

[image: JavaScript. Отличные советы]

 JavaScript. Отличные советы

 Сборник советов и трюков по JavaScript

 Caio Ribeiro Pereira и Alexey Pyltsyn

 Эта книга продается по адресу http://leanpub.com/javascript-awesome-tips-russian

 Эта версия была опубликована на 31.03.2019

 [image: publisher's logo]

 * * * * *

 Это книга с Leanpub book. Leanpub позволяет авторам и издателям участвовать в так называемом Lean Publishing - процессе, при котором электронная книга становится доступна читателям ещё до её завершения. Это помогает собрать отзывы и пожелания для скорейшего улучшения книги. Мы призываем авторов публиковать свои работы как можно раньше и чаще, постепенно улучшая качество и объём материала. Тем более, что с нашими удобными инструментами этот процесс превращается в удовольствие.

 * * * * *

© 2019 Caio Ribeiro Pereira и Alexey Pyltsyn

 Я посвящаю эту книгу моей семье, которая всегда поддерживает меня и мотивирует меня с самого начала моей жизни.

Особая благодарность Алине Брандарис Сантос (Aline Brandariz Santos) за то, что она улыбка моей жизни, которая сделала меня счастливым, за её поддержку и надежду.

Отдельное спасибо миссис Шарлотте Бенто де Карвалью (Charlotte Bento de Carvalho), моему двоюродному брату Клаудио Соуза (Cláudio Souza), моим друзьям Леандро Альварес да Коста (Leandro Alvares da Costa) и Бруно Альварес да Коста (Bruno Alvares da Costa), Пауло Сильвейра (Paulo Silveira) и Адриано Алмейда (Adriano Almeida). Они сыграли важную роль в моей жизни, повлияли на то, кем я есть сегодня, а, следовательно, тот, кто написал эту книгу.

В конце концов, спасибо всем читателям сайта https://udgwebdev.com, содержание этой книги основывается на многих постах из этого блога.

И наконец, спасибо тебе, дорогой читатель, за покупку этой книги, надеюсь, тебе она понравится!

 Оглавление

 	
 Предисловие

 	
 JavaScript доминирует в мире

 	
 Для кого эта книга

 	
 Как читать эту книгу

 	
 Глава 1: советы по работе со строками

 	
 Создание строки для ЧПУ через регулярные выражения

 	
 Вставка данных в строку

 	
 Повтор строк подряд

 	
 Разница между substring() и substr()

 	
 Преобразование в прописные буквы

 	
 Редактирование строк запросов в браузере

 	
 Три способа конвертировать строку в массив

 	
 Замена по всей строке

 	
 Поиск слов в атрибутах объекта

 	
 Извлечение содержимого из HTML-тегов в строке

 	
 Глава 2: Советы по работе с числами

 	
 Приведение числа к валюте

 	
 Приведение строки к числам с помощью оператора +

 	
 Приведение даты к числа, используя снова оператор +

 	
 Округление чисел с помощью оператора ~~

 	
 Проверка, является ли число нечётным или чётным

 	
 Подсчёт возраста круче всех

 Guide

 	
 Begin Reading

Предисловие

JavaScript доминирует в мире

Сегодня JavaScript везде, он широко используется в браузерах, серверах (через Node.js или другие JS-движки для бекенда), мобильных устройствах (через Cordova, Phonegap, React Native и т.д.), IoT, SmartTV и этот список ещё можно продолжать. Если вы веб-разработчик, рано или поздно в своей карьеры вам нужно было хоть немного пописать на JavaScript, чтобы понять, что всё более активно этот язык завоёвывает все больше места в мире. Этот язык с 2015 года получает важные обновления, такие как ES6, ES7, ES8, ES9 и ES10 (он же ECMAScript), которые приносят с собой реализации новых функциональных возможностей, а вместе с ними и новые способы решения проблем более простым способом.

Для кого эта книга

Эта книга предназначена для всех разработчиков, у которых есть опыт работы на JavaScript, по крайней мере навыки основного или среднего уровня, а также для тех, кто стремится узнать больше про некоторые практические советы, трюки и хаки.

