Java Spring Series

Java Programming:
Intfermediate to Advanced

Master Advanced Java Programming
From Confident Coder to Professional Developer

Gerry Byrne
David Wilson

Java — Intermediate to Advanced

Java Programming

Intermediate to Advanced

Step by step instructions

for practical hands-on programming

Gerry Byrne and David Wilson

Copyright © 2025 Gerry Byrne & David Wilson
All rights reserved.

ABOUT THE AUTHORS

Gerry Byrne and David Wilson are Senior Technical Trainers for a Forbes 100 company. They
work to upskill and reskill software engineers who develop business-critical software
applications. They also help refine the programming skills of returners to the workforce and
introduce new graduates to the application of software development within the commercial

environment.

Their subject expertise has been developed over multi-decade careers as teachers, lecturers, and
technical trainers in a corporate technology environment. They have delivered a range of
courses across computer languages and frameworks and understand how to teach skills and
impart knowledge to a range of learners. They have taught software engineers in the use of
modetn technologies and frameworks such as C#, Java, Spring, Android, JavaScript, Node,
HTML, CSS, Bootstrap, React, Python, and Test-Driven Development, not to mention legacy
technologies such as COBOL and JCL.

Gerry and David have mastered how to teach difficult concepts in a simple way that makes
learning accessible and enjoyable. Their delivery and content follow the same philosophy of
keeping it simple, while making the instructions detailed and applying concepts to real-world
scenarios. They are passionate about software development and believe we can all learn to
write code if we are patient, grasp the basic coding concepts, get plenty of hands-on coding,

and most of all, persevere through ‘thick and thin’.

DEDICATION

Writing a book is a rewarding undertaking, but it requires time, effort and patience. It requires

patience from those who help you write the book and those around you in your life.

So, we start by thanking our families for ‘facilitating’ us as we worked over many hours, days,
weeks and months to write this programming book.

We also wish to thank each other, we have learnt so much in writing this book and in
delivering many enjoyable programming courses. When we need coding inspiration, we work
together, we try things, and we persevere in pursuit of excellence.

ACKNOWLEDGMENTS

We would like to express our deepest gratitude to everyone who contributed to the creation
of this book. We are especially grateful to those who offered invaluable guidance and
insightful feedback during the writing process.

Special thanks to the open-source community and all those who have contributed to the Java
platform and its resources, which have been fundamental in shaping the examples and
content presented here.

Finally, to all the readers, thank you for your interest and enthusiasm. We hope this book
serves as a valuable resource on your journey with Java programming, and programming in
general.

15

16

17

18

UNDERSTANDING INHERITANCEcuvvtiiiiiiiiinnneeniiiisisssssseenssisssssssssssssssssssssssssssssssssssnns 3
USING MULTI=LEVEL INHERITANCE .veeuvvtetteesteeessaeesesessseessseessseassseessseassssessseesssessssessssessssessssesssessssessns 10
POLYMORPHISM IN JAVAutteeiteeeieesteesstteeteessttesbeeesbtessbeeesbaessaeessteessaeesuseessseessbeessseesssessnseesseesseenns 14

MELROA OVEIrIOAAINGcoueeeniiiieeeeseeee ettt sttt saee e 14
1Y =g Lo Yo IO =T q Lo] T RSN 17
10)V/aTo TuaT (ol aaT=ua Lo Yo Mo [y e T [ol s IS 23
CHAPTER SUMMARY....ccetttiiaiutttteeeeeeaautttttteeesasaubeteeeeesesaasbatteasesesaasstaeeeeessaasbssbeeeesssasasnsbaaeeessesanseeaes 26

ABSTRACTION AND INTERFACESccootirnneeiiiiiiissssnnseenssisssssssssesssssssssssssssssssssssssssnsssnss 27
INTERFACES ..etttetttetttttetttettteeeteteeettteettee et ettt e eee et ettt e e et e e e et et et et et et et et et et e e e e et et e e e e et e e et et e e e e e e e e e e et e e ee e e e eaeaaaens 40
IVIULTIPLE INTERFACES ..ttt euvtesuteesnteesressnseessesensseensesensssssessnssssnsesesssesnsesesssesssssesssesnsssessessnseesnsesssseesns 47
SUMMARYutteeuteeitteenseeessseessseessseeasseessssassseesssaassssesssseasssessseanssessssssnsssssssesnsssesssssnsssesssesnssessssessssens 54

