


Efficiënt scripten met jQuery 1.11 (jQuery
2.1)
Ontwerpen van interactieve websites met HTML5, CSS3
en jQuery

Patrick Verhaert

This book is for sale at http://leanpub.com/jq11

This version was published on 2015-12-15

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools
and many iterations to get reader feedback, pivot until you have the right book and build
traction once you do.

©2013 - 2015 Patrick Verhaert

http://leanpub.com/jq11
http://leanpub.com
http://leanpub.com/manifesto


Tweet This Book!
Please help Patrick Verhaert by spreading the word about this book on Twitter!

The suggested hashtag for this book is #jqueryBoek.

Find out what other people are saying about the book by clicking on this link to search for this
hashtag on Twitter:

https://twitter.com/search?q=#jqueryBoek

http://twitter.com
https://twitter.com/search?q=%23jqueryBoek
https://twitter.com/search?q=%23jqueryBoek


Inhoudsopgave

1. Elementen selecteren. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Basis selectors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Tags, classes en id’s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.2 Universele selector. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Hiërarchische selectors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.1 Descendant selector: $(‘ancestor descendant’). . . . . . . . . . . . . . . . 4
1.2.2 Child selector: $(‘parent > child’). . . . . . . . . . . . . . . . . . . . . . . 5
1.2.3 Sibling selector (alle volgende) : $(‘prev ∼ sibling’). . . . . . . . . . . . . 5
1.2.4 Sibling selector (dadelijk aangrenzende): $(‘prev + next’). . . . . . . . . . 5

1.3 Basisfilters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3.1 Subselecties binnen een reeks. . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3.2 Inverse subselecties binnen een reeks met :not(). . . . . . . . . . . . . . . 6
1.3.3 Overige subselecties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Inhoudsfilters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4.1 Het element bevat een bepaalde tekst :contains(). . . . . . . . . . . . . . 7
1.4.2 Het element bevat een bepaald element :has(). . . . . . . . . . . . . . . . 7
1.4.3 Lege (:empty) of niet lege (:parent) elementen. . . . . . . . . . . . . . . . 7

1.5 Attribuut selectors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.5.1 Attribuut bestaat [name]. . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.5.2 Attribuut is gelijk aan [name="value"]. . . . . . . . . . . . . . . . . . . 8
1.5.3 Attribuut is niet gelijk aan [name!="value"]. . . . . . . . . . . . . . . . 8
1.5.4 Attribuut begint met [nameˆ="value"]. . . . . . . . . . . . . . . . . . . 8
1.5.5 Attribuut eindigt op [name$="value"]. . . . . . . . . . . . . . . . . . . . 9
1.5.6 Attribuut bevat [name*="value"]. . . . . . . . . . . . . . . . . . . . . . 9
1.5.7 Attribuut bevat meerdere filters [filter1][filter2]. . . . . . . . . . . 9

1.6 Childfilters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.6.1 Eerste child element :first-child. . . . . . . . . . . . . . . . . . . . . . . . 9
1.6.2 Laatste child element :last-child. . . . . . . . . . . . . . . . . . . . . . . 10
1.6.3 Eerste sibling element binnen dezefde parent :first-of-type. . . . . . . . . 10
1.6.4 Laatste sibling element binnen dezefde parent :last-of-type. . . . . . . . . 10
1.6.5 Het n-de child elementen. . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.6.6 Het enige child element :only-child(). . . . . . . . . . . . . . . . . . . . . 11
1.6.7 Het enige child element van dat type binnen dezefde parent :only-of-type(). 11

1.7 Formulierfilters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.7.1 De type-selector (button, submit, reset, checkbox, …). . . . . . . . . . . . 11
1.7.2 Overige attributen (:checked, :disabled, :enabled en :selected). . . . . . . 12

1.8 Zichtbaarheidsfilters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12



INHOUDSOPGAVE

1.9 Toepassing 1: gemeentelijst filteren (basisversie). . . . . . . . . . . . . . . . . . 12
1.10 Toepassing 2: openingsuren markeren. . . . . . . . . . . . . . . . . . . . . . . . 14

2. Inleiding tot AJAX. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.1 Historiek. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Wat is XML? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3 Wat is JSON? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4 Requests filteren met GET en POST. . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4.1 Formulier verzenden met de GET-methode. . . . . . . . . . . . . . . . . 21
2.4.2 Formulier verzenden met de POST-methode. . . . . . . . . . . . . . . . . 21
2.4.3 GET-methode zonder formulier. . . . . . . . . . . . . . . . . . . . . . . . 22

2.5 Zes soorten AJAX requests. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.6 Same origin policy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.7 Cross-site scripting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26



1. Elementen selecteren.
Een jQuery statement bestaat steeds uit twee of meer delen. Het eerste deel is altijd een selector.
De volgende delen beschrijven de acties die u op de selector uitvoert.

Een voorbeeld:

..

