

JavaScript-mancy:
Object-Oriented Programming
Mastering the Arcane Art of
Summoning Objects in JavaScript for
C# Developers

Jaime González García

This book is for sale at http://leanpub.com/javascript-mancy-
object-oriented-programming

This version was published on 2019-08-13

ISBN 978-1976459238

This is a Leanpub book. Leanpub empowers authors and
publishers with the Lean Publishing process. Lean Publishing is
the act of publishing an in-progress ebook using lightweight tools
and many iterations to get reader feedback, pivot until you have
the right book and build traction once you do.

© 2016 - 2019 Jaime González García

http://leanpub.com/javascript-mancy-object-oriented-programming
http://leanpub.com/javascript-mancy-object-oriented-programming
http://leanpub.com/
http://leanpub.com/manifesto

Also By Jaime González García
JavaScript-mancy

JavaScript-mancy: Getting Started

Wizards Use Vim

Boost Your Coding Fu With VSCode and Vim

http://leanpub.com/u/vintharas
http://leanpub.com/javascriptmancy-mastering-arcane-art-of-writing-awesome-javascript-for-csharp-developers
http://leanpub.com/getting-started-with-the-arcane-art-of-javascript-mancy-for-c-sharp-developers
http://leanpub.com/wizardsusevim
http://leanpub.com/boostyourcodingfuwithvscodeandvim

To my beautiful wife Malin and my beloved son Teo

Contents

Prelude . 1
A Note to the Illustrious Readers of JavaScript-mancy:

Getting Started . 2
A Story About Why I Wrote This Book 3
Why Should You Care About JavaScript? 4
What is the Goal of This Book? 6
What is the Goal of The JavaScript-mancy Series? 6
Why JavaScript-mancy? 7
Is This Book For You? . 8
How is The Book Organized? 9
HowAre The JavaScript-mancy Series Organized?What

is There in the Rest of the Books? 9
Understanding the Code Samples in This Book 11
A Note About ECMAScript 5 (ES5) and ES6, ES7, ES8

and ESnext within The Book 15
A Note Regarding the Use of var, let and const 16
A Note About the Use of Generalizations in This Book . 17
Do You Have Any Feedback? Found Any Error? 18
A Final Word From the Author 18

Tome I.Mastering theArcaneArt
of JavaScript-mancy 1

Once Upon a Time… . 2

CONTENTS

Tome II. JavaScriptmancy andOOP:
The Path of The Summoner 4

Introduction to the Path of Summoning and Command-
ing Objects (aka OOP) 5
Let me Tell You About OOP in JavaScript 8
C# Classes in JavaScript 9
OOP Beyond Classes . 16
Combining Classes with Object Composition 23
The Path of the Object Summoner Step by Step 24
Concluding . 25

Prelude
It was during the second age
that the great founder of our order Branden Iech,

first stumbled upon the arcane REPL,
and learnt how to bend the fabric of existence to his very will,

then was that he discovered
there was a mechanism to alter the threads
being woven into The Pattern,

then that we started experiencing the magic of JavaScript

- Irec Oliett,
The Origins of JavaScript-Mancy
Guardian of Chronicles, 7th Age

Prelude 2

Imagine… imagine you lived in a world were you could use
JavaScript to change the universe around you, to tamper with the
threads that compose reality and do anything that you can imagine.
Well, welcome to the world of JavaScript-mancy, where wizards,
also known as JavaScriptmancers, control the arcane winds of
magic wielding JavaScript to and fro and command the very fabric
of reality.

We, programmers, sadly do not live in such a world. But we do have
a measure of magic ¹ in us,we have the skills and power to create
things out of nothingness. And even if we cannot throw fireballs
or levitate (yet), we can definitely change/improve/enhance reality
and the universe around us with our little creations. Ain’t that
freaking awesome?

Well, I hope this book inspires you to continue creating, and using
this beautiful skill we share, this time, with JavaScript.

A Note to the Illustrious Readers of
JavaScript-mancy: Getting Started

If you are a reader of JavaScript-mancy: Getting Started then let
me start this book by thanking you. When I started writing the
JavaScript-mancy series little did I know about the humongous
quest I was embarking in. Two years later, I have written more than
a thousand pages, loads of code examples, hundreds of exercises,
spent an insane amount of time reviewing the drafts, reviewing
the reviews, etc… But all of this work is meaningless without you,
the reader. Thank you for trusting in me and in this series, I hope
you enjoy this book more than you enjoyed the first one. Go forth
JavaScript-mancer!

¹“Any sufficiently advanced technology is indistinguishable frommagic.” Arthur C. Clarke.
Love that quote :)

Prelude 3

A Story About Why I Wrote This Book

I was sitting at the back of the room, with my back straight and
fidgetting with my fingers on the table. I was both excited and
nervous. It was the first time I had ventured myself to attend
to one of the unfrequent meetings of my local .NET user group.
Excited because it was beyond awesome to be in the presence of
so many like-minded individuals, people who loved to code like
me, people who were so passionate about software development
that were willing to sacrifice their free time to meet and talk about
programming. Nervous because, of course, I did not want to look
nor sound stupid in such a distinguished group of people.

The meetup started discussing TypeScript the new superset of
JavaScript that promised Nirvana for C# developers in this new
world of super interactive web applications. TypeScript here, Type-
Script there because writing JavaScript sucked… JavaScript was the
worst… everybody in the room started sharing their old war stories
about writing JavaScript, how bad it was in comparison to C#, and
so on…

“Errr… the TypeScript compiler writes beautiful JavaScript” I ad-
ventured to say… the room fell silent. People looking astonishingly
at each other, uncomprehending, unbelieving… Someone had dared
use beautiful and JavaScript in the same sentence.

This was not the first, nor will be the last time I have encountered
such a reaction and feelings towards JavaScript as predominant in
the .NET community. JavaScript is not worthy of our consideration.
JavaScript is a toy language. JavaScript is unreliable and behaves in
weird and unexpected ways. JavaScript developers don’t know how
to program. JavaScript tooling is horrible…

And every single time I sat muted, thinking to myself, reflecting,
racking my brains pondering… How to show and explain that
JavaScript is actually awesome? How to share that it is a beautiful
language? A rich language that is super fun to write? That’s how

Prelude 4

this book came about.

And let me tell you one little secret. Just some few years ago I felt
exactly the same way about JavaScript. And then, all of the sudden,
I started using it, with the mind of a beginner, without prejudices,
without disdain. It was hard at first, being so fluent in C# I couldn’t
wrap my head around how to achieve the same degree of fluency
and expressiveness in JavaScript. Nonetheless I continued forward,
and all of the sudden I came to love it.

The problem with JavaScript is that it looks too much like C#,
enough to make you confident that you know JavaScript because
you know C#. And just when you are all comfortable, trusting and
unsuspecting JavaScript smacks you right in the face with a battle
hammer, because, in many respects, JavaScript is not at all like C#.
It just looks like it on the surface.

JavaScript is indeed a beautiful language, a little rough on the edges,
but a beautiful language nonetheless. Trust me. You’re in for a treat.

Why Should You Care About
JavaScript?

You may be wondering why you need to know JavaScript if you
already grok C#.