RECORDS, SEALED CLASSES AND INTERFACEScocoeeinmmreniiiiisssssnnnnenssssssssssssssssssssssnns 55

- Tole] o LSRR 55
Records - INSUraNCe APPIICALIONcccveeeeeeeieeeeieeeeeeeeeee e et e e et a e e s tee e e e ssaa e e saaaaessaeaeas 61
COAC ANQGIYSIS ..ttt ettt ettt s e e st e st e e st e et e esseeesbneenaeeeans 64
Records class implementing more than one iNterfacecccoueeevveeeecieeeeesiieeeciieeesivvnenn, 65
- Tole o I o L4 (=1 KSR 69
RY=0e [(<o [l [0 L2 U 73
INR@ITEANCE EXAMPIE ...ttt ettt e e e 74
RY=e (=t ol [0 kX =3 o T o) -SSP PPPN 82
(00T =Y o || KPS 89
K=ol [=o [T (=T (o Lol =2 OSSR 89
CHAPTER SUMMARY ... eutteeuteesuteesureesseesuteessseesateessseesaseesseesaseesnseesasessnseesasessseesaseessseesaseesnseesasessnseesas 96
EXCEPTION HANDLINGuueeetiiiiiiisrsnnneeisisisssssnnsesssssssssssnssssssssssssssnnsssssssssssssnnsessssssssssnns 97
WAGE IS QN EXCEPLION? ...ttt e et e et e st e e e sttt eestaa e sasstaassasaaasaasseassansenaeas 97
File NOt fOUNG @XCOPTLION ...ttt e e e et e e et e e e taa e e et aaeetsaaeessaaaeaassaaans 98
Array index out Of DOUNS @XCEPLIONcccc.veveeeeiieeeeeeeeesie et este e e sttt eeeeta e e seaeaeesssaaesanes 99
Arithmetic, divide DY ZEro @XCEPLION.............eeieeeeeeciiieiee e et ee e e cttaaa e e e s e ssiaaaaaaeeessinnes 100
0 oY [L =T =5 (ol=] o1 Lo A 100
LY PPt 101
(ol 1ol o BT USROS PPPPPPI 102
JINQIY oottt e ettt e e e e e et e e e e e e s e e e e e e e —aaaeeaarraraaaas 104
BRFOW ..ottt ettt ettt ettt s e et s e st et e st e be e s abe e s e e nree s 105
CRECKEA EXCEPLIONS ... ettt e e ettt e e e e sttt e e e e e e e s asaaaaaeesesasssanaaaaeeasssses 106
(Lol T=tol =o B 3 ol=] o Lo K 107
MUIEIPIE EXCEPLIONS ...ttt ettt e e e e ettt e e e e e e e sttt aaaeeeessasssansaaaeeasssnes 113
FileNOtFOUNGEXCEPLION.......cccceeeeesieeeeeieeeeee ettt e e et ta e e sttt e e e teaeesstaasssteaesanseaessaseeaens 115

19

20

21

22

Java — Intermediate to Advanced

BAFOW .ttt ettt ettt et e st e et e et e st st e et e e st e e e e s beenaree s 120
FEEATOW .ottt et e e e ettt e e et e e sttt e s s ste e e sassteasastteassastaaesasteaesnnsseesassses 123
CHAPTER SUMMARY ...ttt tutteeuiteettessteessttessseeesusessseeesuseessseesssesssssesssesssseesssesssseessesssseesssessssessssesssseesns 130
FILE HANDLINGc.oiitieiiiieeiiiieeiiiiessisisessosisassssissssssissssssssnssssssnssssssnssssssnssssssnsssssansssnss 131

