

Java – Intermediate to Advanced

ii

Java Programming

Intermediate to Advanced

Step by step instructions

for practical hands-on programming

Gerry Byrne and David Wilson

Copyright © 2025 Gerry Byrne & David Wilson

All rights reserved.

ABOUT THE AUTHORS

Gerry Byrne and David Wilson are Senior Technical Trainers for a Forbes 100 company. They

work to upskill and reskill software engineers who develop business-critical software

applications. They also help refine the programming skills of returners to the workforce and

introduce new graduates to the application of software development within the commercial

environment.

Their subject expertise has been developed over multi-decade careers as teachers, lecturers, and

technical trainers in a corporate technology environment. They have delivered a range of

courses across computer languages and frameworks and understand how to teach skills and

impart knowledge to a range of learners. They have taught software engineers in the use of

modern technologies and frameworks such as C#, Java, Spring, Android, JavaScript, Node,

HTML, CSS, Bootstrap, React, Python, and Test-Driven Development, not to mention legacy

technologies such as COBOL and JCL.

Gerry and David have mastered how to teach difficult concepts in a simple way that makes

learning accessible and enjoyable. Their delivery and content follow the same philosophy of

keeping it simple, while making the instructions detailed and applying concepts to real-world

scenarios. They are passionate about software development and believe we can all learn to

write code if we are patient, grasp the basic coding concepts, get plenty of hands-on coding,

and most of all, persevere through ‘thick and thin’.

DEDICATION

Writing a book is a rewarding undertaking, but it requires time, effort and patience. It requires

patience from those who help you write the book and those around you in your life.

So, we start by thanking our families for ‘facilitating’ us as we worked over many hours, days,

weeks and months to write this programming book.

We also wish to thank each other, we have learnt so much in writing this book and in

delivering many enjoyable programming courses. When we need coding inspiration, we work

together, we try things, and we persevere in pursuit of excellence.

ACKNOWLEDGMENTS

We would like to express our deepest gratitude to everyone who contributed to the creation

of this book. We are especially grateful to those who offered invaluable guidance and

insightful feedback during the writing process.

Special thanks to the open-source community and all those who have contributed to the Java

platform and its resources, which have been fundamental in shaping the examples and

content presented here.

Finally, to all the readers, thank you for your interest and enthusiasm. We hope this book

serves as a valuable resource on your journey with Java programming, and programming in

general.

15 UNDERSTANDING INHERITANCE .. 3

USING MULTI-LEVEL INHERITANCE .. 10
POLYMORPHISM IN JAVA ... 14

Method Overloading .. 14
Method Overriding ... 17
Dynamic method dispatch .. 23

CHAPTER SUMMARY... 26

16 ABSTRACTION AND INTERFACES .. 27

INTERFACES .. 40
MULTIPLE INTERFACES .. 47
SUMMARY .. 54

17 RECORDS, SEALED CLASSES AND INTERFACES .. 55

Records ... 55
Records - Insurance Application ... 61
Code Analysis .. 64
Records class implementing more than one interface ... 65
Record Patterns .. 69
Sealed classes ... 73
Inheritance example ... 74
Sealed class example .. 82
Code Analysis .. 89
Sealed interfaces .. 89

CHAPTER SUMMARY... 96

18 EXCEPTION HANDLING ... 97

What is an Exception? .. 97
File not found exception ... 98
Array index out of bounds exception .. 99
Arithmetic, divide by zero exception... 100
Null pointer exception .. 100
try ... 101
catch ... 102
finally .. 104
throw .. 105
Checked Exceptions .. 106
Unchecked Exceptions .. 107
Multiple exceptions .. 113
FileNotFoundException ... 115
finally .. 119

Java – Intermediate to Advanced

vii

throw ... 120
rethrow .. 123

CHAPTER SUMMARY .. 130

19 FILE HANDLING .. 131

An Overview of File Class ... 132
An Overview of FileReader and FileWriter ... 146
FileReader and FileWriter class .. 163