Well, first and foremost, JavaScript is super fun to write. Its lack of
ceremony and super fast feedback cycles make it a fun language to
program in and ideal for quick prototyping, quick testing of things,
tinkering, building stuff and getting results fast. If you haven’t
been feeling it for programming lately, JavaScript will help you
rediscover your passion and love for programming.

JavaScript is the language of the web, if you are doing any sort
of web development, you need to understand how to write great
JavaScript code and how JavaScript itself works. Even if you are

Prelude 5

writing a transpiled language like TypeScript or CoffeeScript, they
both become JavaScript in the browser and thus knowing JavaScript
will make you way more effective.

But JavaScript is not limited to the web, during the past few years
JavaScript has taken the world by storm², you can write JavaScript
to make websites, in the backend, to build mobile applications,
games and even to control robots and IoT devices, which makes
it a true cross-platform language.

JavaScript is a very approachable language, a forgiving one, easy
to learn but hard to master. It is minimalistic in its contructs,
beautiful, expressive and supports many programming paradigms.
If you reflect about JavaScript features you’ll see how it is built
with simplicity in mind. Ideas such as type coercion (are “44” and
44 so different after all?) or being able to declare strings with either
single or double quotes are great expressions of that principle.

JavaScript’s openness and easy extensibility are the perfect founda-
tions to make it a fast-evolving language and ecosystem. As the one
language for the web, the language that browsers can understand,
it has become the perfect medium for cross-pollination across all
software development communities, where .NET developers ideas
can meet and intermingle with others from the Ruby and Python
communities. This makes knowledge, patterns and ideas spread
accross boundaries like never before.

Since no one single entity really controls JavaScript³, the commu-
nity has a great influence in how the language evolves. With a
thriving open source community, and openness and extensibility
built within the language, it is the community and the browsers the
ones that develop the language and the platform, and the standard
bodies the ones that follow and stabilize the trends. When people

²http://githut.info/
³The ECMAScript standard in which JavaScript is based is evolved by the TC39 (Technical

Committee 39) composed of several companies with strong interest in JavaScript (all major
browser vendors) and distinguished members of the community. You can take a look at their
GitHub page for a sneak-peek into how they work and what they are working in

http://githut.info/
http://githut.info/
https://github.com/tc39
https://github.com/tc39

Prelude 6

find JavaScript lacking in some regard, they soon rush to fill in the
gap with powerful libraries, tooling and techniques.

But don’t just take my word for it. This is what the book is for, to
show you.

What is the Goal of This Book?

This book is the second installment of the JavaScript-mancy series
and its goal is to provide a great and smooth introduction to
JavaScript Object-Oriented Programming to C# developers. Its goal
is to teach you how you can bring and reuse all your C# knowledge
into JavaScript and, at the same time, boost your OOP skills with
new paradigms that take advantage of JavaScript dynamic nature.

What is the Goal of The
JavaScript-mancy Series?

The goal of the JavaScript-mancy series is to make you fluent in
JavaScript, able to express your ideas instantly and build awesome
things with it. You’ll not only learn the language itself but how
to write idiomatic JavaScript. You’ll learn both the most common
patterns and idioms used in JavaScript today, and also all about the
latest versions of JavaScript: ECMAScript 6 (also known ES6 and
ES2015) , ES7 (ES2016), ES2017 and beyond.

You can use ECMAScript as a synonym for JavaScript. It is true
that we often use ES (short for ECMAScript) and a version
number to refer to a specific version of JavaScript and its
related set of new features. Particularly when these features
haven’t yet been implemented by all major browsers vendors.

Prelude 7

But for all intents and purposes ECMAScript is JavaScript. For
instance, you will rarely hear explicit references to ES5.

But wewill not stop there because what is a language by itself if you
cannot build anything with it. I want to teach you everything you
need to be successful and have funwriting JavaScript after you read
this series. And that’s why we will take one step further and take
a glance at the JavaScript ecosystem, the JavaScript community,
the rapid prototyping tools, the great tooling involved in building
modern JavaScript applications, JavaScript testing and building an
app in a modern JavaScript framework: Angular ⁴.

Why JavaScript-mancy?

Writing code is one of my favorite past times and so is reading
fantasy books. For this project I wanted to mix these two passions
of mine and try to make something awesome out of it.

In fantasywe usually have the idea ofmagic, usually very powerful,
very obscure and only at the reach of a few dedicated individuals.
There’s also different schools or types of magic: pyromancy deals
with fire magic, allomancy relates to magic triggered by metals,
necromancy is all about death magic, raising armies of skeletons
and zombies, immortality, etc.

I thought that drawing a parallel between magic and what we
programmers do daily would be perfect. Because it is obscure to
the untrained mind and requires a lot of work and study to get into,
and because we have the power to create things out of nothing.

And therefore, JavaScript-mancy, the arcane art of writing awe-
some JavaScript.

⁴Previously known as Angular 2 and later re-branded to just Angular. The former version
of Angular 1.x is now known as Angular.js

Prelude 8

Is This Book For You?

I have written this book for you C# developer:

• you that hear about the awesome stuff that is happening in
the realm of JavaScript and are curious about it. You who
would like to be a part of it, a part of this fast evolving, open
and thriving community.

• you that have written JavaScript before, perhaps even do it
daily and have been frustrated by it, by not been able to
express your ideas in JavaScript, by not being able to get a
program do what you wanted it to do, or struggling to do so.
After reading this book you’ll be able to write JavaScript as
naturally as you write C#.

• you that think JavaScript a toy language, a language not
capable of doing real software development. You’ll come
to see an expressive and powerful multiparadigm language
suitable for a multitude of scenarios and platforms.

This book is specifically for C# developers because it uses a lot of
analogies from the .NET world, C# and static typed languages to
teach JavaScript. As a C# developer myself, I understand where the
pain points lie and where we struggle the most when trying to learn
JavaScript and will use analogies as a bridge between languages.
Once you get a basic understanding and fluency in JavaScript I’ll
expand into JavaScript specific patterns and constructs that are less
common in C# and that will blow your mind.

That being said, a lot⁵ of the content of the book is useful beyond
C# and regardless of your software development background.

⁵Really, A LOT :)

Prelude 9

How is The Book Organized?

The goal of this book is to provide a smooth ride in learning OOP to
C# developers that start developing in JavaScript. Since we humans
like familiarity and analogy is super conductive to learning, the first
part of the book is focused on helping you learn how to bring your
OOP knowledge from C# into JavaScript.

We’ll start examining the pillars of object oriented programming:
encapsulation, inheritance and polymorphism and how they apply
to JavaScript and its prototypical inheritance model.

We will continue with how to emulate classes in JavaScript prior to
ES6 which will set the stage perfectly to demonstrate the value of
ES6 classes.

After that we will focus on alternative object-oriented paradigms
that take advantage of the dynamic nature of JavaScript to achieve
great flexibility and composablity in a fraction of the code.

Later we’ll move onto object internals and the obscure art of meta-
programming in JavaScript with the new Reflect API, proxies and
symbols.

Finally, we’ll complete our view of object-oriented programming in
JavaScript with a deep dive into TypeScript, a superset of JavaScript
that enhances your developer experience with new features and
type annotations.

How Are The JavaScript-mancy
Series Organized? What is There in
the Rest of the Books?

