

[image: How to ease your javascript interviews]

 How to ease your javascript interviews

 I Love what I hate first

 manjunath Kalburgi

 This book is for sale at http://leanpub.com/javascriptinterviewquestions

 This version was published on 2020-10-16

 [image: publisher's logo]

 * * * * *

 This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and many iterations to get reader feedback, pivot until you have the right book and build traction once you do.

 * * * * *

© 2020 manjunath Kalburgi

 Table of Contents

 	
 Chapter One

 	
 How to get started in interview?

 	
 Chapter Two

 	
 What MNC / top most companies will ask you in the intervew?

 	
 Chapter Three

 	
 Algorithms and Data Structure Questions

 	
 Chapter Four

 	
 Most Popular React Interview Questions

 	
 Chapter Five

 	
 Next comes very important topic called Redux

 Guide

 	
 Begin Reading

Chapter One

How to get started in interview?

In 2020 onwards coding interviews will get tougher and tougher.It will be not easy as that of earlier so you need to be very proactive in solving the problems everyday and need to practice regularly,explore more examples than before.I have listed some of the best patterns which are getting used in most of the interviews in top companies.

Lets start with basics of the language first.

Lets start with some warmup questions and then will move to advanced questions.

Q1: What is Coercion in JavaScript?
Answer
In JavaScript conversion between different two build-in types called coercion. Coercion comes in two forms in JavaScript: explicit and implicit.

Here’s an example of explicit coercion:

var a = “42”;

var b = Number(a);

a;				// “42”
b;				// 42 – the number!
And here’s an example of implicit coercion:

var a = “42”;

var b = a * 1;	// “42” implicitly coerced to 42 here

a;				// “42”
b;				// 42 – the number!

Q2: Explain arrays in JavaScript
Answer
An array is an object that holds values (of any type) not particularly in named properties/keys, but rather in numerically indexed positions:

var arr = [

	“hello world”,
	42,
	true
];

arr[0];			// “hello world”
arr[1];			// 42
arr[2];			// true
arr.length;		// 3

typeof arr;		// “object”

Q3: Explain equality in JavaScript
Answer
JavaScript has both strict and type–converting comparisons:

Strict comparison (e.g., ===) checks for value equality without allowing coercion
Abstract comparison (e.g. ==) checks for value equality with coercion allowed
var a = “42”;
var b = 42;

a == b;			// true
a === b;		// false
Some simple equalityrules:

If either value (aka side) in a comparison could be the true or false value, avoid == and use ===.
If either value in a comparison could be of these specific values (0, “”, or [] – empty array), avoid == and use ===.
In all other cases, you’re safe to use ==. Not only is it safe, but in many cases it simplifies your code in a way that improves readability.

Q4: What is Scope in JavaScript?
Answer
In JavaScript, each function gets its own scope. Scope is basically a collection of variables as well as the rules for how those variables are accessed by name. Only code inside that function can access that function’s scoped variables.

A variable name has to be unique within the same scope. A scope can be nested inside another scope. If one scope is nested inside another, code inside the innermost scope can access variables from either scope.

Q5: What is the object type?
Answer
The object type refers to a compound value where you can set properties (named locations) that each hold their own values of any type.

var obj = {

	a: “hello world”, // property
	b: 42,
	c: true
};

obj.a;		// “hello world”, accessed with doted notation
obj.b;		// 42
obj.c;		// true

obj[“a”];	// “hello world”, accessed with bracket notation
obj[“b”];	// 42
obj[“c”];	// true
Bracket notation is also useful if you want to access a property/key but the name is stored in another variable, such as:

var obj = {

	a: “hello world”,
	b: 42
};

var b = “a”;

obj[b];			// “hello world”
obj[“b”];		// 42

Q6: What is typeof operator?
Answer
JavaScript provides a typeof operator that can examine a value and tell you what type it is:

var a;
typeof a;				// “undefined”

a = “hello world”;
typeof a;				// “string”

a = 42;
typeof a;				// “number”

a = true;
typeof a;				// “boolean”

a = null;
typeof a;				// “object” – weird, bug

a = undefined;
typeof a;				// “undefined”

a =;
typeof a;				// “object”

Q7: Explain Null and Undefined in JavaScript
Answer
JavaScript (and by extension TypeScript) has two bottom types: null and undefined. They are intended to mean different things:

Something hasn’t been initialized : undefined.
Something is currently unavailable: null.

