

JavaScript. Отличные советы
Сборник советов и трюков по JavaScript

Caio Ribeiro Pereira и Alexey Pyltsyn

Эта книга предназначена для продажи на http://leanpub.com/javascript-awesome-tips-russian

Эта версия была опубликована на 2019-03-31

Это книга с Leanpub book. Leanpub позволяет авторам и издателям участвовать в так
называемом Lean Publishing - процессе, при котором электронная книга становится
доступна читателям ещё до её завершения. Это помогает собрать отзывы и пожелания для
скорейшего улучшения книги. Мы призываем авторов публиковать свои работы как можно
раньше и чаще, постепенно улучшая качество и объём материала. Тем более, что с нашими
удобными инструментами этот процесс превращается в удовольствие.

© 2019 Caio Ribeiro Pereira и Alexey Pyltsyn

http://leanpub.com/javascript-awesome-tips-russian
http://leanpub.com/
http://leanpub.com/manifesto

Я посвящаю эту книгу моей семье, которая всегда поддерживает меня и мотивирует меня с
самого начала моей жизни.

Особая благодарность Алине Брандарис Сантос (Aline Brandariz Santos) за то, что она
улыбка моей жизни, которая сделала меня счастливым, за её поддержку и надежду.

Отдельное спасибо миссис Шарлотте Бенто де Карвалью (Charlotte Bento de Carvalho),
моему двоюродному брату Клаудио Соуза (Cláudio Souza), моим друзьям Леандро Альварес
да Коста (Leandro Alvares da Costa) и Бруно Альварес да Коста (Bruno Alvares da Costa),

Пауло Сильвейра (Paulo Silveira) и Адриано Алмейда (Adriano Almeida). Они сыграли важную
роль в моей жизни, повлияли на то, кем я есть сегодня, а, следовательно, тот, кто написал

эту книгу.

В конце концов, спасибо всем читателям сайта https://udgwebdev.com, содержание этой
книги основывается на многих постах из этого блога.

И наконец, спасибо тебе, дорогой читатель, за покупку этой книги, надеюсь, тебе она
понравится!

Оглавление

Предисловие . i
JavaScript доминирует в мире . i
Для кого эта книга . i
Как читать эту книгу . i

Глава 1: советы по работе со строками . 1
Создание строки для ЧПУ через регулярные выражения 1
Вставка данных в строку . 1
Повтор строк подряд . 2
Разница между substring() и substr() . 3
Преобразование в прописные буквы . 3
Редактирование строк запросов в браузере . 4
Три способа конвертировать строку в массив . 5
Замена по всей строке . 5
Поиск слов в атрибутах объекта . 6
Извлечение содержимого из HTML-тегов в строке . 6

Глава 2: Советы по работе с числами . 7
Приведение числа к валюте . 7
Приведение строки к числам с помощью оператора + . 7
Приведение даты к числа, используя снова оператор + 8
Округление чисел с помощью оператора ∼∼ . 8
Проверка, является ли число нечётным или чётным . 8
Подсчёт возраста круче всех . 9

Предисловие
JavaScript доминирует в мире

Сегодня JavaScript везде, он широко используется в браузерах, серверах (через Node.js или
другие JS-движки для бекенда), мобильных устройствах (через Cordova, Phonegap, React
Native и т.д.), IoT, SmartTV и этот список ещё можно продолжать. Если вы веб-разработчик,
рано или поздно в своей карьеры вам нужно было хоть немного пописать на JavaScript, чтобы
понять, что всё более активно этот язык завоёвывает все большеместа в мире. Этот язык с 2015
года получает важные обновления, такие как ES6, ES7, ES8, ES9 и ES10 (он же ECMAScript),
которые приносят с собой реализации новых функциональных возможностей, а вместе с
ними и новые способы решения проблем более простым способом.

Для кого эта книга

Эта книга предназначена для всех разработчиков, у которых есть опыт работы на JavaScript,
по крайней мере навыки основного или среднего уровня, а также для тех, кто стремится
узнать больше про некоторые практические советы, трюки и хаки.

Как читать эту книгу

Эта книга представляет ряд проблем и их практических решений на JavaScript, нет необ-
ходимости читать каждую главу этой книги в хронологическом порядке. В конце концов,
это книга рецептов с коллекцией практических рекомендаций, которые можно применить в
своих JavaScript-проектах.