CHAPTER SUMMARY .. 176

20 SERIALIZATION AND DESERIALIZATION .. 177

Deserialization ... 178
Transient .. 178
Serializing the object .. 183
Deserializing the serialized file to a class ... 187
Variable modifier – transient ... 191
Serialization using XML .. 193
Creating the serialization code .. 194
Creating the deserialization code .. 196
Serialization using JSON ... 199
Creating the serialization code .. 201
Creating the Deserialization code .. 205

CHAPTER SUMMARY .. 209

21 REFLECTION AND ANNOTATIONS... 210

Reflection ... 210
Basic example .. 214
Intermediate example .. 217
Advanced example ... 219

ANNOTATIONS .. 224
METADATA .. 224

Predefined Annotations ... 226
Deprecation Warning .. 232
Unchecked Warning: ... 232
@SuppressWarnings ... 232
Custom Annotations .. 241
Create and Use Custom Annotations ... 241
Creating and Using Custom Annotations in an Insurance Application 242

CHAPTER SUMMARY .. 258

22 ENUMERATIONS .. 259

Defining an enumeration ... 260
Enumeration examples ... 260
Built in Enumerations ... 261

Java – Intermediate to Advanced

viii

Properties and Features of enums .. 262
Enumerated values use and scope ... 263

ENUMERATION METHODS .. 265
Ordinal() method .. 266
compareTo() method .. 267
name() method ... 268
toString() method ... 269

ENUM IN A CLASS ... 270
ENUMERATION IN A SEPARATE FILE FROM THE CLASS ... 273

Using the for each iteration .. 275
ASSIGNING OUR OWN VALUES TO THE ENUMERATION ... 276
SAMPLE APPLICATION USING ENUMERATIONS ... 279
CHAPTER SUMMARY... 288

23 GENERICS ... 289

Types of Java Generics .. 289
Generic Class, generic method, generic parameters .. 294
Generic class, generic method, mixed parameter types ... 298
Generic method only .. 299

ADVANTAGES OF GENERICS ... 303
PROPERTY INSURANCE APPLICATION EXAMPLE ... 303
CHAPTER SUMMARY... 309

24 LAMBDA EXPRESSIONS .. 310

CONCEPT OF LAMBDA EXPRESSIONS ... 310
FUNCTIONAL INTERFACE .. 318
PREDICATE ... 330

Combining Predicates ... 340
Function .. 344
Default methods in the Function interface ... 354

CHAPTER SUMMARY... 365

25 STREAMS .. 366

TERMINAL OPERATORS .. 369
FILTER ... 372
MAP ... 381
FLATMAP ... 389
DISTINCT .. 397
COUNT .. 400
LIMIT... 401
MIN .. 402
MAX ... 404
REDUCE.. 405
SORTED ... 406

Java – Intermediate to Advanced

ix

PARALLEL STREAMS ... 409
Process ... 409
Thread .. 410
Fork-Join Framework ... 410
Fork .. 410
Join ... 410
Work-Stealing .. 410
Parallel processing with the reduce() method ... 414

CHAPTER SUMMARY .. 421

26 MULTITHREADING ... 422

Program ... 422
Process ... 422
Thread.. 422
Stack .. 423
Concurrency ... 423
Parallelism ... 424
What is Multithreading? .. 425
Benefits of Multithreading ... 429
Key Concepts in Java Multithreading ... 430
Challenges and Considerations .. 430

REAL WORLD USES OF MULTITHREADING .. 430
Insurance Claims .. 431
How Thread.sleep Works ... 435

CREATING THREADS ... 437
Instantiating the Thread class with Runnable class ... 437
Subclassing the Thread class .. 439

METHODS OF THE THREAD CLASS ... 442
setPriority() .. 442
join() ... 444
isAlive() .. 449

