WwWwwWw

o O

—_
© O © 0o 333NV

—_

20
20
20
21
22
22

Preface

Scripting and automation tasks often need to extract particular portions of text from input
data or modify them from one format to another. This book will help you understand Regular
Expressions, a mini-programming language for all sorts of text processing needs.

This book heavily leans on examples to present features of regular expressions one by one. It
is recommended that you manually type each example and experiment with them. Make an
effort to understand the sample input as well as the solution presented and check if the output
changes (or not!) when you alter some part of the input and the code. As an analogy, consider
learning to drive a car — no matter how much you read about them or listen to explanations,
you’d need practical experience to become proficient.

You should be familiar with programming basics. You should also have a working knowledge
of JavaScript syntax and functional programming concepts like map and filter .

You are also expected to get comfortable with reading documentation, searching online, visit-
ing external links provided for further reading, tinkering with illustrated examples, asking for
help when you are stuck and so on. In other words, be proactive and curious instead of just
consuming the content passively.

e The examples presented here have been tested on the Chrome/Chromium console and
includes features not available in other browsers and platforms.

e Code snippets shown are copy pasted from the console and modified for presentation
purposes. Some of the commands are preceded by comments to provide context and
explanations. Blank lines have been added to improve readability and output is skipped
when it is undefined or otherwise unnecessary to be shown.

e Unless otherwise noted, all examples and explanations are meant for ASCII characters.

e External links are provided throughout the book for you to explore certain topics in more
depth.

e The learn js regexp repo has all the code snippets, exercises and other details related
to the book. If you are not familiar with the git command, click the Code button on
the webpage to get the files.

e MDN: Regular Expressions — documentation and examples

e /r/learnjavascript/ and /r/regex/ — helpful forums for beginners and experienced pro-
grammers alike

e stackoverflow — for getting answers to pertinent questions on JavaScript and regular

expressions

tex.stackexchange — for help on pandoc and tex related questions

canva — cover image

Warning and Info icons by Amada44 under public domain

oxipng, pngquant and svgcleaner — optimizing images

https://github.com/learnbyexample/learn_js_regexp
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Regular_expressions
https://old.reddit.com/r/learnjavascript/
https://old.reddit.com/r/regex/
https://stackoverflow.com/
https://tex.stackexchange.com/
https://github.com/jgm/pandoc/
https://www.canva.com/
https://commons.wikimedia.org/wiki/File:Warning_icon.svg
https://commons.wikimedia.org/wiki/File:Info_icon_002.svg
https://commons.wikimedia.org/wiki/User:Amada44
https://github.com/shssoichiro/oxipng
https://pngquant.org/
https://github.com/RazrFalcon/svgcleaner

I would highly appreciate it if you’d let me know how you felt about this book. It could be
anything from a simple thank you, pointing out a typo, mistakes in code snippets, which aspects
of the book worked for you (or didn’t!) and so on. Reader feedback is essential and especially
so for self-published authors.

You can reach me via:

e Issue Manager: https://github.com/learnbyexample/learn js regexp/issues
e E-mail: learnbyexample.net@gmail.com
e Twitter: https://twitter.com/learn byexample

Sundeep Agarwal is a lazy being who prefers to work just enough to support his modest
lifestyle. He accumulated vast wealth working as a Design Engineer at Analog Devices and re-
tired from the corporate world at the ripe age of twenty-eight. Unfortunately, he squandered
his savings within a few years and had to scramble trying to earn a living. Against all odds,
selling programming ebooks saved his lazy self from having to look for a job again. He can now
afford all the fantasy ebooks he wants to read and spends unhealthy amount of time browsing
the internet.

When the creative muse strikes, he can be found working on yet another programming ebook
(which invariably ends up having at least one example with regular expressions). Research-
ing materials for his ebooks and everyday social media usage drowned his bookmarks, so he
maintains curated resource lists for sanity sake. He is thankful for free learning resources and
open source tools. His own contributions can be found at https://github.com/learnbyexample.

List of books: https://learnbyexample.github.io/books/

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0
International License.

Code snippets are available under MIT License.

Resources mentioned in the Acknowledgements section are available under original licenses.

2.0

See Version changes.md to track changes across book versions.

https://github.com/learnbyexample/learn_js_regexp/issues
mailto:learnbyexample.net@gmail.com
https://twitter.com/learn_byexample
https://github.com/learnbyexample
https://learnbyexample.github.io/books/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://github.com/learnbyexample/learn_js_regexp/blob/master/LICENSE
https://github.com/learnbyexample/learn_js_regexp/blob/master/Version_changes.md

Why is it needed?

Regular Expressions is a versatile tool for text processing. You’ll find them included as part of
the standard library of most programming languages that are used for scripting purposes. If
not, you can usually find a third-party library. Syntax and features of regular expressions vary
from language to language. JavaScript’s syntax is similar to that of Perl language, but there
are significant feature differences.

The String object in JavaScript supports variety of methods to deal with text. So, what’s so
special about regular expressions and why would you need it? For learning and understanding
purposes, one can view regular expressions as a mini-programming language specialized for
text processing. Parts of a regular expression can be saved for future use, analogous to vari-
ables. There are ways to perform AND, OR, NOT conditionals. Operations similar to range,
repetition and so on.