Глава 1: советы по работе со
строками
Создание строки для ЧПУ через регулярные
выражения

Если нужно создать так называемый «слаг» (slug, описательная часть человекопонятно-
го URL-адреса), например, преобразовать фразу «JavaScript is awesome» в «javascript-is-
awesome», то легко сделать с помощью следующей функции:

1 function slugify(content) {

2 return content.toLowerCase().replace(/\s/g, '-').trim();

3 }

4

5 slugify("Writing JavaScript Better");

6 // "writing-javascript-better"

Или, если вы хотите внедрить эту функцию в объект String, сделав её встроенной функцией
для всех строк:

1 String.prototype.slugify = function() {

2 return this.toLowerCase().replace(/\s/g, '-').trim();

3 }

4

5 "Writing JavaScript Better".slugify();

6 // "writing-javascript-better"

Вставка данных в строку

С тех пор, как вышел ES6 (он же ES2015), можно элегантно вставить данные в строку. Вы,
вероятно, уже видели много подобного кода:

Глава 1: советы по работе со строками 2

1 const name = "John Connor";

2 const message = "I came from future!";

3 let template = "<p>";

4 template += "<h3>" + name + "</h3>";

5 template += "" + message + "";

6 template += "</p>";

Но есть более чистый способ, благодаря возможности ES6 шаблонные строки (Template
Strings). Она позволяет вставить данные в строку без сложных выражений с конкатенаци-
ей, это исключает использование ненужное использование оператора + для этой цели. В
качестве можно привести следующий пример использования:

1 const name = "John Connor";

2 const message = "I came from future!";

3 const template = `

4 <p>

5 <h3>${name}</h3>

6 ${message}

7 </p> `;

Повтор строк подряд

Когда нужно повторить строку определённое количество раз, наиболее частый способ —
написать что-то подобное:

1 let content = '';

2 const msg = 'Hello! ';

3 const repeat = 3;

4 for (let i = 0; i < repeat; i++) {

5 content += msg;

6 }

7 console.log(content);

8 // Hello! Hello! Hello!

Либо решение в функциональном стиле, немного меньше кода:

Глава 1: советы по работе со строками 3

1 const repeat = Array(3);

2 const msg = 'Hello! ';

3 const content = repeat.map(() => msg).join('');

4 console.log(content);

5 // Hello! Hello! Hello!

Однако сейчас у ES6 есть простая и подходящая для этой простой задачи функция. Количе-
ство повторений указывается в первом параметре, таким образом, за всего за одну строчку
кода можно выполнить эту задачу семантическим, читабельным и производительным
способом. Достаточно просто использовать функцию String.prototype.repeat ():

1 console.log('Hello!'.repeat(3));

2 // Hello! Hello! Hello!

Разница между substring() и substr()

Вопрос на засыпку: вы знаете основную разницу между функциями substring() и substr()?

В сущности, обе функции принимают одни и теж аргументы. Первый аргумент — это
начальный индекс, но отличие заключается во втором аргументе обеих функций, по-
смотрите на следующий пример:

1 "JavaScript".substr(4, 6); // "Script"

2 "JavaScript".substring(4, 6); // "Sc"

• substr(index, amount)— второй параметр возвращает количество символов, начиная
со значения index.

• substring(start, end) — эта функция возвращает новую строку на основе начальной
и конечной позиции индекса.

Преобразование в прописные буквы

В JavaScript буквы в строкеможно сделать полностьюпрописными (String.prototype.toUpperCase()),
либо строчными (String.prototype.toLowerCase()), однако нет функции, чтобы превратить
только первый символ в верхний регистр, а оставшуюся часть строки — в нижний регистр.
Поэтому, чтобы достичь такой задачи, вы можете создать функцию, которая показана ниже:

Глава 1: советы по работе со строками 4

1 function capitalize(s) {

2 return `${s.charAt(0).toUpperCase()}${s.substr(1).toLowerCase()}`;

3 }

4

5 console.log(capitalize('JAVASCRIPT')); // "Javascript"

Если вы хотите встроить эту функцию в встроенный объект String, достаточно написать
функцию-прототип, например так:

1 String.prototype.capitalize = function() {

2 return `${this.charAt(0).toUpperCase()}${this.substr(1).toLowerCase()}`;

3 }

4

5 console.log('JAVASCRIPT'.capitalize()); // "Javascript"

Редактирование строк запросов в браузере

Вместо того, чтобы тратить время на ручное редактирование строки URL-адреса, а также
увеличивать с этим сложность кода, и всё это для добавления параметров в строку запроса,
вы, вероятно, писали либо видели что-то вроде этого:

1 const lang = 'en-us';

2 const section = 'books';

3 let url = 'https://crpwebdev.github.io';