The rest of the books are organized in 3 parts focused in the
language, the ecosystem and building your first app in JavaScript.

Prelude 10

After this introductory bookPart I.Mastering theArt of JavaScript-
mancy continues by examining object oriented programming in
JavaScript, studying prototypical inheritance, how to mimic C#
(classic) inheritance in JavaScript. We will also look beyond class
OOP intomixins, multiple inheritance and stampswhere JavaScript
takes you into interesting OOP paradigms that we rarely see in the
more conventional C#.

We will then dive into functional programming in JavaScript
and take a journey through LINQ, applicative programming, im-
mutability, generators, combinators and function composition.

Organizing your JavaScript applications will be the next topic
with the module pattern, commonJS, AMD (Asynchronous module
definition) and ES6 modules.

Finally we will take a look at Asynchronous programming in
JavaScript with callbacks, promises and reactive programming.

Since adoption of ES6 will take some time to take hold, and you’ll
probably see a lot of ES5 code for the years to come, we will start
every section of the book showing the most common solutions and
patterns of writing JavaScript that we use nowadays with ES5. This
will be the perfect starting point to understand and showcase the
new ES6 features, the problems they try to solve and how they can
greatly improve your JavaScript.

In Part II. Welcome to The Realm Of JavaScript we’ll take a
look at the JavaScript ecosystem, following a brief history of the
language that will shed some light on why JavaScript is the way it
is today, continuing with the node.js revolution and JavaScript as
a true cross-platform, cross-domain language.

Part II will continue with how to setup your JavaScript develop-
ment environment to maximize your productivity and minimize
your frustration. We will cover modern JavaScript and front-end
workflows, JavaScript unit testing, browser dev tools and even take
a look a various text editors and IDEs.

Prelude 11

We will wrap Part II with a look at the role of transpiled lan-
guages. Languages like TypeScript, CoffeeScript, even ECMAScript
6, and how they have impacted and will affect JavaScript develop-
ment in the future.

Part III. Building Your First Modern JavaScript App With An-
gular 2 will wrap up the book with a practical look at building
modern JavaScript applications. Angular 2 is a great framework
for this purpose because it takes advantage of all modern web
standards, ES6 and has a very compact design that makes writing
Angular 2 apps feel like writing vanilla JavaScript. That is, you
won’t need to spend a lot of time learning convoluted framework
concepts, and will focus instead in developing your JavaScript skills
to build a real app killing two birds with one stone (Muahahaha!).

In regards to the size and length of each chapter, aside from the
introduction, I have kept every chapter small. The idea being that
you can learn little by little, acquire a bit of knowledge that you can
apply in your daily work, and get a feel of progress and completion
from the very start.

Understanding the Code Samples in
This Book

How to Run the Code Samples in This Book

For simplicity, I recommend that you start running the code sam-
ples in the browser. That’s the most straightforward way since you
won’t need to install anything in your computer. You can either
type them as you go in the browser JavaScript console (F12 for
Chrome if you are running windows or Opt-CMD-J in a Mac) or
with prototyping tools like JsBin⁶, jsFiddle⁷, CodePen⁸ or Plunker⁹.

⁶http://jsbin.io
⁷https://jsfiddle.net/
⁸http://codepen.io
⁹http://plnkr.co/

http://jsbin.io/
https://jsfiddle.net/
http://codepen.io/
http://plnkr.co/
http://jsbin.io/
https://jsfiddle.net/
http://codepen.io/
http://plnkr.co/

Prelude 12

Any of these tools is excellent so you can pick your favorite.

If you don’t feel like typing, all the examples are available in jsFid-
dle/jsBin JavaScriptmancy library: http://bit.ly/javascriptmancy-
samples¹⁰.

For testing ECMAScript 6 examples I recommend JsBin¹¹, jsFiddle¹²
or the Babel REPL at https://babeljs.io/repl/¹³. Alternatively there’s
a very interesting Chrome plugin that you can use to run both ES5
and ES6 examples called [ScratchJS][].

If you like, you can download all the code samples from GitHub¹⁴
and run them locally in your computer using node.js¹⁵.

Also keep an eye out for javascriptmancy.com¹⁶ where I’ll add
interactive exercises in a not too distant future.

A Note About Conventions Used in the Code
Samples

The book has three types of code samples. Whenever you see a
extract of code like the one below, where statements are preceded
by a >, I expect you to type the examples in a REPL.

The REPL is Your Friend!
One of the great things about JavaScript is the REPL (Read-
Eval-Print-Loop), that is a place where you can type JavaScript
code and get the results immediately. A REPL lets you tinker
with JavaScript, test whatever you can think of and get imme-
diate feedback about the result. Awesome right?

¹⁰http://bit.ly/javascriptmancy-samples
¹¹http://jsbin.io
¹²https://jsfiddle.net/
¹³https://babeljs.io/repl/
¹⁴http://bit.ly/javascriptmancy-code-samples
¹⁵http://www.nodejs.org
¹⁶http://www.javascriptmancy.com

http://bit.ly/javascriptmancy-samples
http://bit.ly/javascriptmancy-samples
http://jsbin.io/
https://jsfiddle.net/
https://babeljs.io/repl/
http://bit.ly/javascriptmancy-code-samples
http://www.nodejs.org/
http://www.javascriptmancy.com/
http://bit.ly/javascriptmancy-samples
http://jsbin.io/
https://jsfiddle.net/
https://babeljs.io/repl/
http://bit.ly/javascriptmancy-code-samples
http://www.nodejs.org/
http://www.javascriptmancy.com/

Prelude 13

A couple of good examples of REPLs are a browser’s console
(F12 in Chrome/Windows) and node.js (take a look at the
appendix to learn how to install node in your computer).

The code after > is what you need to type and the expression
displayed right afterwards is the expected result:

1 > 2 + 2

2 // => 4

Some expressions that you often write in a REPL like a variable or
a function declaration evaluate to undefined:

1 > var hp = 100;

2 // => undefined

Since I find that this just adds unnecessary noise to the examples
I’ll omit these undefined values and I’ll just write the meaningful
result. For instance:

1 > console.log('yippiiiiiiii')

2 // => yippiiiiiiii

3 // => undefined <==== I will omit this

When I have a multiline statement, I will omit the > so you can
more easily copy and paste it in a REPL or prototyping tool (jsBin,
CodePen, etc). That way you won’t need to remove the unnecessary
> before running the sample:

1 let createWater = function (mana){

2 return `${mana} liters of water`;

3 }

Prelude 14

I expect the examples within a chapter to be run together, so some-
times examples may reference variables from previous examples
within the same section. I will attempt to show smallish bits of code
at a time for the sake of simplicity.

For more advanced examples the code will look like a program,
there will be no > to be found and I’ll add a filename for reference.
You can either type the content of the files in your favorite editor
or download the source directly from GitHub.

CrazyExampleOfDoom.js
1 export class Doom {

2 constructor(){

3 /* Oh no! You read this...

4 /

5 / I am sorry to tell you that in 3 days

6 / at midnight the most horrendous apparition

7 / will come out from your favorite dev machine

8 / and it'll be your demise

9 / that is...