Q8: Explain Values and Types in JavaScript
Answer
JavaScript has typed values, not typed variables. The following built-in types are available:

string
number
boolean
null and undefined
object
symbol (new to ES6)

Q9: Explain event bubbling and how one may prevent it
Event bubbling is the concept in which an event triggers at the deepest possible element, and triggers on parent elements in nesting order. As a result, when clicking on a child element one may exhibit the handler of the parent activating.

One way to prevent event bubbling is using event.stopPropagation() or event.cancelBubble on IE < 9.

Q10: Explain the same-origin policy with regards to JavaScript.
Answer
The same-origin policy prevents JavaScript from making requests across domain boundaries. An origin is defined as a combination of URI scheme, hostname, and port number. This policy prevents a malicious script on one page from obtaining access to sensitive data on another web page through that page’s Document Object Model.

Q11: Explain what a callback function is and provide a simple example.
Answer
A callback function is a function that is passed to another function as an argument and is executed after some operation has been completed. Below is an example of a simple callback function that logs to the console after some operations have been completed.

function modifyArray(arr, callback) {
 // do something to arr here
 arr.push(100);
 // then execute the callback function that was passed
 callback();
}

var arr = [1, 2, 3, 4, 5];

modifyArray(arr, function() {
 console.log(“array has been modified”, arr);
});

Q12: Find the missing number in O(n) time
Problem
Being told that an unsorted array contains (n - 1) of n consecutive numbers (where the bounds are defined), find the missing number in O(n) time

Answer
// The output of the function should be 8
var arrayOfIntegers = [2, 5, 1, 4, 9, 6, 3, 7];
var upperBound = 9;
var lowerBound = 1;

findMissingNumber(arrayOfIntegers, upperBound, lowerBound); // 8

function findMissingNumber(arrayOfIntegers, upperBound, lowerBound) {
 // Iterate through array to find the sum of the numbers
 var sumOfIntegers = 0;
 for (var i = 0; i < arrayOfIntegers.length; i++) {

 sumOfIntegers += arrayOfIntegers[i];
}

// Find theoretical sum of the consecutive numbers using a variation of Gauss Sum.
 // Formula: [(N * (N + 1)) / 2] - [(M * (M - 1)) / 2];
 // N is the upper bound and M is the lower bound

upperLimitSum = (upperBound * (upperBound + 1)) / 2;
 lowerLimitSum = (lowerBound * (lowerBound - 1)) / 2;

theoreticalSum = upperLimitSum - lowerLimitSum;

return theoreticalSum - sumOfIntegers;
}

Q13: Given a string, reverse each word in the sentence
Answer
var string = “Welcome to this Javascript Guide!”;

// Output becomes !ediuG tpircsavaJ siht ot emocleW
var reverseEntireSentence = reverseBySeparator(string, “”);

// Output becomes emocleW ot siht tpircsavaJ !ediuG
var reverseEachWord = reverseBySeparator(reverseEntireSentence, “ “);

function reverseBySeparator(string, separator) {
 return string.split(separator).reverse().join(separator);
}

Q14: How to check if an object is an array or not? Provide some code.
Answer
The best way to find whether an object is instance of a particular class or not using toString method from Object.prototype

var arrayList = [1 , 2, 3];
One of the best use cases of type checking of an object is when we do method overloading in JavaScript. For understanding this let say we have a method called greet which take one single string and also a list of string, so making our greet method workable in both situation we need to know what kind of parameter is being passed, is it single value or list of value?

function greet(param) {
 if() {

 // here have to check whether param is array or not
}
 else {
 }
}
However, in above implementation it might not necessary to check type for array, we can check for single value string and put array logic code in else block, let see below code for the same.

function greet(param) {
 if(typeof param === ‘string’) {
 }
 else {

 // If param is of type array then this block of code would execute
}
 }
Now it’s fine we can go with above two implementations, but when we have a situation like a parameter can be single value, array, and object type then we will be in trouble.

Coming back to checking type of object, As we mentioned that we can use Object.prototype.toString

if(Object.prototype.toString.call(arrayList) === ‘[object Array]’) {
 console.log(‘Array!’);
}
If you are using jQuery then you can also used jQuery isArray method:

if($.isArray(arrayList)) {
 console.log(‘Array’);
} else {
 console.log(‘Not an array’);
}
FYI jQuery uses Object.prototype.toString.call internally to check whether an object is an array or not.