Как читать эту книгу

Эта книга представляет ряд проблем и их практических решений на JavaScript, нет необходимости читать каждую главу этой книги в хронологическом порядке. В конце концов, это книга рецептов с коллекцией практических рекомендаций, которые можно применить в своих JavaScript-проектах.

Глава 1: советы по работе со строками

Создание строки для ЧПУ через регулярные выражения

Если нужно создать так называемый «слаг» (slug, описательная часть человекопонятного URL-адреса), например, преобразовать фразу «JavaScript is awesome» в «javascript-is-awesome», то легко сделать с помощью следующей функции:

1 function slugify(content) {
2 return content.toLowerCase().replace(/\s/g, '-').trim();
3 }
4
5 slugify("Writing JavaScript Better");
6 // "writing-javascript-better"

Или, если вы хотите внедрить эту функцию в объект String, сделав её встроенной функцией для всех строк:

1 String.prototype.slugify = function() {
2 return this.toLowerCase().replace(/\s/g, '-').trim();
3 }
4
5 "Writing JavaScript Better".slugify();
6 // "writing-javascript-better"

Вставка данных в строку

С тех пор, как вышел ES6 (он же ES2015), можно элегантно вставить данные в строку. Вы, вероятно, уже видели много подобного кода:

1 const name = "John Connor";
2 const message = "I came from future!";
3 let template = "<p>";
4 template += "<h3>" + name + "</h3>";
5 template += "" + message + "";
6 template += "</p>";

Но есть более чистый способ, благодаря возможности ES6 шаблонные строки (Template Strings). Она позволяет вставить данные в строку без сложных выражений с конкатенацией, это исключает использование ненужное использование оператора + для этой цели. В качестве можно привести следующий пример использования:

1 const name = "John Connor";
2 const message = "I came from future!";
3 const template = `
4 <p>
5 <h3>${name}</h3>
6 ${message}
7 </p> `;

Повтор строк подряд

Когда нужно повторить строку определённое количество раз, наиболее частый способ — написать что-то подобное:

1 let content = '';
2 const msg = 'Hello! ';
3 const repeat = 3;
4 for (let i = 0; i < repeat; i++) {
5 content += msg;
6 }
7 console.log(content);
8 // Hello! Hello! Hello!

Либо решение в функциональном стиле, немного меньше кода:

1 const repeat = Array(3);
2 const msg = 'Hello! ';
3 const content = repeat.map(() => msg).join('');
4 console.log(content);
5 // Hello! Hello! Hello!

Однако сейчас у ES6 есть простая и подходящая для этой простой задачи функция. Количество повторений указывается в первом параметре, таким образом, за всего за одну строчку кода можно выполнить эту задачу семантическим, читабельным и производительным способом. Достаточно просто использовать функцию String.prototype.repeat ():

1 console.log('Hello!'.repeat(3));
2 // Hello! Hello! Hello!

Разница между substring() и substr()

Вопрос на засыпку: вы знаете основную разницу между функциями substring() и substr()?

В сущности, обе функции принимают одни и теж аргументы. Первый аргумент — это начальный индекс, но отличие заключается во втором аргументе обеих функций, посмотрите на следующий пример:

1 "JavaScript".substr(4, 6); // "Script"
2 "JavaScript".substring(4, 6); // "Sc"

 	
substr(index, amount) — второй параметр возвращает количество символов, начиная со значения index.

 	
substring(start, end) — эта функция возвращает новую строку на основе начальной и конечной позиции индекса.

Преобразование в прописные буквы

В JavaScript буквы в строке можно сделать полностью прописными (String.prototype.toUpperCase()), либо строчными (String.prototype.toLowerCase()), однако нет функции, чтобы превратить только первый символ в верхний регистр, а оставшуюся часть строки — в нижний регистр. Поэтому, чтобы достичь такой задачи, вы можете создать функцию, которая показана ниже:

1 function capitalize(s) {
2 return `${s.charAt(0).toUpperCase()}${s.substr(1).toLowerCase()}`;
3 }
4
5 console.log(capitalize('JAVASCRIPT')); // "Javascript"