10 / unless you give this book as a gift to

11 / other 3 developers, in that case you are

12 / blessed for ever and ever

13 */

14 }

15 }

A Note About the Exercises

In order to encourage you to experiment with the different things
that you will learn in each chapter I wrap every single one of them
with exercises.

It is important that you understand that there is almost no wrong
solution. I invite you to let your imagination free and try to
experiment and be playful with your new found knowledge to your
heart’s content. I do offer a solution for each exercise but more as
a guidance and example that as the one right solution.

In some of the exercises you may see the following pattern:

Prelude 15

1 // mooleen.weaves('some code here');

2 mooleen.weaves('teleport("out of the forest", mooleen, randalf)');

This is completely equivalent to:

1 // some code here

2 teleport("out of the forest", mooleen, randalf);

I just use a helper function weaves to make it look like Moolen, the
mighty wizard is casting a spell (in this case teleport).

A Note About ECMAScript 5 (ES5) and
ES6, ES7, ES8 and ESnext within The
Book

Everything in programming has a reason for existing. That hairy
piece of code that you wrote seven months ago, that feature
that went into an application, that syntax or construct within a
language, all were or seemed like good ideas at the time. ES6, ES7
and future versions of JavaScript all try to improve upon the version
of JavaScript that we have today. And it helps to understand the
pain points they are trying to solve, the context in which they
appear and in which they are needed. That’s why this book will
show you ES5 in conjunction with ES6 and beyond. For it will be
much easier to understand new features when you see them as a
natural evolution of the needs and pain points of developers today.

How will this translate into the examples within the book? - you
may be wondering. Well I’ll start in the beginning of the book
writing ES5 style code, and slowly but surely, as I go showing you
ES6 features, we will transform our ES5 code into ES6. By the end
of the book, you yourself will have experienced the journey and
have mastered both ES5 and ES6.

Prelude 16

Additionally, it is going to take some time for us to start using
ES6 to the fullest, and there’s surely a ton of web applications that
will never be updated to using ES6 features so it will be definitely
helpful to know ES5.

A Note Regarding the Use of var, let
and const

Since this book covers both ES5, ES6 and beyond the examples will
intermingle the use of the var, let and const keywords to declare
variables. If you aren’t familiar with what these keywords do here
is a quick recap:

• var: use it to declare variables with function scope. Variables
declared with var are susceptible to hoisting which can result
in subtle bugs in your code.

• let: use it to declare variables with block scope. Variables
declared with let are not hoisted. Thanks to this, let allows
you to declare variables nearer to where they are used.

• const: like let, but in addition, it declares a one-time binding.
That is, a variable declared with const can’t be bound to any
other value. Attempting to assign the value of a const variable
to something else will result in an error.

The examples for ES5 patterns like mimicking classes before the
advent of ES6 (and the new let and const) will use var. The
examples for post ES6 features like ES6 classes and onwards will
use let and const. Of these two we will prefer the latter that
offers a safer alternative to let, and we will use let in those cases
where we need or want to allow assigning a variable multiple times.
That being said there may be occasions where I won’t follow these
rules when a particular example escapes mine and my reviewer’s
watchful eye.

Prelude 17

If you want to learn more about JavaScript scoping rules and the
var, let and const keywords then I recommend you to take a look
at JavaScript-mancy: Getting Started¹⁷ the first book of this series.

A Note About the Use of
Generalizations in This Book

Some times in the course of the book I will make generalizations for
the sake of simplicity and to provide a better and more continuous
learning experience. I will make statements such as:

In JavaScript, unlike in C#, you can augment objects
with new properties at any point in time

If you are experienced in C# you may frown at this, cringe, raise
your fist to the sky and shout: Why!? oh Why would he say such a
thing!? Does he not know C#!?. But bear with me. I will write the
above not unaware of the fact that C# has the dynamic keyword
and the ExpandoObject class that offer that very functionality, but
because the predominant use of C# involves the use of strong types
and compile-time type checking. The affirmation above provides
a much simpler and clearer explanation about JavaScript than
writing:

In JavaScript, unlike in C# where you use classes and
strong types in 99% of the situations and in a similar
way to the use of dynamic and ExpandoObject, you can
augment objects with new properties at any point in
time

So instead of focusing on being correct 100% of the time and diving
into every little detail, I will try to favor simplicity and only go

¹⁷https://www.javascriptmancy.com/

https://www.javascriptmancy.com/
https://www.javascriptmancy.com/

Prelude 18

into detail when it is conductive to understanding JavaScript which
is the focus of this book. Nonetheless, I will provide footnotes for
anyone that is interested in exploring these topics further.

Do You Have Any Feedback? Found
Any Error?

If you have any feedback or have found some error in this book that
you would like to report, then don’t hesitate to drop me an email
at jaime@vintharas.com or reach me on twitter @vintharas¹⁸.

A Final Word From the Author

The goal for this series of books is to be holistic. Holistic enough to
give a good overview of the JavaScript language and ecosystem,
yet contain enough detail to impart real knowledge about how
JavaScript really works. That’s a fine line to tread and sometimes I
will probably cover too little or too much. If so don’t hesitate to let
me know. The beauty of a lean published book is that I have much
more room to include improvements suggested by you.

There is a hidden goal as well, that is to make it as fun and
enjoyable as possible. Therefore the fantasy theme of the whole
book, the conversational style, the jokes and the weird sense of
humor. Anyways, I have put my heart and soul into this book and
hope you really enjoy it!

Jaime, 2017

¹⁸https://twitter.com/Vintharas

https://twitter.com/Vintharas
https://twitter.com/Vintharas

Tome I. Mastering
the Arcane Art of
JavaScript-mancy

Once Upon a Time…
Once upon a time, in a faraway land, there was a beautiful hidden
island with captivating white sandy beaches, lush green hills and
mighty white peakedmountains. The natives called itAsturi and, if
not for an incredible and unexpected event, it would have remained
hidden and forgotten for centuries.

Some say it was during his early morning walk, some say that
it happened in the shower. Be that as it may, Branden Iech,
at the time the local eccentric and today considered the greatest
Philosopher of antiquity, stumbled upon something that would
change the world forever.

In talking to himself, as both his most beloved companions and his
most bitter detractors would attest was a habit of his, he stumbled
upon the magic words of JavaScript and the mysterious REPL.

In the years that followed he would teach the magic word and
fund the order of JavaScriptmancers bringing a golden age to our
civilization. Poor, naive philosopher. For such power wielded by
mere humans was meant to be misused, to corrupt their fragile
hearts and bring their and our downfall. It’s been ten thousand
years, ten thousand years of wars, pain and struggle.

It is said that, in the 12th day of the 12th month of the 12th age a
hero will rise and bring balance to the world. That happens to be
today.

12th Age, Guardian of Chronicles

This book has a story in it. It is a story of a fantasy¹⁹ world where
some people can wield JavaScript to affect the world around them,

¹⁹For those of you that are not fantasy nerds I have included a small glossary at the end of
the book where you can check words that you find strange. You should be able to understand
the book and examples without the glossary, but I think it’ll be more fun if you do

Once Upon a Time… 3

to essentially program the world and bend it to their will. Cool
right? The story follows the step of a heroine that comes to this
hypothetical world to save it from evil, but of course, she needs
to learn JavaScript first. Care to join her in her quest to learn
JavaScript and save the world?