Here are some common use cases:

e Sanitizing a string to ensure that it satisfies a known set of rules. For example, to check
if a given string matches password rules.

e Filtering or extracting portions on an abstract level like alphabets, digits, punctuation
and so on.

e (Qualified string replacement. For example, at the start or the end of a string, only whole
words, based on surrounding text, etc.

You are likely to be familiar with graphical search and replace tools, like the screenshot shown
below from LibreOffice Writer. Match case, Whole words only, Replace and Replace All
are some of the basic features supported by regular expressions.

Find & Replace (a3
Find:

Match case Whole words only

Replace:

Another real world use case is password validation. The screenshot below is from GitHub sign
up page. Performing multiple checks like string length and the type of characters allowed
is another core feature of regular expressions.

Password *

Make sure it's at least 15 characters OR at least 8 characters including a number and a lowercase
letter. Learn more.

Here are some articles on regular expressions to know about its history and the type of prob-

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String

lems it is suited for.

e The true power of regular expressions — it also includes a nice explanation of what
regular means in this context

softwareengineering: Is it a must for every programmer to learn regular expressions?
softwareengineering: When you should NOT use Regular Expressions?

codinghorror: Now You Have Two Problems — demystifies the often (mis)quoted meme
wikipedia: Regular expression — this article includes discussion on regular expressions
as a formal language as well as details about various implementations

This book introduces concepts one by one and exercises at the end of chapters will require only
the features introduced until that chapter. Each concept is accompanied by plenty of examples
to cover multiple problems and corner cases. As mentioned before, it is highly recommended
that you follow along the examples by typing out the code snippets manually. It is important
to understand both the nature of the sample input string as well as the actual programming
command used. There are two interlude chapters that give an overview of useful tools and
some more resources are collated in the final chapter.

RegExp introduction

Anchors

Alternation and Grouping
Escaping metacharacters

Dot metacharacter and Quantifiers
Interlude: Tools for debugging and visualization
Working with matched portions
Character class

Groupings and backreferences
Interlude: Common tasks
Lookarounds

Unicode

Further Reading

By the end of the book, you should be comfortable with both writing and reading regular
expressions, how to debug them and know when to avoid them.

https://www.npopov.com/2012/06/15/The-true-power-of-regular-expressions.html
https://softwareengineering.stackexchange.com/questions/133968/is-it-a-must-for-every-programmer-to-learn-regular-expressions
https://softwareengineering.stackexchange.com/questions/113237/when-you-should-not-use-regular-expressions
https://blog.codinghorror.com/regular-expressions-now-you-have-two-problems/
https://en.wikipedia.org/wiki/Regular_expression

RegExp introduction

This chapter will get you started with defining RegExp objects and using them inside string
methods. To keep it simple, the examples will not use special characters related to regular
expressions. The main focus will be to get you comfortable with the syntax and text processing
examples. Two methods will be introduced in this chapter. The test() method to search if
the input contains a string and the replace() method to substitute a portion of the input
with something else.

@ This book will use the terms regular expressions and regexp interchangeably.
When specifically referring to a JavaScript object, RegExp will be used.

As mentioned in the Preface chapter, examples presented in this book have been tested on
the Chrome/Chromium console. Other browsers based on Chromium may also work. Use
Ctrl+Shift+] shortcut from a new tab to open a console. Some variable names are reused
across different chapters — open another tab in such cases to avoid errors.

See MDN: Regular Expressions Guide and MDN: Regular Expressions Reference for examples,
documentation and browser compatibility details.

First up, a simple example to test whether a string is part of another string or not. Normally,
you’d use the includes() method and pass a string as argument. For regular expressions,
use the test() method on a RegExp object, which is defined by the search string enclosed
within // delimiters.

> let sentence = 'This is a sample string'

sentence.includes('is"')
true
sentence.includes('z")
false

AV ANV

/is/.test(sentence)
true
/z/.test(sentence)
false

AV ANV

Here are some examples of using the test() method in conditional expressions.

> let report = 'string theory'

> if (/ring/.test(report)) {
console.log('mission success')

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regular_Expressions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Regular_expressions

< mission success

> if (!/fire/.test(report)) {
console.log('mission failed')

}

< mission failed

And here are some array processing examples.

> let words = ['cat', 'attempt', 'tattle']

\

words. filter(w => /tt/.test(w))
['attempt', 'tattle']

A

> words.every(w => /at/.test(w))
< true
> words.some(w => /stat/.test(w))
< false

Some of the regular expressions functionality is enabled by passing flags, represented by a
lowercase letter. Flags are similar to command line options, for example grep -i performs
case insensitive matching.

In this chapter, the following flags will be discussed:

e i flag to ignore case while matching alphabets (default is case sensitive matching)
e g flag to match all occurrences (only the first one is matched by default)

Examples for the i flag are shown below. g flag will be discussed in the replace() method
section later in this chapter.

> /cat/.test('CaT')

< false

> /cat/i.test('CaT')

< true

> ['Cat', 'cot', 'CATER', 'SCat', 'ScUtTLe'].filter(w => /cat/i.test(w))

A

['Cat', 'CATER', 'SCat']

The RegExp object can be saved in a variable. This helps to improve code clarity, enables
reuse, etc.