Если вы хотите встроить эту функцию в встроенный объект String, достаточно написать функцию-прототип, например так:

1 String.prototype.capitalize = function() {
2 return `${this.charAt(0).toUpperCase()}${this.substr(1).toLowerCase()}`;
3 }
4
5 console.log('JAVASCRIPT'.capitalize()); // "Javascript"

Редактирование строк запросов в браузере

Вместо того, чтобы тратить время на ручное редактирование строки URL-адреса, а также увеличивать с этим сложность кода, и всё это для добавления параметров в строку запроса, вы, вероятно, писали либо видели что-то вроде этого:

1 const lang = 'en-us';
2 const section = 'books';
3 let url = 'https://crpwebdev.github.io';
4 url += '?lang ='+ lang;
5 url += '§ion ='+ section;
6 console.log(url); // "https://crpwebdev.github.io?lang=en§ion=books"

Но есть безопасный и встроенный в браузере способ редактирования строк URL-адресов с помощью API URL. Можно совершенно безопасно использовать функции set() и get(), чтобы управлять параметрами запроса. Но учтите, данная возможность существует только в браузерном JavaScript посредством API HTML5:

1 const lang = 'en-us';
2 const section = 'books';
3 const url = new URL('https://crpwebdev.github.io');
4 url.searchParams.set('lang', lang);
5 url.searchParams.set('section', section);
6 console.log(url); // "https://crpwebdev.github.io?lang=en§ion=books"

Три способа конвертировать строку в массив

В данный момент существует три способа разбить строк в одну строку кода, эта концепция в основном заключается в преобразовании строки в массив символов. А далее воспользовавшись преимущества массива, использовать соответствующие функции для управления строками:

Использование классического метода String.prototype.split() с пустой строкой в первом параметре:

1 const title = 'Book';
2 // Обязательно передать пустую строку
3 console.log(title.split('')); // ['B', 'o', 'o', 'k']
4 // Использование этой функции без аргумента или со значением undefined возвращает ма\
5 ссив с одной строкой
6 console.log(title.split()); // ['Book']

Используя Array.from(), передав ей строку в первом параметре:

1 const title = 'Book';
2 console.log(Array.from(title)); // ['B', 'o', 'o', 'k']

Либо можно использовать оператор расширения:

1 const title = 'Book';
2 console.log([...title]); // ['B', 'o', 'o', 'k']

Замена по всей строке

Функция String.prototype.replace() крайне полезна, когда нужно заменить определённые символы строки. Кроме того, в этой функции возможно использовать регулярное выражение, чтобы производить замены в сложных строках. Эта возможность в свою очередь поддерживает за один вызов заменить несколько вхождений строк, вместо того, чтобы выполнять несколько раз функцию, для этого достаточно использовать /g в конце выражения, посмотрите на это в действии:

1 const title = 'JavaJavaScript';
2 console.log(title.replace(/Java/, '')); // "JavaScript"
3 console.log(title.replace(/Java/g, '')); // "Script"

Поиск слов в атрибутах объекта

Этот совет очень полезен тем, что вы можете искать любое вхождение слова по атрибутам объекта. Это легко добиться всего одной строчкой кода Object.values().toString().includes('string to search'):

1 const person = {
2 name: 'John Connor',
3 twitter: '@john'
4 };
5
6 Object.values​​(person).toString().includes('Connor'); // true

В целом, функция Object.values(person) возвращает значения всех атрибутов объекта в виде массива, после которой можно воспользоваться Array.prototype.toString(), чтобы объединить элементы массива через запятую в одну строку. Наконец, используем String.prototype.include(), чтобы искать слово по всей строке — если оно есть, будет возвращено значение true.

Извлечение содержимого из HTML-тегов в строке

Если когда-нибудь понадобится очистить строку от HTML-тегов, то это легко можно сделать используя String.prototype.replace (), как показано ниже:

1 const content = '<h1>JavaScript</h1> <h2>is the best!</h2>';
2 const text = content.replace(/<[a-zA-Z/][^>]*>/g, '');
3 console.log(text); // "JavaScript is the best!"