Tome II.
JavaScriptmancy and
OOP: The Path of The
Summoner

Path of Summoning and Commanding Objects (Also Known as
Object Oriented Programming)

Introduction to the Path
of Summoning and
Commanding Objects
(aka OOP)
Many ways to build a Golem there are,

cast its blueprint in clay
then recite the instantiation chants,

or put together the parts
that’ll made the whole alive,

or bring it forth at once
with no prior thought required.

Many ways to build a Golem there are,
in JavaScript.

- KeDo,
Master Artificer,
JavaScript-mancy poems

Introduction to the Path of Summoning and Commanding Objects (aka OOP) 6

/*

Mooleen sits in a dark corner of a tavern sipping a jug of

the local brew.

She flinches. The local brew surely must have fire wyvern's

blood in it.

She silently observes the villagers around her.

They seem unhappy and nervous. As if they were expecting

something terrible was about to befall them any second.

*/

mooleen.says("A month has passed since we dispatched Great");

mooleen.says("You would think they would be happier");

rat.says("Well, people don't like change or surprises");

rat.says("They're expecting that someone worse will take control");

rat.says("Better the devil you know...");

/*

A maid stops by Mooleen's table confused

*/

maid.says("Are you feeling alright, sir? Speaking to yourself?");

rat.movesOutOfTheShadows();

maid.shrikes();

villager.shouts("A demon!!!");

rat.says("Great");

mooleen.says("That's just plain mean");

/*

The villagers quickly surround the dark corner with clubs, bottles

and whichever crude weapon they can muster.

*/

villager.shouts("Kill the demon!!");

mooleen.weaves("teleport('Caves of Infinity')");

/*

Mooleen and rat blink out of existence just as various pointy weapons

blink into existence precisely where they were sitting a second

earlier.

*/

Introduction to the Path of Summoning and Commanding Objects (aka OOP) 7

randalf.says("There you are!");

mooleen.says("here I am!");

rat.says("A demon!?");

randalf.exclaims("A demon? Where!!");

bandalf.says("Yes where!")

zandalf.looksWorriedAllAround();

mooleen.says("There's no demon");

randalf.asks("Are you sure?");

randalf.says("We need to be on our toes");

mooleen.asks("You too?");

randalf.says("Yes, it's been a month, they must be about to attack");

mooleen.says("They? Who!");

randalf.says("Could be anyone really... The Dark Brootherhood, " +

"The Clan, The Silver Guild, The Red Hand... " +

"They'll want to control Asturi");

randalf.says("You need to summon an army");

mooleen.says("An army?");

randalf.says("An army indeed, n' bigger than the one you had before");

mooleen.says("Really? Cause that took a looooong time to summon");

randalf.says("Well, That's because you're a novice");

mooleen.says("That's encouraging");

randalf.says("Oh, don't you worry, " +

"We'll take care of your ignorance");

mooleen.says("Ouch");

randalf.says("Let me tell you about OOP in JavaScript");

Introduction to the Path of Summoning and Commanding Objects (aka OOP) 8

Let me Tell You About OOP in
JavaScript

Welcome to the Path of Summoning ²⁰ and Commanding Objects! In
this part of this ancient manuscript you’ll learn how you can work
with objects in JavaScript, how to define them, create them and
even how to interweave them. By the end of it you’ll have mastered
Object Oriented Programming in JavaScript and you’ll be ready to
command your vast armies of objects into eternal glory.

JavaScript OOP story is pretty special. When I started working
seriously with JavaScript some years ago, one of my first concerns
as a C# developer coming to JavaScript was to find out how to
write a class. I had a lot of prowess in C# and I wanted to bring
all my knowledge and abilities into the world of JavaScript, so my
first approach was to try to map every C# concept into JavaScript. I
saw classes, which are such a core construct in C# and which were
such an important part of my programming style at the time, as my
secret weapon to being proficient in JavaScript.

Well, for the life of me I couldn’t find a good reference to this-
is-how-you-write-a-class-in-JavaScript. It took me a long while to
understand how to mimic classical inheritance. But it was time
well spent because, along the way, I learnt a lot about JavaScript
and about the many different ways in which it supports object-ori-
ented programming. Moreover, this quest helped me look beyond
classical inheritance into other OOP styles more akin to JavaScript
where flexibility and expressiveness reign supreme over the strict
and fixed taxonomies of classes.

In this part of the series I will attempt to bring you with me, hand
in hand, through the same journey that I experienced. We will start
with how to achieve classical inheritance in JavaScript, so you can

²⁰In Fantasy, wizards of all sorts and kinds summon or call forth creatures to act as servants,
or warriors, and follow the wizard’s commands. As a JavaScript-mancer you’ll be able to use
Object Oriented Programming to summon your own objects into reality and do with them as
you please.

Introduction to the Path of Summoning and Commanding Objects (aka OOP) 9

get a basic level of proficiency by translating your C# skills into
JavaScript. And then we will move beyond that into new patterns
that truly leverage JavaScript as a language and which will blow
your mind.

Experiment JavaScriptmancer!!
You can experiment with all examples in this chapter
directly within this jsBin²¹ or downloading the source
code from GitHub²².

Let’s have a taste of what is in store for you by getting a high
level overview ²³ of object-oriented programming in JavaScript.
Don’t worry if you feel you can’t follow the examples. In the
upcoming chapters we will dive deeper into each of the concepts
and techniques used, and wewill discuss them separately at a much
slower pace.

C# Classes in JavaScript

A C# class is more or less equivalent to a JavaScript constructor
function and prototype pair:

²¹http://bit.ly/javascriptmancy-oop-introduction
²²https://github.com/vintharas/javascriptmancy-code-samples
²³In this section I am going to make a lot of generalizations and simplifications in order to

give a simple and clear introduction to OOP in JavaScript. I’ll dive into each concept in greater
detail and with an appropriate level of correctness in the rest of the chapters ahead.

http://bit.ly/javascriptmancy-oop-introduction
http://bit.ly/javascriptmancy-oop-introduction
https://github.com/vintharas/javascriptmancy-code-samples
http://bit.ly/javascriptmancy-oop-introduction
https://github.com/vintharas/javascriptmancy-code-samples

Introduction to the Path of Summoning and Commanding Objects (aka OOP) 10

1 // Here we have a Minion constructor function

2 function Minion(name, hp){

3 // The constructor function usually defines

4 // the data within a "class", the properties

5 // contained within a constructor function

6 // will be part of each object created with it

7 this.name = name;

8 this.hp = hp;

9 }

10

11 // The prototype usually defines the methods

12 // within a "class". It is shared across all

13 // Minion instances

14 Minion.prototype.toString = function(){

15 return this.name;

16 };

The constructor function represents how an object should be con-
structed (or created) while the prototype represents bits of reusable
behavior. In practice, the constructor function usually defines the
data members within a “class” while the prototype defines its
methods.

You can instantiate a new Minion object by using the new operator
on the constructor function:

1 var orc = new Minion('orc', 100);

2 console.log(orc);

3 // => [object Object] {

4 // hp: 100,

5 // name: "orc",

6 // toString: function () {

7 // return this.name;

8 // }

9 // }

10

11 console.log(orc.toString())

12 // => orc

13

14 console.log('orc is a Minion: ' + (orc instanceof Minion));

15 // => true

As a result of instantiating an orc we get a new Minion object with

Introduction to the Path of Summoning and Commanding Objects (aka OOP) 11

two properties hp and name. The Minion object also has a hidden
property called [[prototype]] that points to its prototype which
is an object that has a method toString. This prototype and its
toStringmethod are shared across all instances of the Minion class.