4 url += '?lang ='+ lang;

5 url += '§ion ='+ section;

6 console.log(url); // "https://crpwebdev.github.io?lang=en§ion=books"

Но есть безопасный и встроенный в браузере способ редактирования строк URL-адресов
с помощью API URL. Можно совершенно безопасно использовать функции set() и get(),
чтобы управлять параметрами запроса. Но учтите, данная возможность существует только
в браузерном JavaScript посредством API HTML5:

1 const lang = 'en-us';

2 const section = 'books';

3 const url = new URL('https://crpwebdev.github.io');

4 url.searchParams.set('lang', lang);

5 url.searchParams.set('section', section);

6 console.log(url); // "https://crpwebdev.github.io?lang=en§ion=books"

Глава 1: советы по работе со строками 5

Три способа конвертировать строку в массив

В данный момент существует три способа разбить строк в одну строку кода, эта концепция
в основном заключается в преобразовании строки в массив символов. А далее воспользо-
вавшись преимущества массива, использовать соответствующие функции для управления
строками:

Использование классического метода String.prototype.split() с пустой строкой в первом
параметре:

1 const title = 'Book';

2 // Обязательно передать пустую строку

3 console.log(title.split('')); // ['B', 'o', 'o', 'k']

4 // Использование этой функции без аргумента или со значением undefined возвращает ма\

5 ссив с одной строкой

6 console.log(title.split()); // ['Book']

Используя Array.from(), передав ей строку в первом параметре:

1 const title = 'Book';

2 console.log(Array.from(title)); // ['B', 'o', 'o', 'k']

Либо можно использовать оператор расширения:

1 const title = 'Book';

2 console.log([...title]); // ['B', 'o', 'o', 'k']

Замена по всей строке

Функция String.prototype.replace() крайне полезна, когда нужно заменить определённые
символы строки. Кроме того, в этой функции возможно использовать регулярное выра-
жение, чтобы производить замены в сложных строках. Эта возможность в свою очередь
поддерживает за один вызов заменить несколько вхождений строк, вместо того, чтобы
выполнять несколько раз функцию, для этого достаточно использовать /g в конце выражения,
посмотрите на это в действии:

1 const title = 'JavaJavaScript';

2 console.log(title.replace(/Java/, '')); // "JavaScript"

3 console.log(title.replace(/Java/g, '')); // "Script"

Глава 1: советы по работе со строками 6

Поиск слов в атрибутах объекта

Этот совет очень полезен тем, что вы можете искать любое вхождение слова по атрибутам
объекта. Это легко добиться всего одной строчкой кода Object.values().toString().includes('string
to search'):

1 const person = {

2 name: 'John Connor',

3 twitter: '@john'

4 };

5

6 Object.values (person).toString().includes('Connor'); // true

В целом, функция Object.values(person) возвращает значения всех атрибутов объекта в виде
массива, после которой можно воспользоваться Array.prototype.toString(), чтобы объеди-
нить элементымассива через запятую в одну строку. Наконец, используем String.prototype.include(),
чтобы искать слово по всей строке — если оно есть, будет возвращено значение true.

Извлечение содержимого из HTML-тегов в строке

Если когда-нибудь понадобится очистить строку от HTML-тегов, то это легко можно сделать
используя String.prototype.replace (), как показано ниже:

1 const content = '<h1>JavaScript</h1> <h2>is the best!</h2>';

2 const text = content.replace(/<[a-zA-Z/][^>]*>/g, '');

3 console.log(text); // "JavaScript is the best!"

Глава 2: Советы по работе с
числами
Приведение числа к валюте

В JavaScript ES6 появилась встроенная возможность форматировать числа в виде денеж-
ных единиц, используя функцию Number.prototype.toLocaleString(). Смотрите примеры
использования ниже:

1 (10.9).toLocaleString(); // "10.90"

2 (1002.5).toLocaleString('en-US'); // "1,002.50"

3 (5.55).toLocaleString('en-US', {

4 // Изменение десятичных цифр

5 minimumFractionDigits: 2,

6 maximumFractionDigits: 2

7 });

Что самое замечательное — теперь, чтобы преобразовать число вам не нужно использовать
обходные варианты с использованинем Math.abs() или Number.prototype.toFixed(). А ещё
эта функция защищена от бага в числах с плавающей точкой, которые ещё существуют в
JavaScript:

1 // Баг с числом с плавающей точкой

2 0.1 + 0.2 // 0.30000000000000004

3 // Решение этой проблемы с помощью новой функции

4 (0.1 + 0.2).toLocaleString(); // "0.3"