> const pet = /dog/

> pet.test('They bought a dog')

< true

> pet.test('A cat crossed their path')
< false

RegExp objects can also be constructed using the RegExp() constructor. The first argument
is a string or a RegExp object. The second argument is used to specify one or more flags.

> const pat = new RegExp('dog')
> pat
/dog/

A

\

new RegExp('dog', 'i'")

/dog/i

A

The main advantage of the constructor over the // format is the ability to dynamically
construct the regexp. For example, to insert the content of other variables or the result of an
expression.

> let greeting = 'hi'

> const patl = new RegExp(${greeting} there")
> patl

< /hi there/

> new RegExp(${greeting.toUpperCase()} there’)
< /HI there/

The replace() string method is used for search and replace operations.

> '1,2,3,4"'.replace(/,/, '-")

< '1-2,3,4'

> '1,2,3,4"'.replace(/,/g9, '-')

< '1-2-3-4'

> 'cArT PART tart mArt'.replace(/art/ig, '2')

‘c2 P2 t2 m2'

A

A common mistake is forgetting that strings are immutable. If you want to save the changes
to the same variable, you need to explicitly assign the result back to that variable.

> let word = 'cater'

> word.replace(/cat/, 'hack')
< 'hacker'

\

word
‘cater’

A

word = word.replace(/cat/, 'hack')
"hacker’

word

"hacker’

ANV ANV

& The use of the g flagwiththe test() method allows some additional functionality.
See MDN: test for examples. However, in my opinion, it is easy to fall into a habit of
using g with test() and get undesired results. Instead, I'd suggest to use the
match() method and explicitly write the required logic instead of relying on the g flag.

Note Description

MDN: Regular Expressions MDN reference for JavaScript regular expressions

/pat/ a RegExp object

const pl = /pat/ save regexp in a variable for reuse, clarity, etc

/pat/.test(s) check if the pattern is present anywhere in the input string
returns true or false

i flag to ignore case when matching alphabets

g flag to match all occurrences

new RegExp('pat', 'i') construct RegExp from a string

optional second argument specifies flags
use backtick strings with ${} for interpolation
s.replace(/pat/, 'repl') method for search and replace

This chapter introduced how to define RegExp objects and use them with the test() and

replace() methods. You also learnt how to use flags to change the default behavior of
regexps. The examples presented were more focused on introducing text processing concepts.
From the next chapter onwards, you’ll learn regular expression syntax and features.

@ Try to solve the exercises in every chapter using only the features discussed until
that chapter. Some of the exercises will be easier to solve with techniques presented in
the later chapters, but the aim of these exercises is to explore the features presented so
far.

@ All the exercises are also collated together in one place at Exercises.md. For solu-
tions, see Exercise solutions.md.

10

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/RegExp/test#Examples
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Regular_expressions
https://github.com/learnbyexample/learn_js_regexp/blob/master/Exercises.md
https://github.com/learnbyexample/learn_js_regexp/blob/master/Exercise_solutions.md

1) Check if the given input strings contain two irrespective of case.

> let sl = 'Their artwork is exceptional'

> let s2 = 'one plus tw@ is not three'

> let s3 = 'TRUSTWORTHY'

> const patl = // add your solution here
> patl.test(sl)

< true

> patl.test(s2)

< false

> patl.test(s3)

< true

2) For the given array, filter all elements that do not contain e .

> let items = ['goal', 'new', 'user', 'sit', ‘'eat', 'dinner']

> items.filter(w => test(w)) // add your solution here

< ['goal', 'sit']

3) Replace only the first occurrence of 5 with five for the given string.

> let ip = 'They ate 5 apples and 5 oranges'

> ip.replace() // add your solution here
< 'They ate five apples and 5 oranges'

4) Replace all occurrences of 5 with five for the given string.

> let ip = 'They ate 5 apples and 5 oranges'

> ip.replace() // add your solution here
< 'They ate five apples and five oranges'

5) Replace all occurrences of note irrespective of case with X .

> let ip = 'This note should not be NoTeD'

> ip.replace() // add your solution here
< 'This X should not be XD'

6) For the given multiline input string, filter all lines NOT containing the string

> let purchases = “items qty
apple 24
mango 50
guava 42
onion 31
water 10°

> const num = // add your solution here

11

> console.log(purchases.split('\n")

.filter(e => test(e)) // add your solution here
.join('\n"))
< items qty
mango 50
onion 31
water 10

@ You’d be able to solve this using just the replace() method by the end of the Dot
metacharacter and Quantifiers chapter.

7) For the given array, filter all elements that contain either a or w .

> let items = ['goal', 'new', 'user', 'sit', 'eat', 'dinner']
> items.filter(w => test(w) || test(w)) // add your solution here
< ['goal', 'new', 'eat'l]

8) For the given array, filter all elements that contain both e and n .

> let items = ['goal', 'new', 'user', 'sit', ‘'eat', 'dinner']
> items.filter(w => test(w) &5 test(w)) // add your solution here
< ['new', 'dinner']

9) For the given string, replace 0xA®@ with 0x7F and 0xCO with Ox1F .
> let ip = 'start address: 0xAO, funcl address: 0xCO'

> ip.replace() // add your solution here
< 'start address: 0x7F, funcl address: Ox1F'

12

Anchors

In this chapter, you'll be learning about qualifying a pattern. Instead of matching anywhere
in the input string, restrictions can be specified. For now, you’ll see the ones that are already
part of regexp features. In later chapters, you’ll learn how to define custom rules.