When you call orc.toString the JavaScript runtime checkswhether
or not the orc object has a toString method and if it can’t find it,
like in this case, it goes down the prototype chain until it does. The
prototype chain is established by the object itself, its prototype, its
prototype’s prototype and so on. In this case, the prototype chain
leads to the Minion.prototype object that has a toString method.
This method will then be called and evaluated as this.name (whose
value is orc in this example).

The prototypical chain

We can mimic classical inheritance by defining a new “class”
Wizard and making it inherit from Minion:

Introduction to the Path of Summoning and Commanding Objects (aka OOP) 12

1 // Behold! A Wizard!

2 function Wizard(name, element, hp, mana){

3 // the constructor function calls its parent constructor function

4 // using [Function.prototype.call] (or apply)

5 Minion.call(this, name, hp);

6 this.element = element;

7 this.mana = mana;

8 }

9

10 // the prototype of the Wizard is a Minion object

11 Wizard.prototype = Object.create(Minion.prototype);

12 Wizard.prototype.constructor = Wizard;

We achieve classical inheritance by:

1. Calling the Minion constructor function from the Wizard

constructor.
2. Creating a new object that has Minion as its prototype (via

Object.create) and assigning it to be the Wizard prototype.
This is how you establish a prototypical chain between Wizard

and Minion.

Wizard object => Wizard Prototype => Minion Prototype => Object Prototype

By following these two steps we achieve two things:

1. With the constructor delegation we ensure that a Wizard

object has all the properties of a Minion object.
2. With the prototype chain we ensure that all the methods in

the Minion prototype are available to a Wizard object.

We can also augment the Wizard prototype with new methods like
this castsSpell method that allows the wizard to cast powerful
spells:

Introduction to the Path of Summoning and Commanding Objects (aka OOP) 13

1 // we can augment the prototype with a new method to

2 // cast mighty spells

3 Wizard.prototype.castsSpell = function(spell, target){

4 console.log(this + ' casts ' + spell + ' on ' + target);

5 this.mana -= spell.mana;

6 spell(target);

7 };

Or even override or extend existing methods within its base “class”
Minion:

1 // we can also override and extend methods

2 Wizard.prototype.toString = function(){

3 return Minion.prototype.toString.apply(this, arguments) +

4 ", the " + this.element +" Wizard";

5 };

Finally, we can verify that everything works as expected by instan-
tiating our very own powerful wizard:

1 var gandalf = new Wizard(/* name */ "Gandalf",

2 /* element*/ "Grey",

3 /* hp */ 50,

4 /* mana */ 50);

The gandalf object is both an instance of Wizard and Minionwhich
makes sense:

1 console.log('Gandalf is a Wizard: ' + (gandalf instanceof Wizard));

2 // => Gandalf is a Wizard: true

3 console.log('Gandalf is a Minion: ' + (gandalf instanceof Minion));

4 // => Gandalf is a Minion: true

The toString method works as defined in our overridden version:

1 console.log(gandalf.toString());

2 // => Gandalf, the Grey Wizard

And our great Grey wizard can cast potent spells:

Introduction to the Path of Summoning and Commanding Objects (aka OOP) 14

1 // A lightning spell

2 var lightningSpell = function(target){

3 console.log('A bolt of lightning electrifies ' + target + '(-10hp)');

4 target.hp -= 10;

5 };

6 lightningSpell.mana = 5;

7 lightningSpell.toString = function(){ return 'lightning spell';};

8

9 gandalf.castsSpell(lightningSpell, orc);

10 // => Gandalf, the Grey Wizard casts lightning spell on orc

11 // => A bolt of lightning electrifies orc (-10hp)

As you can see from these previous examples, writing “classes”
prior to ES6 was no easy feat. It required a lot of moving parts and
a lot of code. That’s why ES6 brings classes along which provide a
much nicer syntax to what you’ve seen thus far. Instead of having
to handle constructor functions and prototypes yourself, you get the
new class keyword that nicely wraps both into a more coherent
and developer friendly syntax:

1 // this is the equivalent of the Minion

2 class ClassyMinion{

3 constructor(name, hp){

4 this.name = name;

5 this.hp = hp;

6 }

7 toString(){

8 return this.name;

9 }

10 }

11

12 const classyOrc = new ClassyMinion('classy orc', 50);

13 console.log(classyOrc);

14 // => [object Object] {

15 // hp: 100,

16 // name: "classy orc"

17 //}

18

19 console.log(classyOrc.toString());

20 // => classy orc

21

22 console.log('classy orc is a ClassyMinion: ' +

Introduction to the Path of Summoning and Commanding Objects (aka OOP) 15

23 (classyOrc instanceof ClassyMinion));

24 // => classy orc is a ClassyMinion: true

ES6 classes also provide the extend and super keywords which
improve how classes can relate and interact with parent classes.
extend lets you establish class inheritance in a readable, declarative
fashion and super lets you access methods from parent classes:

1 // and this is the equivalent of the Wizard

2 class ClassyWizard extends ClassyMinion{

3 constructor(name, element, hp, mana){

4 // super lets you access the parent class methods

5 // like the parent class constructor

6 super(name, hp);

7 this.element = element;

8 this.mana = mana;

9 }

10 toString(){

11 // or any other method

12 return super.toString() + ", the " + this.element +" Wizard";

13 }

14 castsSpell(spell, target){

15 console.log(this + ' casts ' + spell + ' on ' + target);

16 this.mana -= spell.mana;

17 spell(target);

18 }

19 }

Again, we can verify that it works just like it did before by
instantiating a classy wizard:

Introduction to the Path of Summoning and Commanding Objects (aka OOP) 16

1 const classyGandalf = new Wizard(/* name */ "Classy Gandalf",

2 /* element */ "Grey",

3 /* hp */ 50,

4 /* mana */ 50);

5 console.log('Classy Gandalf is a ClassyWizard: ' +

6 (classyGandalf instanceof ClassyWizard));

7 // => Classy Gandalf is a ClassyWizard: true

8

9 console.log('Classy Gandalf is a ClassyMinion: ' +

10 (classyGandalf instanceof ClassyMinion));

11 // => Classy Gandalf is a ClassyMinion: true

12

13 console.log(classyGandalf.toString());

14 // => Classy Gandalf, the Grey Wizard

15

16 classyGandalf.castsSpell(lightningSpell, classyOrc);

17 // => Classy Gandalf, the Grey Wizard casts lightning spell

18 // on classy orc

19 // => A bolt of lightning electrifies classy orc(-10hp)

With ES6 classes we can achieve the same result than before with
less code and better code at that. It is important to highlight
though that ES6 classes are just syntactic sugar²⁴. Under the
hood, these ES6 classes that you have just seen are equivalent to
constructor function/prototype pairs.

And that is how you mimic classical inheritance in JavaScript. Now
let’s look beyond.