In modern browser, you can also use:

Array.isArray(arrayList);
Array.isArray is supported by Chrome 5, Firefox 4.0, IE 9, Opera 10.5 and Safari 5

Q15: How would you check if a number is an integer?
Answer
A very simply way to check if a number is a decimal or integer is to see if there is a remainder left when you divide by 1.

function isInt(num) {
 return num % 1 === 0;
}

console.log(isInt(4)); // true
console.log(isInt(12.2)); // false
console.log(isInt(0.3)); // false

Q16: Implement enqueue and dequeue using only two stacks
Answer
Enqueue means to add an element, dequeue to remove an element.

var inputStack = []; // First stack
var outputStack = []; // Second stack

// For enqueue, just push the item into the first stack
function enqueue(stackInput, item) {
 return stackInput.push(item);
}

function dequeue(stackInput, stackOutput) {
 // Reverse the stack such that the first element of the output stack is the
 // last element of the input stack. After that, pop the top of the output to
 // get the first element that was ever pushed into the input stack
 if (stackOutput.length <= 0) {

 while(stackInput.length > 0) {
 var elementToOutput = stackInput.pop();
 stackOutput.push(elementToOutput);
 }
}

return stackOutput.pop();
}

Q17: Is there anyway to force using strict mode in Node.js?
Answer
you can place

“use strict”;
at the top of your file in node >= 0.10.7, but if you want your whole app to run in strict (including external modules) you can do this

node –use_strict

Q18: Make this work
Problem
duplicate([1, 2, 3, 4, 5]); // [1,2,3,4,5,1,2,3,4,5]
Answer
function duplicate(arr) {
 return arr.concat(arr);
}

duplicate([1, 2, 3, 4, 5]); // [1,2,3,4,5,1,2,3,4,5]

Q19: Remove duplicates of an array and return an array of only unique elements
Answer
// ES6 Implementation
var array = [1, 2, 3, 5, 1, 5, 9, 1, 2, 8];

Array.from(new Set(array)); // [1, 2, 3, 5, 9, 8]

// ES5 Implementation
var array = [1, 2, 3, 5, 1, 5, 9, 1, 2, 8];

uniqueArray(array); // [1, 2, 3, 5, 9, 8]

function uniqueArray(array) {
 var hashmap = {};
 var unique = [];

for(var i = 0; i < array.length; i++) {

 // If key returns undefined (unique), it is evaluated as false.
 if(!hashmap.hasOwnProperty(array[i])) {
 hashmap[array[i]] = 1;
 unique.push(array[i]);
 }
}

return unique;
}

Q20: What are some of the advantages/disadvantages of writing JavaScript code in a language that compiles to JavaScript?
Answer
Some examples of languages that compile to JavaScript include CoffeeScript, Elm, ClojureScript, PureScript, and TypeScript.

Advantages:

Fixes some of the longstanding problems in JavaScript and discourages JavaScript anti-patterns.
Enables you to write shorter code, by providing some syntactic sugar on top of JavaScript, which I think ES5 lacks, but ES2015 is awesome.
Static types are awesome (in the case of TypeScript) for large projects that need to be maintained over time.

Disadvantages:

Require a build/compile process as browsers only run JavaScript and your code will need to be compiled into JavaScript before being served to browsers.
Debugging can be a pain if your source maps do not map nicely to your pre-compiled source.
Most developers are not familiar with these languages and will need to learn it. There’s a ramp up cost involved for your team if you use it for your projects.
Smaller community (depends on the language), which means resources, tutorials, libraries, and tooling would be harder to find.
IDE/editor support might be lacking.
These languages will always be behind the latest JavaScript standard.
Developers should be cognizant of what their code is being compiled to — because that is what would actually be running, and that is what matters in the end.
Practically, ES2015 has vastly improved JavaScript and made it much nicer to write. I don’t really see the need for CoffeeScript these days.

Q21: What does “use strict” do?
Answer
The use strict literal is entered at the top of a JavaScript program or at the top of a function and it helps you write safer JavaScript code by throwing an error if a global variable is created by mistake. For example, the following program will throw an error:

function doSomething(val) {
 “use strict”;
 x = val + 10;
}`
It will throw an error because x was not defined and it is being set to some value in the global scope, which isn’t allowed with use strict The small change below fixes the error being thrown:

function doSomething(val) {
 “use strict”;
 var x = val + 10;
}

Q22: What is a Polyfill?
Answer
A polyfill is essentially the specific code (or plugin) that would allow you to have some specific functionality that you expect in current or “modern” browsers to also work in other browsers that do not have the support for that functionality built in.

Polyfills are not part of the HTML5 standard
Polyfilling is not limited to Javascript

Q23: What is let keyword in JavaScript?
Answer
In addition to creating declarations for variables at the function level, ES6 lets you declare variables to belong to individual blocks (pairs of), using the let keyword.