AN OVEIVIEW Of Fil@ ClOSS ..ocoeeveeeeeieeeeee et ee et e e e e st e e ettt e e e sitaa e e s tsaaennsaaeessseaaeas 132
An Overview of FileReader and FileWIiterccceooeeenoueeeieeniienieiseeeeeseeeee e 146
FileReader and FileWIIter CIASS........cc.covueesiieiieesiiiesieesit st esiit e sie st sieesiie e steesiieesseenass 163
CHAPTER SUMMARYuttttteteeeeeiuttteeeeeeseuettteeeeseesaustetteeeesesausbaeteeeesesasussbaaeeeessasnnbaaaeeeesesaanssnaeaeenenan 176
SERIALIZATION AND DESERIALIZATION........ccostmnnmrerniinssssssnnsenssssssssssnnsesssssssssssnsssssssssas 177

[0 Y=g o] [F{o L[] ¢ NSRS 178
TEONSIENT ...ttt ettt e e ettt e e e ettt e e e e e st eeeeeeesaaisnneeaeeesaaannnes 178
S€riIQAlIZING TRE ODJECT......ooeeeeeeeeee ettt e e et e e et e s e sttt e e s staeasassaaessssseaennnns 183
Deserializing the serialized file tO @ ClASS.........ccueevvevcueesiiesieesiteseese st siee s 187
Variable MOdifier — trANSIENTc..eeeeeeiieeeeiee ettt ee et ese e e st e e e s ataesssaeaesssseaennaes 191
Serialization USING XIML......cc..eevcueeesueeeiieeiieessiieesieeesteeesieessttessseessteessseesstsessssesssssssseasassesnsnsenns 193
Creating the Serialization COUEoumumimmiiieeeeiie e et este e ete e s e e e seeeestteassssaes 194
Creating the deserialization COUEuuuvummiuimieiriiieiieesiieeeie st eseestesstte e sses e essee s 196
Serialization USING JSON.........cceeeueeeeeiieeeeiieee ettt e eeetee e e stte e e sttt e sssteessssteaessssesssasssesssssseaennnes 199
Creating the Serialization COUEoomumimiiiieeeeiie et eeste ettt e s e e s seeessttaaesaaes 201
Creating the Deserialization COUEouuvumriiuimieissiieeiieeitieesieesstessieesteessieessiressseessaesssee s 205
CHAPTER SUMMARY ...ttt eutteeutteetteeeteeesseeessseessseassseessseassseessssassseesssessssesssssesssessssessssessssessssessnsessssensns 209
REFLECTION AND ANNOTATIONS.....cctttiiiiiiinnnreeniniissssssnnnenesssssssssnsesssssssssssnssssssssssssnns 210
RESIECLION ...ttt ettt et ettt e sat ettt e s et e s e e nateesaeenans 210
BOSIC @XAMPIE ...ttt et ettt ettt e et e e anes 214
INEEIMEAIATE EXAMPIC..........eeeeeeeeeeee ettt e e e e e e e e et e e st e e s st e e s esteaseanses 217
AGVANCEA @XAMPIE.........oeveeeeeeeeee ettt e e ettt e e e e e sttt e e e e e s sessstasaaaeeeesnsses 219
ANNOTATIONS. ..t euteeuteesuteesuteesuseesuteesseesateesseesabeesaseesateeaaseesabeeeaseeeabeeaseesabeeenaseebaeensseesnseesasesnneeas 224
IVIETADATA .ttt e e e ettt e e e e e sttt et e e e s e aae b et et e e e s e an b e et e e e e e e s nnb et e e eeeeesannbebbeeeeeesannnneeeeeeesannnnraneeas 224
Predefined ANNOTALIONSccccueeeeeiee ettt s e e et e e s sta e e sttt e s sesteaesasseaassastaaesassees 226
Deprecation WaArNING......................uueeeeiieeeeeeiiieeeeeeeesiiteet e e e eessttaeaaaaseessitsasaaaseesssssssesaaaenaas 232
UNchecked WArNING:cooecuiieeeiieescieeeeiteeeta s tte e e sttt e e s eata e s sstaaesstteaessstaassnsees 232
@SUPPIESSWAININGS ...ttt e e e e ettt e e e e e s e st aaaaesessatsasaaaseeesianses 232
CUSEOM ANNOTATIONS ..ottt et e ettt e ettt e s e e e st eesanneesnanneas 241
Create and Use CUSEOM ANNOLALIONSccoveveeeeeiiieeeiiiee et ettt e e site e e 241
Creating and Using Custom Annotations in an Insurance Applicationcccceeevvveeennen. 242
CHAPTER SUMMARYettttteeeeeeeittttteeeeeeaebeteeeeeaeausbee e eeaeaesaasbaeeeeeeaesaaassbeteeeeeaaaannbebeeeaesesaanssnaeeeeeenan 258
ENUMERATIONScooiiiunntiiiiiiiisinneeesiiisssssssseesssssssssssssesssssssssssssssssssssssssansesssssssssnns 259
Defining an @NUMEIALIONc..vevveesiiiesieesitesieestesie e sttt e ste e sttt e staessssestaessseessaessseessseesases 260
ENUMEration @XAMPIESoovuevemieesiieiieeieeeieest ettt ettt et sate e sae e 260
BUITE iN ENUM@IALIONS....ccoueieeeeiiieeeiiee ettt ettt ettt e ettt e e st e e ssisee e s sbbesessses 261