These restrictions are made possible by assigning special meaning to certain characters and
escape sequences. The characters with special meaning are known as metacharacters in
regexp parlance. In case you need to match those characters literally, you need to escape
them with a \ character (discussed in the Escaping metacharacters chapter).

This restriction is about qualifying a regexp to match only at the start or end of an input string.
These provide functionality similar to the string methods startsWith() and endsWith()
First up, the ~ metacharacter which restricts the matching to the start of string.

/"~cat/.test('cater')

true
/~cat/.test('concatenation')
false

ANV ANV

> /~hi/.test('hi hello\ntop spot')
< true
> /~top/.test('hi hello\ntop spot')
< false

To restrict the matching to the end of string, the $ metacharacter is used.

> /are$/.test('spare')

< true

> /are$/.test('nearest')

< false

> let words = ['surrender', 'unicorn', 'newer', ‘'door', 'empty', 'eel', 'pest']
> words.filter(w => /er$/.test(w))

< ['surrender', 'newer']

> words. filter(w => /t$/.test(w))

< ['pest']

Combining both the start and end string anchors, you can restrict the matching to the whole
string. The effect is similar to comparing strings using the == operator.

> /"~cat$/.test('cat')

< true

> /"~cat$/.test('cater')

< false

You can emulate string concatenation operations by using the anchors by themselves as a
pattern.

13

// insert text at the start of a string
> 'live'.replace(/"/, 're')

< 'relive'

> 'send'.replace(/~/, 're')

< 'resend'

// appending text

> 'cat'.replace(/$/, 'er')
< 'cater'

> 'hack'.replace(/$/, 'er')
< 'hacker'

A string input may contain single or multiple lines. The characters \r , \n , \u2028 (line
separator) and \u2029 (paragraph separator) are considered as line separators. When the
m flagisused, the ~ and $ anchors will match the start and end of every line respectively.

// check if any line in the string starts with 'top'
> /~top/m.test('hi hello\ntop spot')

< true

// check if any line in the string ends with 'er'
> /er$/m.test('spare\npar\nera\ndare')

< false

// filter elements having lines ending with 'are’

> let elements = ['spare\ntool', 'par\n', 'dare', 'spared']
> elements.filter(e => /are$/m.test(e))

< ['spare\ntool', 'dare']

// check if any whole line in the string is 'par'
> /"~par$/m.test('spare\npar\nera\ndare')
< true

Just like string anchors, you can use the line anchors by themselves as a pattern.

> let items = 'catapults\nconcatenate\ncat'

> console.log(items.replace(/"~/gm, '* "))
< * catapults

* concatenate

* cat

> console.log(items.replace(/$/gm, '."'))
< catapults.

concatenate.

cat.

14

@ Al If there is a line separator character at the end of string, there is an additional
start/end of line match after the separator.

> console.log('1\n2\n'.replace(/"/mg, 'fig "))
< fig 1

fig 2

fig

> console.log('1\n2\n'.replace(/$/mg, ' apple'))
1 apple
2 apple
apple

A

A If you are dealing with Windows OS based text files, you may have to convert \r\n
line endings to \n first. Otherwise, you’ll get end of line matches for both the \r
and \n characters. You can also handle this case in regexp by making \r as an
optional character with quantifiers (see the Greedy quantifiers section for examples).

The third type of restriction is word anchors. Alphabets (irrespective of case), digits and the
underscore character qualify as word characters. You might wonder why there are digits and
underscores as well, why not just alphabets? This comes from variable and function naming
conventions — typically alphabets, digits and underscores are allowed. So, the definition is

more oriented to programming languages than natural ones.

The escape sequence \b denotes a word boundary. This works for both the start and end
of word anchoring. Start of word means either the character prior to the word is a non-word
character or there is no character (start of string). Similarly, end of word means the character
after the word is a non-word character or no character (end of string). This implies that you

cannot have word boundary \b without a word character.

> let words = 'par spar apparent spare part'

\

words.replace(/par/g, 'X')
'X sX apXent sXe Xt'

A

\

words.replace(/\bpar/g, 'X")
‘X spar apparent spare Xt'

A

\

words.replace(/par\b/g, 'X")
'X sX apparent spare part'

A

\

words.replace(/\bpar\b/g, 'X")
'X spar apparent spare part'

A

15

Using word boundary as a pattern by itself can yield creative solutions:

// space separated words to double quoted csv

// note that the 'replace' method is used twice here

> let words = 'par spar apparent spare part'

> console.log(words.replace(/\b/g, '""').replace(/ /g, ',"'))
< "par","spar","apparent","spare", "part"

// make a programming statement more readable

// shown for illustration purpose only, won't work for all cases

> 'output=numl+35*42/num2'.replace(/\b/g, ' ')

< ' output = numl + 35 * 42 / num2 '

// excess space at the start/end of string can be trimmed off

// later you'll learn how to add a qualifier so that trim is not needed
> 'output=numl+35*42/num2'.replace(/\b/g, ' ').trim()

< 'output = numl + 35 * 42 / num2'

The word boundary has an opposite anchor too. \B matches wherever \b doesn’t match.
This duality will be seen with some other escape sequences too. Negative logic is handy in
many text processing situations. But use it with care, you might end up matching things you
didn’t intend!