CHAPTER SUMMARY .. 451

27 STRING HANDLING AND MANIPULATION .. 452

STRING LITERALS ... 456
Regular string... 456
Text Blocks ... 457

SUBSTRING .. 459
LENGTH ... 462
STARTSWITH() .. 463

split(regular expression) .. 468
COMPARETO() .. 470

compareToIgnoreCase(String str) .. 473
toUpperCase() .. 475

Java – Intermediate to Advanced

x

toLowerCase() ... 475
concat() ... 476
trim() ... 477
replace().. 478
contains() .. 480
• contains(char) .. 480
• contains(string) .. 480
indexOf() ... 482
• indexOf(char) ... 482
• indexOf(string) ... 482
insert(int startindex, string value) .. 483
String.Format() ... 485
equals(Object myObject) .. 490

CHAPTER SUMMARY... 494
THE WAY FORWARD ... 495

i

2

15 Understanding Inheritance

Inheritance is a mechanism that allows one class, the subclass, to inherit the properties and

behaviors of another class, the superclass. Inheritance is used to share structure and behavior

between classes This promotes code reuse and reduces redundancy.

In our insurance scenario, inheritance could work by having the base class where we define the

common offerings and then we can extend the base class into tailored products without

duplicating logic. It is efficient and keeps policies consistent across product lines.

Think about the Policy class we mentioned in the encapsulation pillar in Chapter 14. The

policy could be used as a base class and has shared features like policyHolder, startDate, and

premiumAmount. From this base class we could derive specialized policies like

LifeInsurancePolicy or AutoInsurancePolicy, each adding its own traits.

In our insurance example, we can create a base class InsurancePolicy and derive specialized

policies from it. We will create three new classes inside a package, one called InsurancePolicy

which will be the superclass, one called LifeInsurancePolicy which will be a sub class of the

superclass, and the third will be called AutoInsurancePolicy which will also be a sub class of

the superclass. The hierarchy is shown below:

InsurancePolicy

├── LifeInsurancePolicy

└── AutoInsurancePolicy

We will also create an InsuranceApplication class with a main() method that will demonstrate

the use of the super and sub classes.

1. Right click on the code folder.

2. Choose New.

3. Choose Package.

4. Name the package chapter15.

5. Press the Enter key.

6. Right click on the chapter15 package.

7. Choose New.

8. Choose package.

Java – Intermediate to Advanced

3

9. Name the package inheritance.

10. Right click on the inheritance package.

11. Choose New.

12. Choose Java Class.

13. Name the class InsurancePolicy.

This will be our base class, the superclass. The class contains:

• Five private properties, policyHolderName, premiumAmount, coverageType, startDate

and endDate

• A parameterized constructor that has five parameters and is used to initialize all the

properties.

• A method that is used to display the details of the insurance policy.

• Getters and setters for the private properties (encapsulation).

• A toString() method.

14. Amend the code as Listing 15-1.

Listing 15-1. Creating the superclass

package code.chapter15.inheritance;

public class InsurancePolicy

{

 // Declare the class properties, these are the attributes of the class

 private String policyHolderName;

 private double premiumAmount;

 private String coverageType;

 private String startDate;

 private String endDate;

 // Declare the parameterized constructor of the class

 public InsurancePolicy(String policyHolderName, double premiumAmount,

 String coverageType, String startDate, String endDate)

 {

 this.policyHolderName = policyHolderName;

 this.premiumAmount = premiumAmount;

 this.coverageType = coverageType;

 this.startDate = startDate;

 this.endDate = endDate;

 } // End of parameterized constructor

 // Declare the displayPolicyDetails() method, this is a behavior of the class

 public void displayPolicyDetails() {

 System.out.println("Policy Details");

 System.out.printf("%-20s %s\n", "Policy Holder Name:", policyHolderName);

 System.out.printf("%-20s $%.2f\n", "Premium Amount:", premiumAmount);

 System.out.printf("%-20s %s\n", "Coverage Type:", coverageType);

Java – Intermediate to Advanced

4

 System.out.printf("%-20s %s\n", "Start Date:", startDate);

 System.out.printf("%-20s %s\n", "End Date:", endDate);

 } // End of displayPolicyDetails() method

 // Getters and Setters for encapsulation

 public String getPolicyHolderName() {

 return policyHolderName;