OOP Beyond Classes

There are a lot of people in the JavaScript community who claim
that the cause of JavaScript not having a nice way tomimic classical
inheritance, not having classes, is that you were not meant to use
them in the first place. You were meant to embrace prototypi-
cal inheritance, the natural way of working with inheritance in

²⁴They are also safer to use: They aren’t hoisted and JavaScript will alert you if you try to
call a class constructor without the new operator.

Introduction to the Path of Summoning and Commanding Objects (aka OOP) 17

JavaScript, instead of perverting it to make it behave sort of like
classical inheritance.

In the world of prototypical inheritance you only have objects,
and particularly objects that are based upon other objects which
we call prototypes. Prototypes lend behaviors to other objects by
means of delegation (via the prototype chain) or by the so called
concatenative inheritance which consists in copying behaviors.

Let’s illustrate the usefulness of this type of inheritance with an
example. Imagine that, in addition to wizards, we also need to
have some thieves for those occasions when we need to use a more
gentle/shrew hand against our enemies.

A ClassyThief class could look something like this:

1 class ClassyThief extends ClassyMinion{

2 constructor(name, hp){

3 super(name, hp);

4 }

5 toString(){

6 return super.toString() + ", the Thief";

7 }

8 steals(target, item){

9 console.log(`${this} steals ${item} from ${target}`);

10 }

11 }

And let’s say that a couple of weeks from now, we realize that it
would be nice to have yet another type of minion, one that can both
cast spells and steal, and why not? Play somemusic. Something like
a Bard. In pseudo-code we would describe it as follows:

Introduction to the Path of Summoning and Commanding Objects (aka OOP) 18

1 // class Bard

2 // should be able to:

3 // - cast powerful spells

4 // - steals many items

5 // - play beautiful music

Well, we’ve put ourselves in a pickle here. Classical inheritance
tends to build rigid taxonomies of types where something is a
Wizard, something is a Thief but it cannot be both. How would we
solve the issue of the Bard using classical inheritance in C#? Well…

A. We could move both castsSpell and steals methods to
a base class SpellCastingAndStealingMinion that all three
types could inherit. The ClassyThief would throw an excep-
tion when casting spell and so would the ClassyWizardwhen
stealing. Not a very good solution (goodbye Liskov principle
²⁵)

B. We could create a SpellCastingAndStealingMinion that du-
plicates the functionality in ClassyThief and ClassyWizard

and make the Bard inherit from it. This solution would imply
code duplication and thus additional maintenance.

C. We could define interfaces for these behaviors ICanSteal,
ICanCastSpells and make each class implement these in-
terfaces. Nicer but we would need to provide an specific
implementation in each separate class. No somuch code reuse
here.

D. We could do as in the previous solution, but delegate the
implementation of stealing and casting to another class that
could be reused by wizards, thieves and bards. This would
achievemore code reuse but it’d require a lot of extra artificial
plumbing to do the delegation.

²⁵The Liskov substitution principle is one of the S.O.L.I.D. principles of object-oriented
design. It states that derived classes must be substitutable for their base classes. This means
that a derived class should behave as portrayed by its base class and not break the expectations
created by its interface. In this particular example if you have a castsSpell and a stealsmethod
in the base class, and a derived class throws an exception when you call them you are violating
this principle. That’s because the derived class breaks the expectations established by the base
class (i.e. that you should be able to use both methods).

Introduction to the Path of Summoning and Commanding Objects (aka OOP) 19

So none of these solutions are very attractive: They involve bad
design, code duplication or both. Can JavaScript help us achieve a
better solution to this problem? Yes! It can!

Imagine that we broke down all these behaviors and encapsulated
them inside separate objects (canCastSpells, canSteal and can-

PlayMusic):

1 const canCastSpells = {

2 castsSpell(spell, target){

3 console.log(this + ' casts ' + spell + ' on ' + target);

4 this.mana -= spell.mana;

5 spell(target);

6 }

7 };

8

9 const canSteal = {

10 steals(target, item){

11 console.log(`${this} steals ${item} from ${target}`);

12 }

13 };

14

Introduction to the Path of Summoning and Commanding Objects (aka OOP) 20

15 const canPlayMusic = {

16 playsMusic(){

17 console.log(`${this} grabs his ${this.instrument} ` +

18 `and starts playing music`);

19 }

20 };

21

22 // Bonus behavior to identify a character by name!

23 const canBeIdentifiedByName = {

24 toString(){

25 return this.name;

26 }

27 };

Now that we have encapsulated each behavior in a separate object
we can compose them together to provide the necessary function-
ality to a wizard, a thief and a bard:

1 // And now we can create our objects by composing

2 // these behaviors together

3 function TheWizard(element, mana, name, hp){

4 const wizard = {element,

5 mana,

6 name,

7 hp};

8 Object.assign(wizard,

9 canBeIdentifiedByName,

10 canCastSpells);

11 return wizard;

12 }

13

14 function TheThief(name, hp){

15 const thief = {name,

16 hp};

17 Object.assign(thief,

18 canBeIdentifiedByName,

19 canSteal);

20 return thief;

21 }

22

23 function TheBard(instrument, mana, name, hp){

24 const bard = {instrument,

25 mana,

26 name,

Introduction to the Path of Summoning and Commanding Objects (aka OOP) 21

27 hp};

28 Object.assign(bard,

29 canBeIdentifiedByName,

30 canSteal,

31 canCastSpells,

32 canPlayMusic);

33 return bard;

34 }

And in a very expressive way we can see how a wizard is someone
than can cast spells, a thief is someone that can steal and a bard

someone that not only can cast spells and steal but can also play
music. By stepping out of the rigid limits of classical inheritance and
static typing, we get to a place where we can easily reuse behaviors
and compose new objects in a very flexible and extensible manner.

We can verify that indeed this approach works beautifully. The
Wizard casts powerful spells:

1 const wizard = TheWizard('fire', 100, 'Randalf, the Red', 10);

2

3 wizard.castsSpell(lightningSpell, orc);

4 // => Randalf, the Red casts lightning spell on orc

5 // => A bolt of lightning electrifies orc(-10hp)

The Thief sneaks on you and steals:

1 const thief = TheThief('Locke Lamora', 100);

2

3 thief.steals('orc', /*item*/ 'gold coin');

4 // => Locke Lamora steals gold coin from orc

And the Bard, truly gifted Bard, casts spells, steals and plays
music:

Introduction to the Path of Summoning and Commanding Objects (aka OOP) 22

1 const bard = TheBard('lute', 100, 'Kvothe', 100);

2

3 bard.castsSpell(lightningSpell, orc);

4 // => Kvothe casts lightning spell on orc

5 // =>A bolt of lightning electrifies orc(-10hp)

6

7 bard.steals('orc', /*item*/ 'sandwich');

8 // => Kvothe steals sandwich from orc

9

10 bard.playsMusic();

11 // => Kvothe grabs his lute and starts playing music

The Object.assign in the examples is an ES6 method that lets
you extend an object with other objects. This is effectively the
concatenative prototypical inheritance we mentioned previously.

We usually call these objects mixins. A mixin in JavaScript is
just an object that you compose with other objects to provide
themwith additional behavior or state. In the simplest example
of mixins you just have a single object extending another
object, but there’re also functional mixins, where you use
functions instead. We will cover all these mixin patterns in
detail later in the book with a deep dive into Object.assign and
possible alternatives in ES5.