> let words = 'par spar apparent spare part'

// replace 'par' if it is not at the start of word

> words.replace(/\Bpar/g, 'X')

< 'par sX apXent sXe part'

// replace 'par' at the end of word but not the whole word 'par'
> words.replace(/\Bpar\b/g, 'X')

< 'par sX apparent spare part'

// replace 'par' if it is not at the end of word

> words.replace(/par\B/g, 'X')

< 'par spar apXent sXe Xt'

// replace 'par' if it is surrounded by word characters
> words.replace(/\Bpar\B/g, 'X')

< 'par spar apXent sXe part'

Here are some standalone pattern usage to compare and contrast the two word anchors.

> 'copper'.replace(/\b/g, ':"')
< ':copper:'

> 'copper'.replace(/\B/g, ':"')
< 'c:o:p:p:e:r'

> 'aao-- hello----- '.replace(/\b/g, ' ")
< 'e---- hello ----- '

» Tocooo hello----- ‘.replace(/\B/g, ' ")
<'-----hello-----"1"

16

Note

Description

metacharacter

~

$

m

\b

\B

characters with special meaning in regexp

restricts the match to the start of string

restricts the match to the end of string

flag to match the start/end of line with ~ and $ anchors
\r , \n, \u2028 and \u2029 are line separators
DOS-style files use \r\n , may need special attention
restricts the match to the start and end of words

word characters: alphabets, digits, underscore

matches wherever \b doesn’t match

In this chapter, you’ve begun to see building blocks of regular expressions and how they can
be used in interesting ways. But at the same time, regular expression is but another tool in the
land of text processing. Often, you’d get simpler solution by combining regular expressions
with other string methods and expressions. Practice, experience and imagination would help
you construct creative solutions. In the coming chapters, you’ll see examples for anchors in

combination with other regexp features.

1) Check if the given input strings contain is or the as whole words.

"The food isn't good"

> let strl = 'is; (this)'
> let str2 =
> let str3 = 'the2 cats'
> let str4 =

> const patl
> const pat2

patl.test(strl) ||
true
patl.test(str2) ||
false
patl.test(str3) ||
false
patl.test(strd) ||
true

ANV NV ANV ANV

‘switch on the light'

pat2.test(strl)

pat2.test(str2)

pat2.test(str3)

pat2.test(str4)

2) For the given input string, change only the whole word red to brown .

> let ip = 'bred red spread credible red;'

> ip.replace()

< 'bred brown spread credible brown;'

3) For the given array, filter all elements that contain 42 surrounded by word characters.

17

> let items = ['hid42bye', 'nicel423', 'bad42', 'cool 42a', 'fakedb']

> items.filter(e => test(e))
< ['hid42bye', 'niceld423', 'cool 42a']

4) For the given input array, filter all elements that start with den or end with 1y .

> let items = ['lovely', 'l\ndentist', '2 lonely', ‘'eden', 'fly\n', 'dent']

> items.filter(e => test(e) || test(e))
< ['lovely', '2 lonely', 'dent']

5) For the given input string, change whole word mall to 1234 only if it is at the start of
a line.

> let para = " (mall) call ball pall
ball fall wall tall
mall call ball pall
wall mall ball fall
mallet wallet malls
mall:call:ball:pall”

> console. log(para.replace())
< (mall) call ball pall
ball fall wall tall
1234 call ball pall
wall mall ball fall
mallet wallet malls
1234:call:ball:pall

6) For the given array, filter all elements having a line starting with den or ending with 1y

> let items = ['lovely', 'l\ndentist', '2 lonely', ‘'eden', 'fly\nfar', 'dent']

> items.filter(e => test(e) || test(e))
< ['lovely', 'l\ndentist', '2 lonely',6 'fly\nfar', 'dent']

7) For the given input array, filter all whole elements 12\nthree irrespective of case.

> let items = ['12\nthree\n', '12\nThree', '12\nthree\n4', '12\nthree']

> items.filter(e => test(e))
< ['12\nThree', '12\nthree']

8) For the given input array, replace hand with X for all elements that start with hand
followed by at least one word character.

> let items = ['handed', 'hand', 'handy', 'un-handed', 'handle', 'hand-2']

> items.map(w => w.replace())
< ['Xed', 'hand', 'Xy', 'un-handed', 'Xle', 'hand-2']

9) For the given input array, filter all elements starting with h . Additionally, replace e with

18

X for these filtered elements.

> let items = ['handed', 'hand', 'handy', 'unhanded', 'handle', 'hand-2']

> items.filter(w => test(w)).map(w => w.replace()) // add your solution here
< ['handXd', 'hand', 'handy', 'handlX', 'hand-2']

10) Why does the following code show false instead of true ?

> /end$/.test('bend it\nand send\n')
< false

19

Alternation and Grouping

Many a times, you want to check if the input string matches multiple patterns. For example,
whether a product’s color is green or blue or red. This chapter will show how to use alternation
for such cases. These patterns can have some common elements between them, in which case
grouping helps to form terser regexps. This chapter will also discuss the precedence rules
used to determine which alternation wins.