$('p.foo').addClass('bar').show('slow');

• $('p.foo'): selecteer alle p-tags met het class-attribuut .foo.
• .addClass('bar'): voeg aan deze selectie de class .bar toe.
• .show('slow'); en maak de selectie zichtbaar.

Een goede selectie maken is bijgevolg cruciaal om een krachtig script uit te voeren.

JavaScript kent een zeer beperkte set aan selectors.

U kan bijvoorbeeld een bepaald id (document.getElementById(id)) of een bepaalde tag opvra-
gen (document.getElementByTagName(tag)), maar wat als u de derde rij in een tabel wilt ophalen
of alle links met een externe URL? Dit is onmogelijk met één commando.

Dit hoofdstuk beschrijft de belangrijkste selectiemethodes binnen jQuery. De syntax is eenvou-
dig. Deze volgt immers de selectiemethodes van CSS3, aangevuld met enkele jQuery-specifieke
selectiemethodes.

De voorbeelden die volgen, kan u uittesten op het oefenbestand selectorTest.html.

★ Open selectors/selectorTest.html.

★ De voorbeelden die volgen, kan u uittesten op dit oefenbestand.

1



Elementen selecteren. 2

Geef in het tekstveld een selectie in (bv: p#paragraaf1). Het script op de pagina gaat op zoek naar
de selectie en voegt aan de selectie de class .highLight toe. Deze class tekent een groen kader rond
de selector, maakt de achtergrond geel en kleurt de tekst rood.

Een overzicht van de verschillende selectors vindt u hier:
http://api.jquery.com/category/selectors/basic-css-selectors/

1.1 Basis selectors.

Zie: http://api.jquery.com/category/selectors/basic-css-selectors/

1.1.1 Tags, classes en id’s.

Volgende voorbeelden gebruikt u waarschijnlijk dagelijks in CSS:

..

$('a') // selecteer alle a-tags

$('a, tr') // selecteer alle a-tags en alle tr-tags

$('#paragraaf1') // selecteer de tag met id #paragraaf1

$('.sublist') // selecteer alle tags met class .sublist

1.1.2 Universele selector.

Het sterretje is, net zoals in CSS, de universele selector voor alle tags.

..

$('*') // selecteer alle tags

http://api.jquery.com/category/selectors/basic-css-selectors/
http://api.jquery.com/category/selectors/basic-css-selectors/


Elementen selecteren. 3

1.2 Hiërarchische selectors.

Zie: http://api.jquery.com/category/selectors/hierarchy-selectors/

Hiërarchische selectors kan u best vergelijken met een stamboom. Bekijk in onderstaande code
hoe de tags in elkaar genest zijn.

<table class="layoutTabel">

<thead>

<tr>

<th>Opleiding:</th>

<th>Datum:</th>

<th>Lokaal:</th>

</tr>

</thead>

<tbody>

<tr>

<td>Dreamweaver</td>

<td>15 december</td>

<td>PC1</td>

</tr>

</tbody>

</table>

De hiërarchische selectors zijn:

Parent en child
Parent en child zijn geneste tags op het eerste niveau.
De thead-tag en de tbody-tag staan rechtstreeks onder de table-tag en gedragen zich in
een parent-child relatie.
table is een parent van thead of
thead is een child van table.

Siblings
Siblings (broers of zussen) zijn elementen die op gelijk niveau staan.
De drie td-tags binnen een tr-tag zijn siblings van elkaar.

Ancestor (voorouder)
Een ancestor kan de parent zijn, maar ook de parent van de parent, of nog een verdere
relatie.
th heeft als parent tr.
th heeft als ancestor tr, maar ook thead, table en body.

Descendant (nakomeling)
Een descendant kan een child zijn, maar ook een child van een child of nog een verdere
relatie.
table heeft als child thead en tbody.
table heeft als descendant thead, tbody, maar ook tr, th en td.

http://api.jquery.com/category/selectors/hierarchy-selectors/


Elementen selecteren. 4

★ Controleer onderstaande selecties op het oefenbestand.
Enkel het deel tussen de aanhalingstekens invullen.
Bijvoorbeeld: table tr en niet $('table tr').

1.2.1 Descendant selector: $(‘ancestor descendant’).

..

$('table tr') // alle tr-tags binnen een tabel

$('table td') // alle td-tags binnen een tabel

$('table td a') // enkel de links in td-tags van een tabel

$('ul *') // alle tags binnen een ul-tag



Elementen selecteren. 5

1.2.2 Child selector: $(‘parent > child’).

..

$('table > tbody') // de tbody-tags binnen een tabel

$('table > td') // de td-tags binnen een tabel (*)

$('table > tbody > tr') // alle rijen binnen de tbody-tag

(*) Merk op dat in ons voorbeeld geen enkele td-tag rechtstreeks onder de table-tag staat. Er
wordt dus niets geselecteerd!