 } // End of getPolicyHolderName()

 public void setPolicyHolderName(String policyHolderName) {

 this.policyHolderName = policyHolderName;

 } // End of setPolicyHolderName()

 public double getPremiumAmount() {

 return premiumAmount;

 } // End of getPremiumAmount()

 public void setPremiumAmount(double premiumAmount) {

 this.premiumAmount = premiumAmount;

 } // End of setPremiumAmount()

 public String getCoverageType() {

 return coverageType;

 } // End of getCoverageType()

 public void setCoverageType(String coverageType) {

 this.coverageType = coverageType;

 } // End of setCoverageType()

 public String getStartDate() {

 return startDate;

 } // End of getStartDate()

 public void setStartDate(String startDate) {

 this.startDate = startDate;

 } // End of setStartDate()

 public String getEndDate() {

 return endDate;

 } // End of getEndDate()

 public void setEndDate(String endDate) {

 this.endDate = endDate;

 } // End of setEndDate()

 // Override the toString() method to provide a string

 // representation of the object

 @Override

 public String toString() {

 return "InsurancePolicy{" +

 "policyHolderName='" + policyHolderName + '\'' +

 ", premiumAmount=" + premiumAmount +

 ", coverageType='" + coverageType + '\'' +

 ", startDate='" + startDate + '\'' +

 ", endDate='" + endDate + '\'' +

 '}';

 } // End of toString() method

} // End of InsurancePolicy class

Java – Intermediate to Advanced

5

Polymorphism in Java

Imagine we are building a software system for an insurance company that offers various types

of policies, health, auto, and life insurance. While each policy type calculates its premium

differently, they all share common behaviors, such as displaying the policyholder’s information.

To design a system that’s flexible, maintainable, and scalable, we need a way to handle these

variations without duplicating code or creating rigid structures. This is where polymorphism

becomes essential.

To see this, follow the instructions below:

15. Right click on the chapter15 package.

16. Choose New.

17. Choose Package.

18. Name the package polymorphism.overloading.

19. Right click on the overloading package.

20. Choose New.

21. Choose Java Class.

22. Name the class PremiumCalculator.

23. Amend the code as Listing 15-7.

Listing 15-7. Create the PremiumCalculator class

package code.chapter15.polymorphism.overloading;

public class PremiumCalculator {

 /*

 Method to calculate premium for Health Insurance. It takes age as a parameter

 of type int and returns the premium amount based on the age criteria.

 */

 public double calculatePremium(int age) {

 return age < 40 ? 5000 : 8000;

 } // End of calculatePremium() method with int parameter

 /*

 Overloaded method to calculate premium for Auto Insurance. It is overloaded

 because of the different parameter type (String instead of int or double).

 */

 public double calculatePremium(String vehicleModel) {

 return vehicleModel.equalsIgnoreCase("SUV") ? 10000 : 7000;

 } // End of calculatePremium() method with String parameter

 /*

 Overloaded method to calculate premium for Life Insurance. It is overloaded

 because of the different parameter type (double instead of int or String).

Java – Intermediate to Advanced

6

 */

 public double calculatePremium(double coverageAmount) {

 return coverageAmount * 0.02;

 } // End of calculatePremium() method with double parameter

} // End of PremiumCalculator class

Java – Intermediate to Advanced

7

16 Abstraction and Interfaces

Abstraction is about defining what an object should do, without specifying how it does it. It

is the art of hiding complexity and exposing only the essential features. In other words,

abstraction lets us design systems that are clean, extensible, and easy to reason about.

Imagine we are building an insurance platform. We do not want to worry about the internal

details of every policy type, we just want to know that each one can calculate a premium,

validate coverage, or generate a summary. That is what abstraction is, we define the required

behaviours and let each policy type handle the specifics. In Java, abstraction is implemented

through:

• Abstract classes which can define both concrete and abstract methods.

• Interfaces which declare method signatures that implementing classes must

 fulfill and, since Java 8, can also include default and static methods

 with concrete implementations.