Для получения более подробной информации о локалях и других параметрах этой функции
вы можете обратиться к документации Mozilla: Number.prototype.toLocaleString() - JavaScript
| MDN¹

Приведение строки к числам с помощью
оператора +

Подобная магия выглядит круто, вдобавок к тому, что её легко использовать. Код может быть
менее лёгким для понимания, чем при использовании Number('100') для преобразования

¹https://developer.mozilla.org/ru/docs/Web/JavaScript/Reference/Global_Objects/Number/toLocaleString

https://developer.mozilla.org/ru/docs/Web/JavaScript/Reference/Global_Objects/Number/toLocaleString
https://developer.mozilla.org/ru/docs/Web/JavaScript/Reference/Global_Objects/Number/toLocaleString
https://developer.mozilla.org/ru/docs/Web/JavaScript/Reference/Global_Objects/Number/toLocaleString

Глава 2: Советы по работе с числами 8

строки в число. Как бы то ни было, всегда полезно узнать что-то новое. И вот, в качестве
альтернативе можно использовать оператор +, чтобы преобразовать числовую строку в
обычное число. Если строка не является числом, будет возвращено значение NaN («не число»).
Взгляните на пример ниже:

1 const stringNumber = '100';

2 console.log(+stringNumber); // 100

Приведение даты к числа, используя снова
оператор +

Подобно тому, как оператор + может приводить строковое число к числу, вы также можете
использовать этот же оператор, чтобы конвертировать объект Date в число, которое будет
означать дату в миллисекундах. Данный хак может быть весьма полезным, когда нужно
получить временную метку даты:

1 console.log(+new Date()); // 1410480611962

Примечание: Если вы хотите использовать более читабельную реализацию, нежели чем
оператор +, вы всегдаможете использовать Number(new Date()), Date.now()или Date.prototype.getTime(),
чтобы получить миллисекунды с даты.

Округление чисел с помощью оператора ∼∼

Мне кажется, использование оператора ∼∼ для округления чисел выглядит странным реше-
нием, но тем не менее это альтернатива использованию функции Math.floor():

1 console.log(Math.floor(10.99)); // 10

2 console.log(~~10.99); // 10

Проверка, является ли число нечётным или
чётным

Для определения, является ли число чётным либо нечётным, можно использовать оператор
%. Этот оператор отвечает за получение остатка от деления между двумя числами, и в случае,
если остаток от числа, разделённого на 2, равен нулю, то число является чётным, а если оно
равно единице, то соответственно число нечётное:

Глава 2: Советы по работе с числами 9

1 // Odd number

2 console.log(12 % 2 === 0); // true

3 // Even number

4 console.log(13 % 2 === 1); // true

Подсчёт возраста круче всех

Узнав про оператор +, как решение для преобразования типа String или Date в тип Number,
а также применение странного оператора ∼∼ для округления числа, можно создать мини-
малистическую функцию для вычисления возраста. И достичь этого можно всего за одну
строчку производительного кода, посмотрите на пример ниже:

1 function calculateAge(date) {

2 return ~~((Date.now() - date.getTime()) / 31557600000);

3 }

4 // Я пишу этот код, когда на дворе 2019/03/03

5 console.log(calculateAge(new Date(1990, 5, 4))); // 28

Примечание: А что означает число 31557600000? Это всего лишь продолжительность года
в миллисекундах. Если вам интересно узнать производитель этой функции с исполь-
зованием этого магического числа, вы можете посмотреть результат по этой ссылке —
jsperf.com/birthday-calculation²

²https://jsperf.com/birthday-calculation

https://jsperf.com/birthday-calculation
https://jsperf.com/birthday-calculation

	Оглавление
	Предисловие
	JavaScript доминирует в мире
	Для кого эта книга
	Как читать эту книгу

	Глава 1: советы по работе со строками
	Создание строки для ЧПУ через регулярные выражения
	Вставка данных в строку
	Повтор строк подряд
	Разница между substring() и substr()
	Преобразование в прописные буквы
	Редактирование строк запросов в браузере
	Три способа конвертировать строку в массив
	Замена по всей строке
	Поиск слов в атрибутах объекта
	Извлечение содержимого из HTML-тегов в строке

	Глава 2: Советы по работе с числами
	Приведение числа к валюте
	Приведение строки к числам с помощью оператора +
	Приведение даты к числа, используя снова оператор +
	Округление чисел с помощью оператора
	Проверка, является ли число нечётным или чётным
	Подсчёт возраста круче всех