1.2.3 Sibling selector (alle volgende) : $(‘prev ∼ sibling’).

..

$('thead ~ tbody') // alle tbody-tags die volgen op een thead-tag

$('li ~ li') // alle li-tags die volgen op een li-tag

// de eerste li-tag van elke lijst wordt

// niet geselecteerd!

$('h3 ~ p') // alle p-tags die volgen op een h3-tag

1.2.4 Sibling selector (dadelijk aangrenzende): $(‘prev + next’).

..

$('thead + tbody') // alle tbody-tags die DADELIJK volgen op een thead-tag.

$('li + li') // alle li-tags die DADELIJK volgen op een li-tag

// de eerste li-tag van een lijst wordt niet geselecteer\

d!

$('h3 + p') // alle p-tags die DADELIJK volgen op een h3-tag

In het laatste voorbeeld worden paragraaf2 en paragraaf3 niet geselecteerd. Tussen paragraaf 1
en paragraaf 2 staat immers nog een lijst.

1.3 Basisfilters.

Zie : http://api.jquery.com/category/selectors/basic-filter-selectors/

De selectors die we tot hiertoe hebben besproken, selecteren telkens een volledig element.
$('tr') selecteert bijvoorbeeld alle tr-tags in een tabel.

http://api.jquery.com/category/selectors/basic-filter-selectors/


Elementen selecteren. 6

Stel dat we nu enkel de even of oneven rijen in een tabel wensen te selecteren, dan doen we dit
aan de hand van filters. Een filter is als het ware een subselectie binnen een hoofdselectie. Alle
filters worden met een dubbelpunt als prefix aangeduid. Voor de oneven rijen (rijen met index
1, 3, …) in een tabel wordt dit: $('tr:odd').

Bij sommige filters moet u eveneens een index meegeven. Het eerste element heeft de index 0.
Om bijvoorbeeld de derde rij binnen een tabel te selecteren, geeft u als index de waarde 2 mee
$('tr:eq(2)').

1.3.1 Subselecties binnen een reeks.

..

$('table tr:even') // alle even tr-tags binnen een tabel

$('table tr:odd') // alle oneven tr-tags binnen een tabel

$('img:first') // de eerste afbeelding op de pagina

$('img:last') // de laatste afbeelding op de pagina

$('img:eq(2)') // de DERDE (niet tweede) afbeelding op de pagina

$('img:lt(2)') // alle afbeeldingen voor de derde afbeelding

$('img:gt(2)') // alle afbeeldingen na de derde afbeelding

1.3.2 Inverse subselecties binnen een reeks met :not().

..

$('img:not(:eq(2))') // alle afbeeldingen, behalve de derde afbeelding

1.3.3 Overige subselecties.

(De drie laatste selectors kan u niet op het oefenbestand testen.)

..

$('*:header') // alle hx-tags (h1 t/m h6)

$(':header') // alle hx-tags (h1 t/m h6)

$('*:focus') // het element dat op dit moment geselecteerd is

$(':focus') // het element dat op dit moment geselecteerd is

$('div:animated') // alle div-tags die op dit moment bewegen



Elementen selecteren. 7

1.4 Inhoudsfilters.

Zie : http://api.jquery.com/category/selectors/content-filter-selector/

Deze filters testen op de inhoud (tekst of html) binnen een bepaald element.

1.4.1 Het element bevat een bepaalde tekst :contains().

..

$('td:contains("PC")') // alle cellen die de tekenreeks PC bevatten

$('td:contains(PC)')

$('td:not(:contains("PC"))') // alle cellen die de tekenreeks PC

// niet bevatten

$('td:not(:contains(PC))')

De tekst is hoofdlettergevoelig, maar de aanhalingstekens zijn niet verplicht.
contains("PC") is NIET hetzelfde als contains("pc").
contains("PC") isWEL hetzelfde als contains(PC).

1.4.2 Het element bevat een bepaald element :has().

..

$('td:has(a)') // alle cellen die een link bevatten

$('td:not(:has(a))') // alle cellen die geen link bevatten

1.4.3 Lege (:empty) of niet lege (:parent) elementen.

..

$('td:empty') // alle lege cellen binnen een tabel

$('td:not(:empty)') // alle cellen die niet leeg zijn

$('td:parent') // alle cellen die minstens een child hebben

http://api.jquery.com/category/selectors/content-filter-selector/


Elementen selecteren. 8

1.5 Attribuut selectors.

Vanuit CSS kan u elementen selecteren op basis van hun attribuut. Ook deze eigenschap werd
door jQuery overgenomen. Bekijk de broncode van het oefenbestand. Neem bijvoorbeeld een
afbeelding. Alle afbeeldingen hebben natuurlijk een src-attribuut en een alt-attribuut. Sommige
afbeeldingen hebben ook het title-attribuut.

Zie : http://api.jquery.com/category/selectors/attribute-selectors/

1.5.1 Attribuut bestaat [name].

..