A conditional expression combined with logical OR evaluates to true if any of the conditions
is satisfied. Similarly, in regular expressions, you can use the | metacharacter to combine
multiple patterns to indicate logical OR. The matching will succeed if any of the alternate pat-
terns is found in the input string. These alternatives have the full power of a regular expression,
for example they can have their own independent anchors. Here are some examples.

> const pets = /cat|dog/

> pets.test('I like cats')

< true

> pets.test('I like dogs')

< true

> pets.test('I like parrots')
< false

> 'catapults concatenate cat scat cater'.replace(/"cat|cat\b/g, 'X')
< 'Xapults concatenate X sX cater'

> 'cat dog bee parrot fox'.replace(/cat|dog|fox/g, 'mammal')
< 'mammal mammal bee parrot mammal'

@ You might infer from the above examples that there can be situations where many
alternations are required. See the Dynamically building alternation section for examples
and details.

Often, there are some common portions among the regexp alternatives. It could be common
characters, qualifiers like the anchors and so on. In such cases, you can group them using
a pair of parentheses metacharacters. Similar to a(b+c)d = abd+acd in maths, you get
a(b|c)d = abd|acd in regular expressions.

> 'red reform read arrest'.replace(/reform|rest/g, 'X')
< 'red X read arX'
> 'red reform read arrest'.replace(/re(form|st)/g, 'X')
< 'red X read arX'

20

// without grouping

> 'par spare part party'.replace(/\bpar\b|\bpart\b/g, 'X")

< 'X spare X party'

// taking out common anchors

> 'par spare part party'.replace(/\b(par|part)\b/g, 'X")

< 'X spare X party'

// taking out common characters as well

// you'll later learn a better technique instead of using empty alternates
> 'par spare part party'.replace(/\bpar(|t)\b/g, 'X")

< 'X spare X party'

@ There are many more uses for grouping than just forming a terser regexp. They will
be discussed as they become relevant in the coming chapters.

There are tricky situations when using alternation. There is no ambiguity if it is used to get
a boolean result by testing a match against a string input. However, for cases like string
replacement, it depends on a few factors. Say, you want to replace either are or spared
— which one should get precedence? The bigger word spared or the substring are inside
it or based on something else?

The regexp alternative which matches earliest in the input string gets precedence.

> let words = 'lion elephant are rope not'

// starting index of 'on' < index of 'ant' for the given string input
// so 'on'
> words.replace(/on|ant/, 'X')
< 'liX elephant are rope not'
> words.replace(/ant|on/, 'X')
< 'liX elephant are rope not'

will be replaced irrespective of the order of alternations

What happens if the alternatives have the same starting index? The precedence is left-to-right
in the order of declaration.

> let mood = 'best years'

// starting index for 'year' and 'years' will always be the same
// so, which one gets replaced depends on the order of alternations
> mood.replace(/year|years/, 'X')

< 'best Xs'
> mood.replace(/years|year/, 'X')
< 'best X'

Here’s another example to drive home the issue.

> let sample = 'ear xerox at mare part learn eye'

// this is going to be same as: replace(/ar/g, 'X")

21

> sample.replace(/ar|are|art/g, 'X")
< 'eX xerox at mXe pXt leXn eye'

> sample.replace(/are|ar|art/g, 'X")
< 'eX xerox at mX pXt leXn eye'

> sample.replace(/are|art|ar/g, 'X")
< 'eX xerox at mX pX leXn eye'

Note Description
patl|pat2|pat3 multiple regexp combined as conditional OR
each alternative can have independent anchors
() group pattern(s)
a(blc)d same as abd|acd

Alternation precedence pattern which matches earliest in the input gets precedence
tie-breaker is left to right if matches have the same starting location

So, this chapter was about specifying one or more alternate matches within the same regexp
using the | metacharacter. Which can further be simplified using () grouping if the
alternations have common portions. Among the alternations, the earliest matching pattern
gets precedence. Left-to-right ordering is used as a tie-breaker if multiple alternations have
the same starting location. In the next chapter, you’ll learn how to construct an alternation
pattern from an array of strings taking care of precedence rules. Grouping has various other
uses too, which will be discussed in the coming chapters.

1) For the given input array, filter all elements that start with den or end with 1y .

> let items = ['lovely', 'l\ndentist', '2 lonely', ‘'eden', 'fly\n', 'dent']

> items.filter()
< ['lovely', '2 lonely', 'dent']

2) For the given array, filter all elements having a line starting with den or ending with 1y

> let items = ['lovely', '1\ndentist', '2 lonely', 'eden', 'fly\nfar', 'dent']

> items.filter()
< ['lovely', 'l\ndentist', '2 lonely', 'fly\nfar', 'dent']

3) For the given input strings, replace all occurrences of removed or reed or received
or refused with X .

> let sl = 'creed refuse removed read'
> let s2 'refused reed redo received'

22

> const patl = // add your solution here

sl.replace(patl, 'X')
'cX refuse X read'
s2.replace(patl, 'X')
'X X redo X'

AV ANV

4) For the given input strings, replace late or later or slated with A .