23

24

25

Java — Intermediate to Advanced

Properties ANd FEATUIES Of @NUIMIS.......c...uveeeueeeeeiieeeseeeeeteaessteeeestea e e seaaeesssesesssseeaesnseaeas
Enumerated values USE AN SCOPEcocuueenueeeiieieeeiieseeeee ettt
ENUMERATION METHODS .. .vteuteeeuteesateessseesareesnseesssesssseessessnseesssessnssesnsessnssesssssesssesssesesssesssesesssesssees
(0] [12T 1[N T3 11 oL
COMPATETO() MELAOU.voeeeeeeeeeeeeee ettt ee e e et e e et e e a e e s taaaeesnstaaesaseeaeas
NAME() METNOU. ..ottt ettt et e ettt e et e et e e st e e sttt e sataessteesseassseasseesnses
0N Y g Tl T N1 T 1 ¢ Lo o SRR N
ENUM IN A CLASS
ENUMERATION IN A SEPARATE FILE FROM THE CLASS

USing the for @AcCh JEerQtiON............c.coocueieieiiiiiieeeeeeee ettt
ASSIGNING OUR OWN VALUES TO THE ENUMERATION uuvteeeeurirennurteeesreeesssureresasseeesanseeessnsesesssnseeesnnnees 276
SAMPLE APPLICATION USING ENUMERATIONS ...ccttetiieiuititteeeeeesiierteeeeeeseinrteeeeessesunreaeeeeesessanssneeesesesns 279
CHAPTER SUMIMARY...ccetuuttteirurttesaurteesausteeessetesassteeesauseeesssstesesssesesassseessanseesssssesessnsseeesaseesssnsenesnns 288

GENERICS ...t s s s s 289

TYPES Of JAVA GENEIICS......ovveeeveieeeieseeeieeeeeeeeetat e et ate e e st aeeeetta e estsaaeesiseaaeassssseesssasesssenaans 289

Generic Class, generic method, generic parameters 294

Generic class, generic method, mixed paramMeter tYPes..........ccoueeecveeeeeiiueeeesirereesiveeesivnan, 298

Generic method only 299

ADVANTAGES OF GENERICS ...303

PROPERTY INSURANCE APPLICATION EXAMPLE 303
CHAPTER SUMMARY....eutteeuteestteenseeessaeassseessseassseessseesssessssessssessssesansessssesansessssssssessssesassessnsssansessnses 309
LAMBDA EXPRESSIONSccettiiiiiiiinnnneniiiiisssssssesssisssssssssssssssssssssssssssssssssssssnssssssssssssnns 310

CONCEPT OF LAMBDA EXPRESSIONScuvtteuteerureesuteesureesuseesuseesuseesaseesnseesaseesnseesasessnseessessnseesssessnseesnes 310

FUNCTIONAL INTERFACEttttteeteeeiuitetteeeeeeseaiteteteeesesaaneteeeeeeesasnnbebeeeeesesansbaneeeeesesannsanaeeeeeesannnnreeeeas 318