An abstract class in Java lets us define a common structure and expected behaviors for a

group of related classes, while leaving the specific implementation to each subclass. If we think

about our insurance platform, we may have an insurance policy template which states that

every policy must calculate a premium and print its details. When we use the template to design

a real insurance policy, we will need to calculate the premium and print the details specific to

the policy type e.g., CarPolicy, HealthPolicy, HomePolicy.

1. Right click on the code folder.

2. Choose New.

3. Choose Package.

4. Name the package chapter16.

5. Press the Enter key.

6. Right click on the chapter16 package.

7. Choose New.

8. Choose package.

9. Name the package abstraction.

10. Right click on the abstraction package.

11. Choose New.

Java – Intermediate to Advanced

8

12. Choose Java Class.

13. Name the class InsurancePolicy.

We will now create an abstract class called InsurancePolicy to serve as a blueprint for different

types of insurance policies. In this class, we will add two protected fields, policyHolder and

basePremium. These fields will store information common to all insurance policies and will be

accessible to subclasses.

Next, we will create a parameterized constructor to initialize these fields when an object is

created. Then, we will declare an abstract method named calculatePremium(), which will

require all subclasses to provide their own implementation for calculating the premium.

Finally, we will implement two concrete methods, printPolicyHolder() and

printBasePremium(). These methods will allow us to display the policy holder's name and the

base premium, and they can be used by any subclass, but this is not mandatory. Our class

design helps to establish a flexible and extensible foundation for various insurance policy types.

14. Amend the code as Listing 16-5.

Listing 16-5. Abstract class

package code.chapter16.abstraction;

// Create an abstract class- InsurancePolicy by adding the keyword abstract

public abstract class InsurancePolicy

{

 /*

 Create the fields common to all insurance policies. These are protected

 so that subclasses can access them directly.

 */

 protected String policyHolder;

 protected double basePremium;

 // Parameterized constructor

 public InsurancePolicy(String policyHolder, double basePremium) {

 this.policyHolder = policyHolder;

 this.basePremium = basePremium;

 }

 // Abstract method which must be implemented by subclasses

 public abstract double calculatePremium();

 // Concrete method which is shared by all policies

 public void printPolicyHolder()

 {

 System.out.println("Policy Holder: " + policyHolder);

 } // End of printPolicyHolder() method

Java – Intermediate to Advanced

9

 // A method to print the base premium and is optional for subclasses to use

 public void printBasePremium() {

 System.out.println("Base Premium: $" + basePremium);

 } // End of printBasePremium() method

 }// End InsurancePolicy class

The class can be thought of as a contract that all policies must abide by. It says, “Every

insurance policy must have a policyholder, a base premium, and a way to calculate the final

premium.”

To setup this contract any subclass must extend the abstract InsurancePolicy class, thereby

agreeing to fulfill certain responsibilities defined by the base class.

15. Right click on the abstraction package.

16. Choose New.

17. Choose Java Class.

18. Name the class AutoInsurancePolicy.

Interfaces

Imagine we are building a software system for an insurance company that offers various types

of insurance, such as auto, home, and life. Each type of insurance has some common tasks, like

calculating premiums, issuing policies, and processing claims, but they each perform these tasks

differently.

Our challenge, therefore, is to ensure that every type of insurance follows the same basic rules

while still allowing them to operate in their unique ways.

This is where interfaces come to our assistance.

Think of an interface like a contract. It says: “If you want to be considered an Insurance type,

you must promise to do these things.” But it does not care how we do them, that is up to us.

In Java, an interface is a way to define what methods a class should have, without writing the

actual code for those methods. In Java, an interface is a special type that:

• Defines method names, but not how they work.

• Says, “Any class that implements me must provide these methods.”

Java – Intermediate to Advanced

10

• Does not contain properties, except constants.

• Can be implemented by any class, even if they are unrelated.

• Lets us build flexible systems where different classes can share behavior without sharing

structure.

From Java 8 onwards, interfaces can also contain default methods and static methods.