$('img[src]') // alle afbeeldingen met het src-attribuut

$('img[title]') // alle afbeeldingen met het title-attribuut

$('a[target]') // alle links met het target-attribuut

$('a:not([target])') // alle links zonder target-attribuut

We kunnen een selectie nog verder verfijnen door de waarde of inhoud van het attribuut te
controleren.

1.5.2 Attribuut is gelijk aan [name="value"].

..

$('a[target="_blank"]') // alle links met target="_blank"

// of zonder opgegeven target

1.5.3 Attribuut is niet gelijk aan [name!="value"].

..

$('a[target!="_blank"]') // alle links zonder target

// of mét een ander target dan "_blank"

1.5.4 Attribuut begint met [nameˆ="value"].

..

$('a[href^="http://"]') // alle externe html-links

http://api.jquery.com/category/selectors/attribute-selectors/


Elementen selecteren. 9

1.5.5 Attribuut eindigt op [name$="value"].

..

$('a[href$=".com"]') // alle links die eindigen op .com

1.5.6 Attribuut bevat [name*="value"].

..

$('a[href*="wiki"]') // alle links die de tekenreeks "wiki" bevatten

1.5.7 Attribuut bevat meerdere filters [filter1][filter2].

..

$('a[href^="http://"][title]') // alle externe links met een title-attribuut

1.6 Childfilters.

Een childfilter selecteert het n-de element binnen het parent element.
Zie : http://api.jquery.com/category/selectors/child-filter-selectors/

1.6.1 Eerste child element :first-child.

..

$('p strong:first-child') // de eerste strong-tag in ELKE paragraaf

$('p strong:first') // de eerste strong-tag in de EERSTE paragraaf

// die een strong-tag heeft

http://api.jquery.com/category/selectors/child-filter-selectors/


Elementen selecteren. 10

1.6.2 Laatste child element :last-child.

..

$('p strong:last-child') // de laatste strong-tag in ELKE paragraaf

$('p strong:last') // de laatste strong-tag in de LAATSTE paragraaf

// die een strong-tag heeft

1.6.3 Eerste sibling element binnen dezefde parent
:first-of-type.

..

$('a:first-of-type') // de eerste a-tag binnen dezelfde parent

1.6.4 Laatste sibling element binnen dezefde parent
:last-of-type.

..

$('a:last-of-type') //de laatste a-tag binnen dezelfde parent

1.6.5 Het n-de child elementen.

De index start hier vanaf 1 en niet vanaf 0!
De letter n staat voor een geheel getal (0, 1, 2, 3, …).

..

$('p strong:nth-child(2)') // de tweede strong-tag

$('p strong:nth-child(3n)') // strong-tags 3, 6, 9, ...

$('p strong:nth-child(even)') // alle even strong-tags

$('p strong:nth-child(2n)') // alle even strong-tags

$('p strong:nth-child(odd)') // alle oneven strong-tags

$('p strong:nth-child(2n+1)') // alle oneven strong-tags

$('p strong:nth-last-child(2)') // de voorlaatste strong-tag

$('li:nth-of-type(even)') // alle even li-tag binnen dezelfde parent

$('a:nth-last-of-type(2)') // de voorlaatste a-tag binnen dezelfde pare\

nt



Elementen selecteren. 11

1.6.6 Het enige child element :only-child().

..

$('p strong:only-child()') // de strong-tag, maar ENKEL indien dit HET ENIGE

// child element binnen de p-tag is

1.6.7 Het enige child element van dat type binnen dezefde
parent :only-of-type().

..

$('strong:only-of-type()') // de strong-tag, maar ENKEL indien dit DE ENIGE

// strong-tag is binnen dezelfde parent

1.7 Formulierfilters.

Zie : http://api.jquery.com/category/selectors/form-selectors/

Filtert formulierelementen van een bepaald type of met een bepaald attribuut.

1.7.1 De type-selector (button, submit, reset, checkbox, …).

..

$('input') // ALLE input-tags.

$('input[type="button"]') // alle input-tags met type="button"

$('input[type="submit"]') // alle input-tags met type="submit"

$('input[type="reset"]') // alle input-tags met type="reset"

http://api.jquery.com/category/selectors/form-selectors/


Elementen selecteren. 12

1.7.2 Overige attributen (:checked, :disabled, :enabled en
:selected).

..

$(':checked') // checkboxen en radiobuttons met een checked-attribuut

// ':checked' werkt NIET op een keuzelijst!

$(':disabled') // alle elementen met een disabled-attribuut

$(':enabled') // alle elementen die niet disabled staan

$(':selected') // het gekozen item uit een keuzelijst

// ':selected' werkt NIET op checkboxen en radiobuttons!

Met :checked en :selected selecteert u enkel het element, maar haalt u de gekozen waarde nog
niet op. De methodes om deze waardes uit te lezen, komen later aan bod.