Q24: What is the difference between == and ===?
Answer
== is the abstract equality operator while === is the strict equality operator. The == operator will compare for equality after doing any necessary type conversions. The === operator will not do type conversion, so if two values are not the same type === will simply return false. When using ==, funky things can happen, such as:

1 == ‘1’; // true
1 == [1]; // true
1 == true; // true
0 == ‘’; // true
0 == ‘0’; // true
0 == false; // true
My advice is never to use the == operator, except for convenience when comparing against null or undefined, where a == null will return true if a is null or undefined.

var a = null;
console.log(a == null); // true
console.log(a == undefined); // true

Q25: Why would you use something like the load event? Does this event have disadvantages? Do you know any alternatives, and why would you use those?
Answer
The load event fires at the end of the document loading process. At this point, all of the objects in the document are in the DOM, and all the images, scripts, links and sub-frames have finished loading.

The DOM event DOMContentLoaded will fire after the DOM for the page has been constructed, but do not wait for other resources to finish loading. This is preferred in certain cases when you do not need the full page to be loaded before initializing.

Q26: Write a function that would allow you to do this.
Problem
var addSix = createBase(6);
addSix(10); // returns 16
addSix(21); // returns 27
Answer
You can create a closure to keep the value passed to the function createBase even after the inner function is returned. The inner function that is being returned is created within an outer function, making it a closure, and it has access to the variables within the outer function, in this case the variable baseNumber.

function createBase(baseNumber) {
 return function(N) {

 // we are referencing baseNumber here even though it was declared
 // outside of this function. Closures allow us to do this in JavaScript
 return baseNumber + N;
}
}

var addSix = createBase(6);
addSix(10);
addSix(21);

Q27: Could you explain the difference between ES5 and ES6
Answer
ECMAScript 5 (ES5): The 5th edition of ECMAScript, standardized in 2009. This standard has been implemented fairly completely in all modern browsers

ECMAScript 6 (ES6)/ ECMAScript 2015 (ES2015): The 6th edition of ECMAScript, standardized in 2015. This standard has been partially implemented in most modern browsers.

Here are some key differences between ES5 and ES6:

Arrow functions & string interpolation:
Consider:
const greetings = (name) ⇒ {

 return hello ${name};
}
and even:

const greetings = name ⇒ hello ${name};

Const.
Const works like a constant in other languages in many ways but there are some caveats. Const stands for ‘constant reference’ to a value. So with const, you can actually mutate the properties of an object being referenced by the variable. You just can’t change the reference itself.
const NAMES = [];
NAMES.push(“Jim”);
console.log(NAMES.length === 1); // true
NAMES = [“Steve”, “John”]; // error

Block-scoped variables.
The new ES6 keyword let allows developers to scope variables at the block level. Let doesn’t hoist in the same way var does.

Default parameter values Default parameters allow us to initialize functions with default values. A default is used when an argument is either omitted or undefined — meaning null is a valid value.
// Basic syntax
function multiply (a, b = 2) {

 return a * b;
}
multiply(5); // 10

Class Definition and Inheritance
ES6 introduces language support for classes (class keyword), constructors (constructor keyword), and the extend keyword for inheritance.

for-of operator
The for…of statement creates a loop iterating over iterable objects.

Spread Operator For objects merging
const obj1 =
const obj2 =
const obj3 =

Promises

Promises provide a mechanism to handle the results and errors from asynchronous operations. You can accomplish the same thing with callbacks, but promises provide improved readability via method chaining and succinct error handling.
const isGreater = (a, b) ⇒ {
 return new Promise ((resolve, reject) ⇒ {

 if(a > b) {
 resolve(true)
 } else {
 reject(false)
 }
 })
}
isGreater(1, 2)
 .then(result ⇒ {

 console.log(‘greater’)
})
 .catch(result ⇒ {

 console.log(‘smaller’)
})

Modules exporting & importing Consider module exporting:

const myModule =}
export default myModule;

and importing:

import myModule from ‘./myModule’;

Q28: Explain Function.prototype.bind.
Answer
The bind() method creates a new function that, when called, has its this keyword set to the provided value, with a given sequence of arguments preceding any provided when the new function is called.

In my experience, it is most useful for binding the value of this in methods of classes that you want to pass into other functions. This is frequently done in React components.

Q29: Explain the difference between “undefined” and “not defined” in JavaScript
Answer
In JavaScript if you try to use a variable that doesn’t exist and has not been declared, then JavaScript will throw an error var name is not defined and the script will stop execute thereafter. But If you use typeof undeclared_variable then it will return undefined.