Default methods provide a way to specify a default implementation for a method, which can be

overridden by implementing classes if needed. Static methods in interfaces can be called

independently of any object instance, providing utility methods related to the interface.

Listing 16-13 shows a simple interface.

Listing 16-13. Interface example

public interface InsurancePolicy {

 // Every insurance policy must be able to calculate its premium

 double calculatePremium();

}

Notice the use of the name interface rather than the name class. To use an interface, a class

must say it implements that interface as shown in Listing 16-14. This means the class agrees

to provide concrete versions of all the methods listed in the interface.

Java – Intermediate to Advanced

11

17 Records, Sealed classes and interfaces

Records

Records were introduced in Java 14 as a preview feature and became a standard feature in Java

16. Records are a special kind of class in Java, designed to simplify the creation of classes that

are primarily used to store data. In programming we can refer to boilerplate code as including

things like getters and setters, constructors, and other common methods that do not add much

value but are necessary for the program to function correctly. Using a record can help reduce

boilerplate code by automatically providing a constructor to initialize the fields and adding

implementations for methods such as equals(), hashCode(), and toString(), as well as providing

a compact syntax for defining immutable fields.

Traditional class to hold data

We will look at an example to see how we would create a ‘traditional’ class to hold data and

have the constructor and methods, equals(), hashCode(), and toString(), Then we will see the

new way to do things using a record, and therefore there will be less boilerplate code.

1. Right click on the code package.

2. Choose New.

3. Choose Package.

4. Name the package chapter17.

5. Press the Enter key.

6. Right click on the chapter17 package.

7. Choose New.

8. Choose Java Class.

9. Name the class PolicyHolder.

10. Press the Enter key.

The PolicyHolder class will be used to represent a PolicyHolder with:

• Three private fields: name, address, and email.

• A constructor to initialize all fields.

• Getter methods for each field, getName(), getAddress(), getEmail().

• Override methods for:

• The equals() method to compare PolicyHolder objects based on their fields.

Java – Intermediate to Advanced

12

• The hashCode() method to generate a hash code based on the fields.

• The toString() method to return a formatted string representation of the object.

11. Amend the code as shown in Listing 17-1, and add any required imports.

Listing 17-1. InsurancePolicy traditional class

package code.chapter17;

import java.util.Objects;

// A traditional class that represents a PolicyHolder

public class PolicyHolder {

 // Private fields for the PolicyHolder class

 private final String name;

 private final String address;

 private final String email;

 // Parameterized constructor with all fields

 public PolicyHolder(String name, String address, String email) {

 this.name = name;

 this.address = address;

 this.email = email;

 }

 // Getters

 public String getName() {

 return name;

 }

 public String getAddress() {

 return address;

 }

 public String getEmail() {

 return email;

 }

 // Methods

 // The equals method is used to compare the

 // object with another object

 @Override

 public boolean equals(Object myObject) {

 if (this == myObject) {

 return true;

 }

 if (myObject == null || getClass() != myObject.getClass()) {

 return false;

 }

 // Cast the object to a PolicyHolder

 PolicyHolder otherPolicyHolder = (PolicyHolder) myObject;

 return Objects.equals(name, otherPolicyHolder.name) &&

 Objects.equals(address, otherPolicyHolder.address) &&

 Objects.equals(email, otherPolicyHolder.email);

 } // End of equals() method

 // The hashCode method is used to determine the

Java – Intermediate to Advanced

13

 // location of the object in the memory

 @Override

 public int hashCode() {

 return Objects.hash(name, address, email);

 } // End of hashCode() method

 // The toString method is used to return the string representation of the object

 @Override

 public String toString() {

 return String.format("PolicyHolder{name='%s', address='%s', email='%s'}",

 name, address, email);

 } // End of toString() method

} // End of the PolicyHolder class

Sealed class example

In this example, we will use a sealed class to define different insurance policy types,

AutoInsurancePolicy, HomeInsurancePolicy and HealthInsurancePolicy. These classes will be

declared final. We will also create a PolicyHolder record, InsurancePolicy sealed class and an

InsuranceApplication class, which contains the main method and a method to generate an

insurance policy document using the sealed class.