1.8 Zichtbaarheidsfilters.

Zie : http://api.jquery.com/category/selectors/visibility-filter-selectors/

..

$('p:visible') // alle zichtbare p-tags

$('p:hidden') // alle onzichtbare p-tags

1.9 Toepassing 1: gemeentelijst filteren (basisversie).

★ Open selectors/toep_gemeentelijst_1.html.

De pagina bevat een lijst van alle Vlaamse gemeenten.
Het zoekveld bovenaan de pagina filtert de lijst met gemeentenamen.

http://api.jquery.com/category/selectors/visibility-filter-selectors/


Elementen selecteren. 13

<body>

...

<input type="text" name="filter" id="filter" ... ">

...

<ul>

<li><a ... >Aalst</a></li>

<li><a ... >Aalter</a></li>

<li><a ... >Aarschot</a></li>

<li><a ... >Aartselaar</a></li>

</ul>

...

</body>

★ Pas het script als volgt aan.

1 $(function() {

2 $('#filter').keyup(function(){

3 var filter = $(this).val();

4 $('li').hide();

5 $('li:contains(' + filter + ')').show();

6 });

7 });

Telkens u in het tekstveld een letter intypt, wordt het event keyup() geactiveerd. De waarde uit
het tekstveld komt in de variabele filter terecht.
Indien u bijvoorbeeld ka invult, wordt getest of dit woord binnen een li-tag voorkomt. De
selectoren op lijn 4 en 5 bepalen of de li-tag zichtbaar of onzichtbaar wordt.

Merk op dat op lijn 5 de variabele dynamisch in de selector wordt verwerkt. Voor het zoekwoord
ka wordt dit: $('li:contains(ka)').show();

..

Zoeken op Ka of op ka een toont een totaal verschillend resultaat. De zoekfunctie is namelijk
hoofdlettergevoelig. Met de selecties uit dit hoofdstuk kunnen we dit nog niet oplossen. In het
volgend hoofdstuk gaan we dit probleem wegwerken door de selecties verder te verfijnen.



Elementen selecteren. 14

1.10 Toepassing 2: openingsuren markeren.

★ Open selectors/toep_openingsuren.html.

De pagina bevat twee tabellen waaropwe de openingsuren van vandaagmarkeren. Elke weekdag
komt overeen met één rij binnen de tbody-tag. Merk op dat we de tabel ook starten met zondag.
Dit is een bewuste keuze omdat we het rijnummer dan makkelijk kunnen koppelen aan de
weekdag van het Date-object.



Elementen selecteren. 15

<table class="layoutTabel">

<thead>...</thead>

<tbody>

<tr>

<td><strong>Zondag</strong></td>

<td>Gesloten</td>

<td>Gesloten</td>

<td>Gesloten</td>

</tr>

...

</tbody>

</table>

★ Voeg volgende code toe.

1 $(function() {

2 var vandaag = new Date();

3 var dag = vandaag.getDay();

4 $('tbody tr:nth-child(' + (dag + 1) + ')').addClass('nu');

5 });

Op lijn 3 halen we de weekdag op. (zondag = 0, maandag = 1, …). Vervolgens gaan we op lijn 4
dit getal met één verhogen om zo de juiste rij binnen tbody te markeren met de class .nu.

..

Merk op dat de pagina twee tabellen bevat en dat we daarom tr:nth-child() gebruiken en
niet tr:eq().
tr:eq() zou enkel een rij in de eerste tabel markeren.



2. Inleiding tot AJAX.
Alle moderne websites maken tegenwoordig gebruik van AJAX. Denk maar aan Gmail, Google
Drive, Facebook en Twitter.

In tegenstelling tot een klassieke webpagina worden bij AJAX-gestuurde pagina’s delen van
de pagina ververst zonder de volledige webpagina opnieuw in te laden. De pagina’s worden
hierdoor veel interactiever en intuïtiever. De gebruiker krijgt meer het gevoel dat hij in een
desktopapplicatie werkt dan op eenwebsite.Websites die hoofdzakelijk gebruikmaken vanAJAX
noemt men ook wel Rich Internet Applicaties of RIA’s.

AJAX is geen technologie op zich, maar een algemene term voor het ontwerpen van interactieve
pagina’s waarbij gegevens uit een extern bestand worden opgehaald en vervolgens dynamisch
worden getoond. Het grote voordeel van AJAX t.o.v. uitsluitend klassieke webpagina’s is dat alle
gegevens dynamisch in de browser worden geladen. Alle interactiviteit (sorteren, filteren, …)
gebeurt dus volledig binnen de browser zonder dat er een nieuwe connectie met de server nodig
is.

De communicatie binnen een klassieke website gebeurt als volgt:

1. De browser laadt een pagina.
2. De gebruiker klikt op een link.
3. De browser vraagt een volledig nieuwe pagina op.
4. De webserver stuurt de nieuwe pagina naar de browser.
5. De browser toont de nieuwe pagina.