Before starting further discussion let’s understand the difference between declaration and definition.

var x is a declaration because you are not defining what value it holds yet, but you are declaring its existence and the need of memory allocation.

var x; // declaring x
console.log(x); //output: undefined
var x = 1 is both declaration and definition (also we can say we are doing initialization), Here declaration and assignment of value happen inline for variable x, In JavaScript every variable declaration and function declaration brings to the top of its current scope in which it’s declared then assignment happen in order this term is called hoisting.

A variable that is declared but not define and when we try to access it, It will result undefined.

var x; // Declaration
if(typeof x === ‘undefined’) // Will return true
A variable that neither declared nor defined when we try to reference such variable then It result not defined.

console.log(y); // Output: ReferenceError: y is not defined

Q30: Explain the difference between Object.freeze() vs const
Answer
const and Object.freeze are two completely different things.

const applies to bindings (“variables”). It creates an immutable binding, i.e. you cannot assign a new value to the binding.
const person = {

 name: “Leonardo”
};
let animal = {

 species: “snake”
};
person = animal; // ERROR “person” is read-only

Object.freeze works on values, and more specifically, object values. It makes an object immutable, i.e. you cannot change its properties.
let person = {

 name: “Leonardo”
};
let animal = {

 species: “snake”
};
Object.freeze(person);
person.name = “Lima”; //TypeError: Cannot assign to read only property ‘name’ of object
console.log(person);

Q31: Explain the differences on the usage of foo between function foo()
Answer
The former is a function declaration while the latter is a function expression. The key difference is that function declarations have its body hoisted but the bodies of function expressions are not (they have the same hoisting behavior as variables). If you try to invoke a function expression before it is defined, you will get an Uncaught TypeError: XXX is not a function error.

Function Declaration

foo(); // ‘FOOOOO’
function foo() {
 console.log(‘FOOOOO’);
}
Function Expression

foo(); // Uncaught TypeError: foo is not a function
var foo = function() {
 console.log(‘FOOOOO’);
};

Q32: Find the intersection of two arrays
Problem
An intersection would be the common elements that exists within both arrays. In this case, these elements should be unique!

Answer
var firstArray = [2, 2, 4, 1];
var secondArray = [1, 2, 0, 2];

intersection(firstArray, secondArray); // [2, 1]

function intersection(firstArray, secondArray) {
 // The logic here is to create a hashmap with the elements of the firstArray as the keys.
 // After that, you can use the hashmap’s O(1) look up time to check if the element exists in the hash
 // If it does exist, add that element to the new array.

var hashmap = {};
 var intersectionArray = [];

firstArray.forEach(function(element) {

 hashmap[element] = 1;
});

// Since we only want to push unique elements in our case… we can implement a counter to keep track of what we already added
 secondArray.forEach(function(element) {

 if (hashmap[element] === 1) {
 intersectionArray.push(element);
 hashmap[element]++;
 }
});

return intersectionArray;

// Time complexity O(n), Space complexity O(n)
}

Q33: Given an array of integers, find the largest difference between two elements such that the element of lesser value must come before the greater element
Answer
var array = [7, 8, 4, 9, 9, 15, 3, 1, 10];
// [7, 8, 4, 9, 9, 15, 3, 1, 10] would return 11 based on the difference between 4 and 15
// Notice: It is not 14 from the difference between 15 and 1 because 15 comes before 1.

findLargestDifference(array);

function findLargestDifference(array) {
 // If there is only one element, there is no difference
 if (array.length <= 1) return -1;

// currentMin will keep track of the current lowest
 var currentMin = array[0];
 var currentMaxDifference = 0;

// We will iterate through the array and keep track of the current max difference
 // If we find a greater max difference, we will set the current max difference to that variable
 // Keep track of the current min as we iterate through the array, since we know the greatest
 // difference is yield from largest value in future - smallest value before it

for (var i = 1; i < array.length; i++) {

 if (array[i] > currentMin && (array[i] - currentMin > currentMaxDifference)) {
 currentMaxDifference = array[i] - currentMin;
 } else if (array[i] <= currentMin) {
 currentMin = array[i];
 }
}

// If negative or 0, there is no largest difference
 if (currentMaxDifference <= 0) return -1;

return currentMaxDifference;
}

Q34: Given two strings, return true if they are anagrams of one another

Answer
var firstWord = “Mary”;
var secondWord = “Army”;

isAnagram(firstWord, secondWord); // true

function isAnagram(first, second) {
 // For case insensitivity, change both words to lowercase.
 var a = first.toLowerCase();
 var b = second.toLowerCase();

// Sort the strings, and join the resulting array to a string. Compare the results
 a = a.split(“”).sort().join(“”);
 b = b.split(“”).sort().join(“”);

return a === b;
}

Q35: How to compare two objects in JavaScript?
Answer
Two non-primitive values, like objects (including function and array) held by reference, so both == and === comparisons will simply check whether the references match, not anything about the underlying values.