This object composition technique constitutes a very interesting
and flexible approach to object-oriented programming that isn’t
available in C#. But in JavaScript we can use it even with ES6
classes!

Introduction to the Path of Summoning and Commanding Objects (aka OOP) 23

Combining Classes with Object
Composition

Do you remember that ES6 classes are just syntactic sugar over
the existing prototypical inheritance model? They may look like
classical inheritance but they are not. This means that the following
mix of ES6 classes and object composition would work:

1 class ClassyBard extends ClassyMinion{

2 constructor(instrument, mana, name, hp){

3 super(name, hp);

4 this.instrument = instrument;

5 this.mana = mana;

6 }

7 }

8

9 Object.assign(ClassyBard.prototype,

10 canSteal,

11 canCastSpells,

12 canPlayMusic);

In this examplewe extend the ClassyBard prototypewith new func-
tionality that will be shared by all future instances of ClassyBard.
If we instantiate a new bard we can verify that it can steal, cast
spells and play music:

1 const anotherBard = new ClassyBard('guitar', 100, 'Jimmy Hendrix', 100);

2

3 anotherBard.steals('orc', /*item*/ 'silver coin');

4 // => Jimmy Hendrix steals silver coin from orc

5

6 anotherBard.castsSpell(lightningSpell, orc);

7 // => Jimmy Hendrix casts lightning spell on orc

8 // => A bolt of lightning electrifies orc(-10hp)

9

10 anotherBard.playsMusic();

11 // => Jimmy Hendrix grabs his guitar and starts playing music

This is an example of delegation-based prototypical inheritance in
which methods such as steals, castsSpell and playsMusic are

Introduction to the Path of Summoning and Commanding Objects (aka OOP) 24

delegated to a single prototype object (instead of being appended
to each object individually).

So far you’ve seen classical inheritance mimicked in JavaScript, ES6
classes and object composition via mixin objects, but there’s much
more to learn and in greater detail! Take a sneak peak at what you’ll
learn in each of the upcoming chapters and get excited!

The Path of the Object Summoner
Step by Step

In Summoning Fundamentals: an Introduction to Object Ori-
ented Programming in JavaScript you’ll start by understanding
the basic constructs needed to define and instantiate objects in
JavaScript. In this chapter, constructor functions and the new opera-
tor will join what you’ve discovered thus far about object initializ-
ers. You’ll review how to achieve information hiding, you’ll learn
the basics of JavaScript’s prototypical inheritancemodel and how
you can use it to reuse code/behaviors and improve your memory
footprint. You’ll complete the foundations of JavaScript OOP by
understanding how JavaScript achieves polymorphism.

InWhite Tower Summoning or Emulating Classical Inheritance
in JavaScript you’ll use constructor functions in conjunction with
prototypes to create the equivalent of C# classes in JavaScript. You’ll
then push the boundaries of JavaScript inheritance model further
and emulate C# classical inheritance building inheritance chains
with method extension and overriding just like in C#.

In White Tower Summoning Enhanced: the Marvels of ES6
Classes you’ll learn about the new ES6 Class syntax and how it
provides a much better class development experience over what it
was possible prior to ES6.

InBlack Tower Summoning: Objects InterweavingObjectswith
Mixins we’ll go beyond classical inheritance into the arcane realm

Introduction to the Path of Summoning and Commanding Objects (aka OOP) 25

of object composition with mixins. You’ll learn about the extreme
extensibility of object-oriented programming based on object com-
position. How you can define small pieces of reusable behavior
and properties that combined together can create powerful objects
(effectively achieving multiple inheritance).

In Black Tower Summoning: Safer Object Composition with
Traits you’ll learn about an object composition alternative to
mixins called traits. Traits are as reusable and composable as mixins
but are even more flexible and safe as they let you define required
properties and resolve conflicts.

In Black Tower Summoning Enhanced: Next Level Object Com-
position With Stamps you’ll find out about a new way to work
with objects in JavaScript called Stamps that brings object compos-
ability to the next level.

You’ll then dive into the depths of Object Internals and meta-
programming in JavaScript. You’ll discover the mysteries of the
low level JavaScript Object APIs, the new ESnext decorators, ES6
proxies, ES6 Reflection APIs and symbols.

Finally, wewill complete the path of the Summoner by taking a look
at TypeScript. TypeScript offers the nearest experience to C# that
you can find on the web. It is a superset of JavaScript that enhances
your developer experience with new features and type annotations.
These type annotations bring static typing to JavaScript but they are
flexible enough not to sacrifice JavaScript’s dynamic nature.

Concluding

JavaScript is a very versatile language that supports a lot of pro-
gramming paradigms and different styles of Object-Oriented Pro-
gramming. In the next chapters you’ll see how you can combine a
small number of primitive constructs and techniques to achieve a
variety of OOP styles.

Introduction to the Path of Summoning and Commanding Objects (aka OOP) 26

JavaScript, like in any other part of the language, gives you a lot
of freedom when working with objects, and sometimes you’ll feel
like there are so many options and things you can do that youwon’t
know what’s the right path. Because of that, I’ll try to provide you
with as much guidance as I can and highlight the strengths and
weaknesses of each of the options available.

Get ready to learn some JavaScript OOP!

randalf.says("See? There's a lot of stuff for you to learn");

mooleen.says("Is any of that going to help me get home?");

randalf.says("Most definitely.");

randalf.says("I have scourged our library and found nothing " +

"about this 'earth' you speak of. And now that I think about " +

"it, what a weird name for a kingdom...");

randalf.says("Anyway, the only other option is the golden " +

"library of Orrile...");

mooleen.says("Awesome! Then just show me the way");

randalf.says("... in Tates, guarded by The Deadly Seven... ");

mooleen.says("I can take care of them");

randalf.says("... and the vast host of armies " +

"of the most powerful sorcerer alive");

mooleen.says("I see");

rat.says("downer");

mooleen.says("You were saying something about OOP techniques?...");

	Table of Contents
	Prelude
	A Note to the Illustrious Readers of JavaScript-mancy: Getting Started
	A Story About Why I Wrote This Book
	Why Should You Care About JavaScript?
	What is the Goal of This Book?
	What is the Goal of The JavaScript-mancy Series?
	Why JavaScript-mancy?
	Is This Book For You?
	How is The Book Organized?
	How Are The JavaScript-mancy Series Organized? What is There in the Rest of the Books?
	Understanding the Code Samples in This Book
	A Note About ECMAScript 5 (ES5) and ES6, ES7, ES8 and ESnext within The Book
	A Note Regarding the Use of var, let and const
	A Note About the Use of Generalizations in This Book
	Do You Have Any Feedback? Found Any Error?
	A Final Word From the Author

	Tome I. Mastering the Arcane Art of JavaScript-mancy
	Once Upon a Time…

	Tome II. JavaScriptmancy and OOP: The Path of The Summoner
	Introduction to the Path of Summoning and Commanding Objects (aka OOP)
	Let me Tell You About OOP in JavaScript
	C# Classes in JavaScript
	OOP Beyond Classes
	Combining Classes with Object Composition
	The Path of the Object Summoner Step by Step
	Concluding