De communicatie met een AJAX-pagina verloopt als volgt:

1. De browser laadt een pagina.
2. De gebruiker klikt op een link.
3. De JavaScript engine verwerkt de aanvraag en stuurt de aanvraag in de achtergrond door

naar een externe pagina.
4. De JavaScript engine ontvangt de gegevens en past het DOM aan.
5. De browser toont de nieuwe gegevens en hoeft daarvoor niet de volledige pagina te

herladen.

Omdat de browser minder met de webserver communiceert en omdat de verwerking volledig
lokaal gebeurt, krijgen we een zeer snelle respons en een snelle pagina update.

In dit hoofdstuk geven we een korte inleiding tot AJAX en verduidelijken we enkele begrippen.
De oefeningen komen in de twee volgende hoofdstukken aan bod.

Een volledig overzicht van alle AJAX-methodes vindt u hier:
http://api.jquery.com/category/ajax/

16

http://api.jquery.com/category/ajax/


Inleiding tot AJAX. 17

2.1 Historiek.

De techniek om asynchroon gegevens op te halen, bestaat al meer dan 20 jaar. In 1998 ontwikkelde
Microsoft een systeem om via eenActiveX control gegevens in de achtergrond op te halen. Enkele
jaren later implementeerden alle andere browsers een gelijkaardig principe, maar nu gebaseerd
op het gestandaardiseerde XMLHttpRequest protocol (kortweg XHR).

Google was het eerste bedrijf dat XHR op grote schaal in zijn toepassingen ging verwerken. In
de beginjaren kwamen de externe gegevens uitsluitend uit een XML-document. Zo is de term
AJAX ontstaan. AJAX was het acroniem voor Asynchronous JavaScript And XML.

Ondertussen is de omschrijving van AJAX al achterhaald. Via AJAX kunnen we niet enkel XML
importeren, maar eveneens tekst, HTML, JSON en JavaScript.

Het is niet zo evident om op een universele manier AJAX te verwerken. De ene browser gebruikt
XHR, de andere ActiveX. Gelukkig hoeven wij ons hier geen zorgen over te maken. jQuery zorgt
immers voor een correcte verwerking in de verschillende browsers.

2.2 Wat is XML?

XML is het acroniem voor eXtensible Markup Language. Net zoals HTML, beschrijft XML
de datastructuur van gegevens, niet de opmaak. Een XML-document is, net zoals HTML,
opgebouwd met tags (nodes in het XML jargon) en attributen.

Neem als voorbeeld een adresboek in de vorm van een XML-document.

XML begint steeds met de header of proloog. De proloog bevat informatie over de document
encoding en de XML versie. Dit is ondermeer belangrijk voor het programma dat de XML-code
gaat verwerken (de XML-parser). Na de proloog volgt de rootnode adresboek.
Ons adresboek bevat twee personen. Elke persoon staat beschreven in een eigen adresnode met
als attribuut een uniek id. Binnen de adresnode komen de childnodes: voornaam, naam en email.

<?xml version="1.0" encoding="UTF-8"?>

<adresboek>

<adres id="1">

<voornaam>Lorem</voornaam>

<naam>Ipsum</naam>

<email>lorem@example.com</email>

</adres>

<adres id="2">

<voornaam>Morbi</voornaam>

<naam>Dui</naam>

<email>morbi@example.com</email>

</adres>

<adres id="3"> ... </adres>

</adresboek>



Inleiding tot AJAX. 18

Een goed gestructureerd XML-document is zelfbeschrijvend. Dit wil zeggen dat nodenamen iets
vertellen over de inhoud van de node.

Als het document voldoet aan alle syntaxregels van XML, noemt men ditwell-formed (of goed
gevormd). Een well-formed document kan door de meeste parsers, zoals een webbrowser, correct
verwerkt worden.

Een well-formed document kan u makkelijk in Firefox of in Chrome testen. Open het XML-
document in de browsers. Als de boomstructuur verschijnt, is het document well-formed en zijn
de gegevens te verwerken via jQuery.

Indien het document fouten bevat, is het niet well-formed en krijgt u dit te zien:

In een XML-document dat uitsluitend voor eigen gebruik is ontworpen, kan u de nodenamen
vrij kiezen. In een universeel, gestandaardiseerd XML-document zoals RSS, ATOM en XHTML
ligt de naamgeving vast.

Om de correctheid van het document te controleren, maakt men gebruik van een DTD of van
een XML Schema.

Een DTD of XML schema documenteert als het ware het XML-bestand. Hierin wordt ondermeer



Inleiding tot AJAX. 19

beschreven welke nodes in het XML-document moeten/mogen voorkomen en welke inhoud de
nodes bevatten (tekst, enkel getallen, …). Aan de hand van dit controlebestand kan de parser de
XML-nodes zowel op syntax als op inhoud valideren.

Een well-formed XML-bestand dat ook nog voldoet aan de bijbehorende DTD of Schema, noemt
men een valid XML-bestand.