For example, arrays are by default coerced to strings by simply joining all the values with commas (,) in between. So two arrays with the same contents would not be == equal:

var a = [1,2,3];
var b = [1,2,3];
var c = “1,2,3”;

a == c;		// true
b == c;		// true
a == b;		// false
For deep object comparison use external libs like deep-equal or implement your own recursive equality algorithm.

Q36: What are the advantages and disadvantages of using “use strict”?
Answer
‘use strict’ is a statement used to enable strict mode to entire scripts or individual functions. Strict mode is a way to opt into a restricted variant of JavaScript.

Advantages:

Makes it impossible to accidentally create global variables.
Makes assignments which would otherwise silently fail to throw an exception.
Makes attempts to delete undeletable properties throw (where before the attempt would simply have no effect).
Requires that function parameter names be unique.
this is undefined in the global context.
It catches some common coding bloopers, throwing exceptions.
It disables features that are confusing or poorly thought out.
Disadvantages:

Many missing features that some developers might be used to.
No more access to function.caller and function.arguments.
Concatenation of scripts written in different strict modes might cause issues.
Overall, I think the benefits outweigh the disadvantages, and I never had to rely on the features that strict mode blocks. I would recommend using strict mode.

Q37: What are the benefits of using spread syntax in ES6 and how is it different from rest syntax?
Answer
ES6’s spread syntax is very useful when coding in a functional paradigm as we can easily create copies of arrays or objects without resorting to Object.create, slice, or a library function. This language feature is used often in Redux and rx.js projects.

function putDookieInAnyArray(arr) {
 return […arr, ‘dookie’];
}

const result = putDookieInAnyArray([‘I’, ‘really’, “don’t”, ‘like’]); // [“I”, “really”, “don’t”, “like”, “dookie”]

const person = {
 name: ‘Todd’,
 age: 29,
};

const copyOfTodd =;
ES6’s rest syntax offers a shorthand for including an arbitrary number of arguments to be passed to a function. It is like an inverse of the spread syntax, taking data and stuffing it into an array rather than unpacking an array of data, and it works in function arguments, as well as in array and object destructing assignments.

function addFiveToABunchOfNumbers(…numbers) {
 return numbers.map(x ⇒ x + 5);
}

const result = addFiveToABunchOfNumbers(4, 5, 6, 7, 8, 9, 10); // [9, 10, 11, 12, 13, 14, 15]

const [a, b, …rest] = [1, 2, 3, 4]; // a: 1, b: 2, rest: [3, 4]

const = {
 e: 1,
 f: 2,
 g: 3,
 h: 4,
}; // e: 1, f: 2, others:

Q38: What are the differences between ES6 class and ES5 function constructors?

// ES5 Function Constructor
function Person(name) {
 this.name = name;
}

// ES6 Class
class Person {
 constructor(name) {

 this.name = name;
}
}
For simple constructors, they look pretty similar.

The main difference in the constructor comes when using inheritance. If we want to create a Student class that subclasses Person and add a studentId field, this is what we have to do in addition to the above.

// ES5 Function Constructor
function Student(name, studentId) {
 // Call constructor of superclass to initialize superclass-derived members.
 Person.call(this, name);

// Initialize subclass’s own members.
 this.studentId = studentId;
}

Student.prototype = Object.create(Person.prototype);
Student.prototype.constructor = Student;

// ES6 Class
class Student extends Person {
 constructor(name, studentId) {

 super(name);
 this.studentId = studentId;
}
}
It’s much more verbose to use inheritance in ES5 and the ES6 version is easier to understand and remember.

Q39: What do you think of AMD vs CommonJS?
Answer
Both are ways to implement a module system, which was not natively present in JavaScript until ES2015 came along. CommonJS is synchronous while AMD (Asynchronous Module Definition) is obviously asynchronous. CommonJS is designed with server-side development in mind while AMD, with its support for asynchronous loading of modules, is more intended for browsers.