> let strl = 'plate full of slate'

> let str2 = "slated for later, don't be late"
> const pat2 = // add your solution here
> strl.replace(pat2, 'A'")

< 'pA full of sA'

> str2.replace(pat2, 'A")

< "A for A, don't be A"

23

Escaping metacharacters

You have seen a few metacharacters and escape sequences that help compose a RegExp literal.
There’s also the / character used as a delimiter for RegExp objects. This chapter will show
how to remove the special meaning of such constructs. Also, you’ll learn how to take care of
these special characters when you are building a RegExp literal from normal strings.

To match the metacharacters literally, i.e. to remove their special meaning, prefix those char-
acters with a \ (backslash) character. To indicate a literal \ character, use \\ .

> /b~2/.test('a™2 + b2 - C*3')
< false

> /b\"2/.test('a™2 + b"2 - C*3')
< true

> '(a*b) + c'.replace(/\(|\)/g, '")
< 'a*b + c'

> '"\\learn\\by\\example'.replace(/\\/g, '/"')
< '/learn/by/example’

When you are defining the regexp yourself, you can manually escape the metacharacters where
needed. However, if you have strings obtained from elsewhere and need to match the contents
literally, you’ll have to somehow escape all the metacharacters while constructing the regexp.
The solution of course is to use regular expressions! Usually, the programming language
itself would provide a builtin method for such cases. JavaScript doesn’t, but MDN: Regular
Expressions Guide has it covered in the form of a function as shown below.

> function escapeRegExp(string) {
return string.replace(/[.*+?7°${3() [[\NI\\1/g, '\\$&")
}

There are many things in the above regexp that you haven’t learnt yet. They’ll be discussed
in the coming chapters. For now, it is enough to know that this function will automatically
escape all the metacharacters. Examples are shown below.

> let eqn = 'f*(a”b) - 3*(a”b)'

> const usr_str = '(a”b)'

> const pat = new RegExp(escapeRegExp(usr_str), 'g')

24

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regular_Expressions#escaping
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regular_Expressions#escaping

pat

/\(a\"b\)/g
eqgn.replace(pat, 'c')
"fxc - 3*c'

AV ANV

> eqgn.replace(new RegExp(escapeRegExp(usr_str) + '$'), 'c")
"fx*(a”b) - 3*c"

@ Note that the / delimiter character isn’t escaped in the above function. You can
use [.*+?27°${}()|[\]\\\/] to escape the delimiter as well.

Examples in the previous chapter showed cases where a single regexp can contain multiple

patterns combined using the | metacharacter. Often, you have an array of strings and the
requirement is to match any of the elements literally. To do so, you need to escape all the
metacharacters before combining the strings with the | metacharacter. The function shown

below uses the escapeRegExp() function introduced in the previous section.

> function unionRegExp(arr) {
return arr.map(w => escapeRegExp(w)).join("'|")

}

And here are some examples with the unionRegExp() function used to construct the required
regexp.

let wl = ['c”t', 'dog$', 'f|x'l]

const pl = new RegExp(unionRegExp(wl), 'g')

pl

/c\"t|dog\$|f\|x/g

'c”t dog$ bee parrot f|x'.replace(pl, 'mammal')
"'mammal mammal bee parrot mammal'

AV ANV V V

> let w2 = ['hand', 'handy', 'handful']

w2.sort((a, b) => b.length - a.length)

['handful', 'handy', 'hand']

const p2 = new RegExp(\\b(${unionRegExp(w2)})\\b", 'g")
p2

/\b(handful]|handy|hand)\b/g

AV V ANV

> 'handful handed handy hands hand'.replace(p2, 'X')
< 'X handed X hands X'

25

@ The XRegExp utility provides handy methods like XRegExp.escape() and XReg-
Exp.union(). The union method has additional functionality of allowing a mix of string
and RegExp literals and also takes care of renumbering backreferences.

If you need the contents of a RegExp object, you can use the source and flags properties
to get the pattern string and flags respectively. These methods will help you to build a RegExp
object using the contents of another RegExp object.

> const p3 = /\bpar\b/

> const p4 = new RegExp(p3.source + '|cat', 'g')
> p4

< /\bpar\b|cat/g

> console.log(p4.source)

< \bpar\b|cat

> p4.flags

< 'g'

> 'cater cat concatenate par spare'.replace(p4, 'X')
< 'Xer X conXenate X spare’

Another character to keep track for escaping is the delimiter used to define the RegExp literal.
Or depending upon the pattern, you can use the new RegExp constructor to avoid escaping.

> let path = '/home/joe/report/sales/ip.txt'

> path.replace(/~\/home\/joe\//, '~/")

< '~/report/sales/ip.txt'

> path.replace(new RegExp(~/home/joe/), '~/")
< '~/report/sales/ip.txt'

Certain characters like tab and newline can be expressed using escape sequences as \t and
\n respectively. These are similar to how they are treated in normal string literals. However,
\b is for word boundaries as seen earlier, whereas it stands for the backspace character in
normal string literals.