Inleiding tot AJAX. 20

2.3 Wat is JSON?

JSON is het acroniem voor JavaScript Object Notation. JSON beschrijft, net zoals XML, de
datastructuur van gegevens. JSON is een onderdeel van JavaScript, en is bijgevolg relatief
eenvoudig in het DOM te verwerken.

De eenvoud van JSON heeft geleid tot een grote populariteit ervan, met name als een alternatief
voor XML. Binnen JSON staan gegevens gestructureerd in de vorm van een JavaScriptobject of
als een JavaScript array.

Ziehier een JSON equivalent van ons XML adresboek.

{

"adresboek":[

{

"id":1,

"voornaam":"Lorem",

"naam":"Ipsum",

"email":"lorem@example.com"

},

{

"id":2,

"voornaam":"Morbi",

"naam":"Dui",

"email":"morbi@example.com"

},

{

...

}

]

}

..

Vergelijk de syntax van bovenstaand JSON object met de syntax van een object literal in
paragraaf 2.11.4.
In JSON moeten alle namen en stringwaardes tussen dubbele aanhalingstekens staan, zoniet
kan jQuery het bestand niet verwerken!

• Goed: “voornaam”:”Lorem”
• Fout: voornaam : “Lorem”
• Fout: ‘voornaam’ : “Lorem”
• Fout: ‘voornaam’ : ‘Lorem’



Inleiding tot AJAX. 21

2.4 Requests filteren met GET en POST.

Het is perfect mogelijk om gegevens (HTML, JSON, XML, …) te verwerken uit een volledig
statisch document. Het wordt natuurlijk nog interessanter indien we de gegevens dynamisch
vanuit een database kunnen genereren. Vanuit een statische pagina is de response altijd hetzelfde.
Op een dynamische pagina is de response afhankelijk van een filter of parameter. Het filteren
gebeurt meestal vanuit een formulier.

Neem bijvoorbeeld de zoekfunctie van Google. De response is afhankelijk van de zoekterm die
u in het formulier invult.

Zoals u weet, kan u een formulier verzenden via GET of via POST.

2.4.1 Formulier verzenden met de GET-methode.

GET plakt alle formuliervelden achter de URL. Alle zoekmachines gebruiken GET.

Zoek via Google op jquery tutorials en bekijk de URL.

..

http://www.google.be/search?...&q=jquery+tutorials&.....

De structuur van de URL met een GET-request is als volgt:
action?naam1=waarde1&naam2=waarde2&naam3=waarde3

Action is de URL van de pagina die het formulier zal verwerken. Van elk formulierveld wordt
zowel de naam van het veld als de waarde in het veld aan de URL toegevoegd. Alle velden zijn
gescheiden door een &-teken.

Omdat GET de waarde of de inhoud van elk object zichtbaar maakt in de URL, kan u deze
methode bijvoorbeeld niet gebruiken op een loginpagina. Het paswoord mag immers niet
zichtbaar zijn in de URL. De lengte van de URL is ook beperkt tot enkele honderden karakters
(browserafhankelijk).

2.4.2 Formulier verzenden met de POST-methode.

De tweede methode, POST, geeft de gegevens via de header door. De gegevens zijn nu niet
zichtbaar in de URL. Het aantal karakters dat kan worden doorgestuurd, is vrijwel onbeperkt.

..

Voor een AJAX request naar een statische pagina hebt u geen webserver nodig.
Voor een AJAX request met GET- en POST-variabelen in combinatie met een database hebt
u altijd een webserver nodig. Formuliergegevens kan u dan enkel verwerken via een server-
side scripttaal zoals PHP of ASP.NET. Hierdoor bent u wel verplicht om via een webserver te
werken.



Inleiding tot AJAX. 22

2.4.3 GET-methode zonder formulier.

Omdat de GET-methode alle parameters achter de URL plaatst, is het perfect mogelijk om de
parameters dadelijk in een link te verwerken. Dit wordt vaak gebruikt in eenmaster/detail relatie.

De masterpagina toont een beknopt overzicht van alle items. Elk item heeft een link naar de
detailpagina en stuurt in de URL een unieke identificatiecode mee.

Neem als voorbeeld de startpagina van Campinia Media¹.

Elke link “Lees verder” verwijst naar dezelfde detailpagina:
http://www.campiniamedia.be/fondslijst_detail.asp?ISBN=xxxxxx

¹http://www.campiniamedia.be

http://www.campiniamedia.be
http://www.campiniamedia.be


Inleiding tot AJAX. 23

De parameter ISBN filtert de juiste gegevens uit de database en toont de gedetailleerde informatie
over het gevraagde boek.



Inleiding tot AJAX. 24

2.5 Zes soorten AJAX requests.

De methode $.ajax() is een jQuery’s low-level AJAX implementatie. Dit is tevens de meest
uitgebreide, maar ook moeilijkste methode.