I find AMD syntax to be quite verbose and CommonJS is closer to the style you would write import statements in other languages. Most of the time, I find AMD unnecessary, because if you served all your JavaScript into one concatenated bundle file, you wouldn’t benefit from the async loading properties. Also, CommonJS syntax is closer to Node style of writing modules and there is less context-switching overhead when switching between client side and server side JavaScript development.

I’m glad that with ES2015 modules, that has support for both synchronous and asynchronous loading, we can finally just stick to one approach. Although it hasn’t been fully rolled out in browsers and in Node, we can always use transpilers to convert our code.

Q40: What is ‘Currying’?
Answer
Currying is when you break down a function that takes multiple arguments into a series of functions that take part of the arguments. Here’s an example in JavaScript:

function add (a, b) {
 return a + b;
}

add(3, 4); // returns 7
This is a function that takes two arguments, a and b, and returns their sum. We will now curry this function:

function add (a) {
 return function (b) {

 return a + b;
}
}
In an algebra of functions, dealing with functions that take multiple arguments (or equivalent one argument that’s an N-tuple) is somewhat inelegant. So how do you deal with something you’d naturally express as, say, f(x,y)? Well, you take that as equivalent to f(x)(y) – f(x), call it g, is a function, and you apply that function to y. In other words, you only have functions that take one argument – but some of those functions return other functions (which ALSO take one argument).

Q41: What is IIFEs (Immediately Invoked Function Expressions)?
Answer
It’s an Immediately-Invoked Function Expression, or IIFE for short. It executes immediately after it’s created:

(function IIFE(){

	console.log(“Hello!”);
})();
// “Hello!”
This pattern is often used when trying to avoid polluting the global namespace, because all the variables used inside the IIFE (like in any other normal function) are not visible outside its scope.

Q42: What is generator in JS?
Answer
Generators are functions which can be exited and later re-entered. Their context (variable bindings) will be saved across re-entrances. Generator functions are written using the function* syntax. When called initially, generator functions do not execute any of their code, instead returning a type of iterator called a Generator. When a value is consumed by calling the generator’s next method, the Generator function executes until it encounters the yield keyword.

The function can be called as many times as desired and returns a new Generator each time, however each Generator may only be iterated once.

function* makeRangeIterator(start = 0, end = Infinity, step = 1) {

 let iterationCount = 0;
 for (let i = start; i < end; i += step) {
 iterationCount++;
 yield i;
 }
 return iterationCount;
}

Q43: What is the difference between a shim and a polyfill?
Answer
A shim is any piece of code that performs interception of an API call and provides a layer of abstraction. It isn’t necessarily restricted to a web application or HTML5/CSS3.

A polyfill is a type of shim that retrofits legacy browsers with modern HTML5/CSS3 features usually using Javascript or Flash.

A shim is a library that brings a new API to an older environment, using only the means of that environment. Thus, a polyfill is a shim for a browser API.

Q44: What is the difference between anonymous and named functions?
Answer
Consider:

var foo = function() { // anonymous function assigned to variable foo

	// ..
};

var x = function bar(){ // named function (bar) assigned to variable x

	// ..
};

foo(); // actual function execution
x();

Q45: What is the drawback of creating true private in JavaScript?
Answer
One of the drawback of creating a true private method in JavaScript is that they are very memory inefficient because a new copy of the method would be created for each instance.

var Employee = function (name, company, salary) {
 this.name = name || “”; //Public attribute default value is null
 this.company = company || “”; //Public attribute default value is null
 this.salary = salary || 5000; //Public attribute default value is null

// Private method
 var increaseSalary = function () {

 this.salary = this.salary + 1000;
};

// Public method
 this.dispalyIncreasedSalary = function() {

 increaseSalary();
 console.log(this.salary);
};
};

// Create Employee class object
var emp1 = new Employee(“John”,”Pluto”,3000);
// Create Employee class object
var emp2 = new Employee(“Merry”,”Pluto”,2000);
// Create Employee class object
var emp3 = new Employee(“Ren”,”Pluto”,2500);
Here each instance variable emp1, emp2, emp3 has own copy of increaseSalary private method.

So as recommendation don’t go for a private method unless it’s necessary.

Q46: What will be the output of the following code?
Problem
var x = 1;
var output = (function() {
 delete x;
 return x;
})();

console.log(output);
Answer
Above code will output 1 as output. delete operator is used to delete property from object. Here x is not an object it’s global variable of type number.

Q47: What’s a typical use case for anonymous functions?
Answer
They can be used in IIFEs to encapsulate some code within a local scope so that variables declared in it do not leak to the global scope.