1. Right click on the chapter17 package.

2. Choose New.

3. Choose Package.

4. Name the package sealedclasses.

5. Press the Enter key.

We will create the PolicyHolder record.

Java – Intermediate to Advanced

14

18 Exception Handling

What is an Exception?

We should think of an exception as an exceptional event that occurs when an application is

being executed. If we think about a time when we have seen an unhandled exception in our

personal life, we will understand the consequences of such exceptions. An example of an

unhandled exception in our personal life could be forgetting an important appointment, such

as a doctor's visit. Imagine we have scheduled the appointment weeks in advance but did not

set a reminder. When the appointment day arrives, we carry on with our life as usual, oblivious

to the missed appointment we needed so much. The consequences might range from simply

having to reschedule the appointment, to more serious outcomes, like missing a critical medical

test.

exceptions that we might encounter are:

File not found exception

When code is required to read a text file, as Listing 18-1, it is possible that the text file could be

corrupted or not at the location. If the application runs, we would get a file not found

exception.

Listing 18-1. Code will cause an exception

import java.io.FileReader;

public class FileNotFoundExample {

 public static void main(String[] args) { FileReader reader = new

FileReader("policydetail.txt") ;

 int character;

 // Read characters until the end of the file is reached

 while ((character = reader.read()) != -1) {

 System.out.print((char) character);

 }

 } // End of main() method

} // End of FileNotFoundExample class

In Java we will not be allowed to compile the code without having code in place that handles a

possible exception. Figure 18-1 shows the exception handling being requested by the compiler.

Java – Intermediate to Advanced

15

Figure 18-1. Compile Error as FileReader could cause an error

Java – Intermediate to Advanced

16

19 File Handling

An Overview of File Class

It is great to be able to read and write files, but we should understand that files need to be in a

directory, which needs to be created, and this is one role for the File class. Equally we may

need to rename, delete, or move a file or directory, and these are other roles for the File class

methods. We might even need to check if a file exists before we move, rename or delete it, and

once again the File class can help us. The File class exists within the java.io package and we can

use the pathname java.io.File.

The FileMakeDirectory class code with the main() method added should be like the code

shown in Listing 19-1.

Listing 19-1. FileMakeDirectory class with main() method

package code.chapter19;

public class FileMakeDirectory

{

 public static void main(String[] args)

 {

 } // End of main method

} // End of FileMakeDirectory class

Java – Intermediate to Advanced

17

The way forward

Now that we've covered the core and advanced concepts in Java, we are in a great position to

develop and understand enterprise application code. As with many things in life, there is always

more to learn. Java programming is no different, there is still plenty to explore and master.

This is a great beginning, and now it’s time to think about real-world applications that use Java

integrated with Spring Boot. Spring Boot is a powerful framework that makes it much easier to

build robust, production-ready applications and APIs with Java.

APIs (Application Programming Interfaces) are now commonplace in the technology world.

Many people use APIs every day without even realizing it. For example, when we listen to

music on Spotify, get directions from Google Maps, or check the weather on our phone, we

are interacting with APIs developed by others, which provide access to specific features or

data.

In the next book in the Java Spring Series, Spring Boot API – Insurance Quote

Application, we build on the extensive Java knowledge we have gained from the Java

Programming: Beginners to Intermediate book and the Java Programming: Intermediate to

Advanced book. We will learn how to create APIs and microservices using our existing Java

skills, while extending our expertise with frameworks and libraries that help us build scalable,

enterprise-style applications. We will cover the layers of a typical Spring Boot API (Controller,

Service, Repository, Exception, and Model), use Agile user stories and the Gherkin format with

Test Driven Development (TDD), and work with Spring Boot features such as JPA, database

connectivity, database queries, and derived queries.

There is a lot to learn, so let’s get started with Spring Boot API – Insurance Quote

Application.