Additionally, there are several sequences that are specific to regexps. The full list is
mentioned in the Using special characters section of MDN documentation. These are
\b \B \cX \d \D \f \k<name> \n \p \P \r \s \S \t \uhhhh \u{hhhh} \v \w \W \xhh \0 .
Here are some examples:

26

https://github.com/slevithan/xregexp
https://xregexp.com/api/#escape
https://xregexp.com/api/#union
https://xregexp.com/api/#union
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regular_Expressions#using_special_characters

> 'a\tb\tc'.replace(/\t/g, ':')

< 'a:b:c'
> '1\n2\n3"'.replace(/\n/g, "' ")
< '123'

// use \\ instead of \ when constructing regexp from string literals
// when you need to represent a single backslash character literally
> new RegExp('123\tabc')

< /123 abc/

> new RegExp('123\\tabc')

< /123\tabc/

Here’s a console screenshot of another example.

K ﬂ Elements Console Sources Network > : X

M © @ top Y @ | Filter Default levels ¥ o

> new RegExp('car\b')
/carf]/

> new RegExp('car\\b")
/car\b/

> |

If an escape sequence is not defined, it will be treated as the character it escapes.

// here \e is treated as e
> /\e/.test('hello')
< true

You can also represent a character using hexadecimal escape of the format \xhh where

hh are exactly two hexadecimal characters. If you represent a metacharacter using escapes,
it will be treated literally instead of its metacharacter feature. The Codepoints section will
discuss escapes for unicode characters.

// \x20 is the space character
> 'hel1lo'.replace(/\x20/g, '")
< 'hello'

// \x7c is the '|' character

// but it won't be treated as the alternation metacharacter
> '12|30'.replace(/2\x7c3/g, '5"')

< '150'

> '12|30'.replace(/2|3/g, '5"')

< '15|50'

@ See ASCII code table for a handy cheatsheet with all the ASCII characters and their
hexadecimal representations.

27

https://ascii.cl/

Note Description

\ prefix metacharacters with \ to match them literally
\\ to match \ literally
source property to convert a RegExp object to a string
helps to insert a RegExp inside another RegExp
flags property to get flags of a RegExp object
RegExp(pat’) helps to avoid or reduce escaping the / delimiter character

Alternation precedence tie-breaker is left-to-right if matches have the same starting location

robust solution: sort the alternations based on length, longest first

\t escape sequences like those supported in string literals
\b word boundary in regexps but backspace in string literals
\e undefined escapes will match the character it escapes
\xhh represent a character using hexadecimal values

\Xx7¢ matches | literally

1) Transform the given input strings to the expected output using the same logic on both
strings.

\

\

AV ANV V

let strl
let str2

'(9-2)*5+qty/3-(9-2)*7"
"(qty+4)/2-(9-2)*5+pq/4"

const patl =
strl.replace()
'35+qty/3-(9-2)*7"
str2.replace()
‘(qty+4)/2-35+pq/4'

2) Replace (4)\| with 2 only at the start or end of the given input strings.

> let sl
> let s2
> let s3

AV NV ANV

'2.3/(4)\\|6 fig 5.3-(4)\\]"'
"(4)\\[42 - (4)\\]|3'
“two - (4)\\]|\n'

const pat2 =

sl.replace()
'2.3/(4)\\|6 fig 5.3-2'
s2.replace()

‘242 - (4)\\|3'
s3.replace()

"two - (4)\\|\n'

3) Replace any matching element from the array items with X for given the input strings.
Match the elements from items literally. Assume no two elements of items will result in
any matching conflict.

28

> let items = ['a.b', '3+n', 'x\\y\\z', 'qty||price', '{n}']

// add your solution here

> const pat3 = // add your solution here
> 'Qa.bcd'.replace(pat3, 'X'")

< 'OXcd'

> 'E{n}AMPLE'.replace(pat3, 'X'")

< 'EXAMPLE'

> '43+n2 ax\\y\\ze'.replace(pat3, 'X'")

< '4X2 aXe'

4) Replace the backspace character \b with a single space character for the given input
string.

> let ip = '123\b456'

> ip.replace() // add your solution here
< '123 456"
5) Replace all occurrences of \e with e .

> let ip = 'th\\er\\e ar\\e common asp\\ects among th\\e alt\\ernations'

> ip.replace() // add your solution here
< 'there are common aspects among the alternations'

6) Replace any matching item from the array eqns with X for given the string ip . Match
the items from eqns literally.

> let ip = '3-(a”b)+2*(a”b)-(a/b)+3"
> let eqns = ['(a”b)"', '(a/b)', '(a”b)+2']

// add your solution here
> const pat4 = // add your solution here

> ip.replace(pat4, 'X')
< '3-X*X-X+3'

29

	Preface
	Prerequisites
	Conventions
	Acknowledgements
	Feedback and Errata
	Author info
	License
	Book version

	Why is it needed?
	How this book is organized

	RegExp introduction
	Console and documentation
	test() method
	Flags
	RegExp constructor and reuse
	replace() method
	Cheatsheet and Summary
	Exercises

	Anchors
	String anchors
	Line anchors
	Word anchors
	Opposite Word Anchor
	Cheatsheet and Summary
	Exercises

	Alternation and Grouping
	Alternation
	Grouping
	Precedence rules
	Cheatsheet and Summary
	Exercises

	Escaping metacharacters
	Escaping with backslash
	Dynamically escaping metacharacters
	Dynamically building alternation
	source and flags properties
	Escaping the delimiter
	Escape sequences
	Cheatsheet and Summary
	Exercises