Глава 2: Советы по работе с числами

Приведение числа к валюте

В JavaScript ES6 появилась встроенная возможность форматировать числа в виде денежных единиц, используя функцию Number.prototype.toLocaleString(). Смотрите примеры использования ниже:

1 (10.9).toLocaleString(); // "10.90"
2 (1002.5).toLocaleString('en-US'); // "1,002.50"
3 (5.55).toLocaleString('en-US', {
4 // Изменение десятичных цифр
5 minimumFractionDigits: 2,
6 maximumFractionDigits: 2
7 });

Что самое замечательное — теперь, чтобы преобразовать число вам не нужно использовать обходные варианты с использованинем Math.abs() или Number.prototype.toFixed(). А ещё эта функция защищена от бага в числах с плавающей точкой, которые ещё существуют в JavaScript:

1 // Баг с числом с плавающей точкой
2 0.1 + 0.2 // 0.30000000000000004
3 // Решение этой проблемы с помощью новой функции
4 (0.1 + 0.2).toLocaleString(); // "0.3"

Для получения более подробной информации о локалях и других параметрах этой функции вы можете обратиться к документации Mozilla: Number.prototype.toLocaleString() - JavaScript | MDN

Приведение строки к числам с помощью оператора +

Подобная магия выглядит круто, вдобавок к тому, что её легко использовать. Код может быть менее лёгким для понимания, чем при использовании Number('100') для преобразования строки в число. Как бы то ни было, всегда полезно узнать что-то новое. И вот, в качестве альтернативе можно использовать оператор +, чтобы преобразовать числовую строку в обычное число. Если строка не является числом, будет возвращено значение NaN («не число»). Взгляните на пример ниже:

1 const stringNumber = '100';
2 console.log(+stringNumber); // 100

Приведение даты к числа, используя снова оператор +

Подобно тому, как оператор + может приводить строковое число к числу, вы также можете использовать этот же оператор, чтобы конвертировать объект Date в число, которое будет означать дату в миллисекундах. Данный хак может быть весьма полезным, когда нужно получить временную метку даты:

1 console.log(+new Date()); // 1410480611962

Примечание: Если вы хотите использовать более читабельную реализацию, нежели чем оператор +, вы всегда можете использовать Number(new Date()), Date.now() или Date.prototype.getTime(), чтобы получить миллисекунды с даты.

Округление чисел с помощью оператора ~~

Мне кажется, использование оператора ~~ для округления чисел выглядит странным решением, но тем не менее это альтернатива использованию функции Math.floor():

1 console.log(Math.floor(10.99)); // 10
2 console.log(~~10.99); // 10

Проверка, является ли число нечётным или чётным

Для определения, является ли число чётным либо нечётным, можно использовать оператор %. Этот оператор отвечает за получение остатка от деления между двумя числами, и в случае, если остаток от числа, разделённого на 2, равен нулю, то число является чётным, а если оно равно единице, то соответственно число нечётное:

1 // Odd number
2 console.log(12 % 2 === 0); // true
3 // Even number
4 console.log(13 % 2 === 1); // true

Подсчёт возраста круче всех

Узнав про оператор +, как решение для преобразования типа String или Date в тип Number, а также применение странного оператора ~~ для округления числа, можно создать минималистическую функцию для вычисления возраста. И достичь этого можно всего за одну строчку производительного кода, посмотрите на пример ниже:

1 function calculateAge(date) {
2 return ~~((Date.now() - date.getTime()) / 31557600000);
3 }
4 // Я пишу этот код, когда на дворе 2019/03/03
5 console.log(calculateAge(new Date(1990, 5, 4))); // 28

Примечание: А что означает число 31557600000? Это всего лишь продолжительность года в миллисекундах. Если вам интересно узнать производитель этой функции с использованием этого магического числа, вы можете посмотреть результат по этой ссылке — jsperf.com/birthday-calculation

OEBPS/images/leanpub_warning.png

OEBPS/images/leanpub-logo.png
[

Leanpub

OEBPS/images/title_page.png
JAVASCRIPT

OTnuyHbIe coBeTbl

Kaiio PuGeiipy Mepeitpa