(function() {
 // Some code here.
})();
As a callback that is used once and does not need to be used anywhere else. The code will seem more self-contained and readable when handlers are defined right inside the code calling them, rather than having to search elsewhere to find the function body.

setTimeout(function() {
 console.log(‘Hello world!’);
}, 1000);
Arguments to functional programming constructs or Lodash (similar to callbacks).

const arr = [1, 2, 3];
const double = arr.map(function(el) {
 return el * 2;
});
console.log(double); // [2, 4, 6]

Q48: What’s the difference between .call and .apply?
Answer
Both .call and .apply are used to invoke functions and the first parameter will be used as the value of this within the function. However, .call takes in comma-separated arguments as the next arguments while .apply takes in an array of arguments as the next argument. An easy way to remember this is C for call and comma-separated and A for apply and an array of arguments.

function add(a, b) {
 return a + b;
}

console.log(add.call(null, 1, 2)); // 3
console.log(add.apply(null, [1, 2])); // 3
Source: github.com/yangshun

Q49: What’s the difference between using “let” and “var” to declare a variable in ES6?
Answer
The difference is scoping. var is scoped to the nearest function block and let is scoped to the nearest enclosing block, which can be smaller than a function block. Both are global if outside any block. Also, variables declared with let are not accessible before they are declared in their enclosing block. This will throw a ReferenceError exception.

Q50: When should we use generators in ES6?
Answer
To put it simple, generator has two features:

one can choose to jump out of a function and let outer code to determine when to jump back into the function.
the control of asynchronous call can be done outside of your code
The most important feature in generators — we can get the next value in only when we really need it, not all the values at once. And in some situations it can be very convenient.

Q51: Why should we use ES6 classes?
Answer
Some reasons you might choose to use Classes:

The syntax is simpler and less error-prone.
It’s much easier (and again, less error-prone) to set up inheritance hierarchies using the new syntax than with the old.
class defends you from the common error of failing to use new with the constructor function (by having the constructor throw an exception if this isn’t a valid object for the constructor).
Calling the parent prototype’s version of a method is much simpler with the new syntax than the old (super.method() instead of ParentConstructor.prototype.method.call(this) or Object.getPrototypeOf(Object.getPrototypeOf(this)).method.call(this)).
Consider:

// ES5
var Person = function(first, last) {

 if (!(this instanceof Person)) {
 throw new Error(“Person is a constructor function, use new with it”);
 }
 this.first = first;
 this.last = last;
};

Person.prototype.personMethod = function() {

 return “Result from personMethod: this.first = “ + this.first + “, this.last = “ + this.last;
};

var Employee = function(first, last, position) {

 if (!(this instanceof Employee)) {
 throw new Error(“Employee is a constructor function, use new with it”);
 }
 Person.call(this, first, last);
 this.position = position;
};
Employee.prototype = Object.create(Person.prototype);
Employee.prototype.constructor = Employee;
Employee.prototype.personMethod = function() {

 var result = Person.prototype.personMethod.call(this);
 return result + “, this.position = “ + this.position;
};
Employee.prototype.employeeMethod = function() {

 // …
};
And the same with ES6 classes:

// *ES2015+
class Person {

 constructor(first, last) {
 this.first = first;
 this.last = last;
 }

 personMethod() {
 // …
 }
}

class Employee extends Person {

 constructor(first, last, position) {
 super(first, last);
 this.position = position;
 }

 employeeMethod() {
 // …
 }
}

Q52: Write a function that would allow you to do this
Problem
multiply(5)(6);
Answer
You can create a closure to keep the value of a even after the inner function is returned. The inner function that is being returned is created within an outer function, making it a closure, and it has access to the variables within the outer function, in this case the variable a.

function multiply(a) {
 return function(b) {

 return a * b;
}
}

multiply(5)(6);

Chapter Two

This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/javascriptinterviewquestions.

What MNC / top most companies will ask you in the intervew?

This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/javascriptinterviewquestions.

Chapter Three

This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/javascriptinterviewquestions.

Algorithms and Data Structure Questions

This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/javascriptinterviewquestions.

Chapter Four

This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/javascriptinterviewquestions.

Most Popular React Interview Questions

This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/javascriptinterviewquestions.

Chapter Five

This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/javascriptinterviewquestions.

Next comes very important topic called Redux

This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/javascriptinterviewquestions.

OEBPS/resources/leanpub_warning.png

OEBPS/resources/leanpub-logo.png
[

Leanpub

OEBPS/resources/title_page.jpg
(T

BY MANJUNATH KALBURGI

How to Ease your
javascript Coding
interview