PREDICATE ..ttt et sitte et e ettt sttt et e sttt st e sttt s bt e s bt e e bt e s bee e st e eabeeeaate e bt e e ateebeeesanesbeeennbesneeas 330
Combining Predicates ...340
FUNCEION ..ottt ettt e et e st e e st e e et e s snneeennneeeaas 344
Default methods in the FUNCLION INTEITACEcoeecveeeeeieeeeciieeeeeee e cvee e s e 354

CHAPTER SUMMARY...ceutteeuteetteeueeentteesueeesuseesuseesuseessseesaseesuseesaseesnseesaseesnseesasessnseesaseessseessseessseesnes 365

STREAIMS....coeeieiiiiiiiinereetiiiissssssnneesssssssssssnssssssssssssssnssesssssssssssnnsssssssssssssnnssessssssssssnnnnnss 366

TERMINAL OPERATORS

TN =1 ST

IVIAP ettt ettt ettt st sttt ettt bt e ettt e bt e e bt e e b e e s be e e bt e e b et e bt e e b e e e nhte e bt e e naae e beeenateeneees

FLATMAP

DISTINCT

CouNTt

LiMIT......

IVHIN ettt ettt e et s e e et e et e e te e e abe e eabeeeabeeeabeeeabe e e abeeeabe e e baeea b e e e beeeabe e e tae e bae e tteebae e aaeebeeennteenneas

IMIAX ettt et e e st s et e sttt s bt e sttt st e et e st e e e a b et e bt e e bt e e bt e e e b et e b e e e b et e bt e e be e e hte e bt e e aee e bt e e nareenneeas

REDUCE

SORTED

Java — Intermediate to Advanced

PARALLEL STREAMS ...euvteetteetteesttessuteestteesseeesuteesseeesssessseessssesssseesssesssseesssesssesesssesssseessessseeessesssses 409
PrOCESS .ttt ntnasnnes 409
L1 1 T PP UPPPUPRPIN 410
FOIK-JOIN FIOMEWOIK ...eoeevieeeeiiee et ettt ettt e et e e st e e e s tte s s ssta e e s saseaesnssessssseas 410
Lo T PP 410
JOUN ettt ettt e e e ettt e e e e s ettt et e e e e e e atbaaaaeeeeaas 410
0T Gy X=To |1 o SR 410
Parallel processing with the reduce() Methodcccocueeievienieneeseeeee et 414

CHAPTER SUMMARY ...ttt euttestteettessteeesteessueeesusessseeesssesssseesssesssssesssesssssesssesssseessesssseessseessseesnsesssseesns 421

26 MULTITHREADINGccuiitieiiiiieniiiieeiiisassisisnssesisnssssissssstsnssssssnssssssnssssssnssssssnssssssnssssss 422
Lo (oo [| TN 422
PrOCESS ...t nbnnnnnes 422
TAP@UOU...........ooeeieeeeieeee ettt ettt ettt et stt e st ettt e st e e bteesata e steenasa e steesasasastasnaneens 422
Y L Lo USRS 423
CONCUITEINCYccooeeeeeeeeieeeeeeeieeeeeeeeeeeeeee et aeeeeaeeeeaeaeaeaeaeaeaeaeaeaeaeasasaeasssssasasssasassesssessssasssssssananens 423
Lo T =] 1 R 424
WHhQL is MUIEIERF@AING Pooeeeeeeeeeeeeeeee ettt e et e et te e e et e e e e ata e e s saaaeastsaaanaaes 425
Benefits Of MUItItArEAAINGcceeeueieiiieiieeeet ettt 429
Key Concepts in Java MUltitRreading..............cccueeeeiemieesiiiniiesiieseeseese et 430
Challenges and CONSIAEIATIONScccueeeecieeeeeciieeecee e et e e eetee e ettae e e eiaaaeestaaeeetsaaensases 430

REAL WORLD USES OF MULTITHREADING ... vveevveesuteesuseesssesssseesseessseessssessseesssesssssesssessssessssessssessssesssses 430
INSUIGNCE ClAIMS .ottt ettt ettt ettt st e ettt sate e s tte e sataessteesstaenataesasaenasessaseenases 431
HOW TRIEAA.SICEP WOIKS ..ottt e e ecta e et e e st e e e saea e s anseaaesstaassanses 435