Gelukkig zijn er ook nog vijf afgeleide methodes met minder toeters en bellen, maar wel
veel eenvoudiger te begrijpen en te gebruiken. Onderstaande tabel geeft een overzicht van de
verschillende methodes met hun mogelijkheden en beperkingen.

Zonder webserver kan u enkel koppelen met statische bestanden. Om gegevens uit een database
te verwerken, zal u altijd een server-side script moeten gebruiken en bent u natuurlijk wel
verplicht om een webserver te gebruiken.

Omdat niet iedereen vertrouwd is met server-side scripts (PHP, ASP.NET, …) gaan we de
oefeningen dadelijk opsplitsen over twee verschillende hoofdstukken.



Inleiding tot AJAX. 25

2.6 Same origin policy.

Uit veiligheidsredenen bevatten alle browsers enkele beperkingen. Eén van deze beperkingen is
de same origin policy. Of, met andere woorden, alle gegevens die u via AJAX ophaalt, moeten
afkomstig zijn van hetzelfde domein. Hetzelfde domein betekent meer specifiek: dezelfde server,
zelfde protocol, zelfde domeinnaam en dezelfde poort. Het is bijvoorbeeld niet mogelijk dat een
webpagina op domeinA gegevens ophaalt uit domeinB.

Er zijn echter twee uitzonderingen. Het ophalen van externe JavaScripts en gegevens in JSONP
formaat (let op de P achteraan) zijn wel toegestaan.

JSONP staat voor “JSON with Padding”. Wanneer de webserver van domeinB zodanig staat
geconfigureerd dat deze toelaat dat andere gebruikers zijn gegevens in JSON-formaat mogen
ophalen, spreekt men van JSONP. De structuur van een JSON-bestand en van een JSONP-bestand
is identiek.

Onderstaande afbeelding toont de AJAX mogelijkheden/beperkingen, rekening houdend met de
same origin policy.

..

Same origin policy is een beperking van de browser. Ook indien u zonder webserver werkt
(domeinA is dan de lokale computer) geldt bovenstaand schema.



Inleiding tot AJAX. 26

2.7 Cross-site scripting.

Indien u over een webserver beschikt, kan u de same origin policy makkelijk omzeilen. Op de
webserver plaatst u een proxyscript. Dit proxyscript haalt de inhoud van een externe pagina
(html, XML, JSON, …) op en toont dit in zijn eigen pagina.

In plaats van in een AJAX request te verwijzen naar de externe pagina, verwijst u nu naar de
proxypagina. Voor de browser lijkt het alsof de gegevens afkomstig zijn van het eigen domein.
Op deze manier kunnen we dus alle externe gegevens perfect via AJAX verwerken. Hierover
later meer.

..

Het proxyscript is een server-side script en is niet gebonden aan de same origin policy.


	Inhoudsopgave
	Elementen selecteren.
	Basis selectors.
	Tags, classes en id's.
	Universele selector.

	Hiërarchische selectors.
	Descendant selector: $(`ancestor descendant').
	Child selector: $(`parent > child').
	Sibling selector (alle volgende) : $(`prev  sibling').
	Sibling selector (dadelijk aangrenzende): $(`prev + next').

	Basisfilters.
	Subselecties binnen een reeks.
	Inverse subselecties binnen een reeks met :not().
	Overige subselecties.

	Inhoudsfilters.
	Het element bevat een bepaalde tekst :contains().
	Het element bevat een bepaald element :has().
	Lege (:empty) of niet lege (:parent) elementen.

	Attribuut selectors.
	Attribuut bestaat [name].
	Attribuut is gelijk aan [name="value"].
	Attribuut is niet gelijk aan [name!="value"].
	Attribuut begint met [name^="value"].
	Attribuut eindigt op [name$="value"].
	Attribuut bevat [name*="value"].
	Attribuut bevat meerdere filters [filter1][filter2].

	Childfilters.
	Eerste child element :first-child.
	Laatste child element :last-child.
	Eerste sibling element binnen dezefde parent :first-of-type.
	Laatste sibling element binnen dezefde parent :last-of-type.
	Het n-de child elementen.
	Het enige child element :only-child().
	Het enige child element van dat type binnen dezefde parent :only-of-type().

	Formulierfilters.
	De type-selector (button, submit, reset, checkbox, …).
	Overige attributen (:checked, :disabled, :enabled en :selected).

	Zichtbaarheidsfilters.
	Toepassing 1: gemeentelijst filteren (basisversie).
	Toepassing 2: openingsuren markeren.

	Inleiding tot AJAX.
	Historiek.
	Wat is XML?
	Wat is JSON?
	Requests filteren met GET en POST.
	Formulier verzenden met de GET-methode.
	Formulier verzenden met de POST-methode.
	GET-methode zonder formulier.

	Zes soorten AJAX requests.
	Same origin policy.
	Cross-site scripting.