CREATING THREADS «...ttttteeeeeesauueteeeeessaauusreteeeeesaaansseeeeeeesesanssnseteeesesaassseeeeeesaaaannbeneeeeesesanssnneaeesesan 437
Instantiating the Thread class with RUNNADBIE ClASScccueveeeieeeeeiiiseeeieeeceeeecea e 437
SUBbClassSing the TRI@AM ClASS.......ccccocuueeieeieee ettt ee ettt e e e e e sesa e e e e e sssasraeaas 439

METHODS OF THE THREAD CLASS ...vvevveteeseesseeneeeneesseesseesseeseensesnsesssesssesseessesnsesnsesseesseensesnsesssessesees 442
SEEPIIOITEY() .ttt ettt e ettt e e et e e ettt aeeaats e e e e assaaeestseaasastssseasssaassssanananes 442
1o [T R 444
FSATIVE() ettt ettt ettt e e ettt e ettt e e e ettt e e et e e ettt e e e et et e ettt e e e ettt e e e atraaeeareas 449

CHAPTER SUMMARY «...eteutteeuiteetteeteeesteeesteeesusessseeesaseassseesaseessseesaseessseesaseesuseesaseesnseesseesnseesaseesnseesas 451

27 STRING HANDLING AND MANIPULATIONcccoovvmrrriiriisssssnnneessnsssssssnnsessssssssssnssessssssns 452

STRING LITERALS ...t eutteeutteetteette ettt e stteesteeesbteebeeesuteesbteesubeesateesabeessteesabeesaseesabeesaseesabaesaseesasaesaseesas 456
LaL=To TV oy 4 1 1o TSRS 456
TOXE BIOCKS ..ottt ettt ettt ettt ettt et e et e et e et eenateenbneenaneenns 457

SUBSTRING ...tttteeeeeeauitttteeeeeeaeiueteteeeeesa e teeeeeeeaeausbe et teeesesaanbaeeeeeeaesaanssbeeeeeeesaaanbabaeeeesesaansanaeeaesenan 459

LENGTH tuttteeuteesuteesuteesuteesseesuteesuseesateesaseesateesaseesabaesaseesabeesaseesabeeeaseesabeesaseesabeesaseesabaesnseesabeesnseesases 462

STARTSWWITH() e ettt eeitee e ettt ettt e ettt e e e ettt e e ettt e e e tb e e e eeabaeeeeabeeeeasaeeeaabeeeeesbaeeeansaseesnssaeaenseeeennsens 463
SPIIt(r@QUIAT @XPIESSION) oottt e ettt e e e ettt a e st e e st aesassesasassseaessssenananns 468

COMPARETO() ceutvteeeiuriteeeetteeeeetteeeeitteeeeetteeeeeasteeestaeeaeasbasaeassaaeeasseaaeassaseeasssseesassesaeassseseassasesnssenann 470
compareTolgnoreCase(StriNG SEr)uu e eeeieeeeieeeeceeeecee e ese e e st eeseaea e e sttaesertaaeeansees 473
FOUPPEICASE() ..ottt ettt e ettt e ettt e e ettt e e e et e e et a e e eatssaeeetssaaeastsaaeesseas 475

Java — Intermediate to Advanced

[(0] MoV =1 60 L Y= SR 475
(ol Lol 14) SRR 476
L0 L TSN 477
[) o Lol =1 SRS 478
oo Y1 e 1141 TSR 480
o [ole Y1 |11k (T [F S 480
o oo YT e I AR X 4T | S 480
LT (=3 (O) F SRS 482
I 1110 (=3 (0 i (o T | U 482
I 1o 1e (=3 (0) £ Y 1 |1) SR 482
insert(int startindex, StriNG VAIUE)ueeeuueieeeiieeeeeeieeeceeeeestee e e st eeecaeaeestaaaeettaaesnses 483
R A e Le B e Lo USRS 485
€qUAIS(OBJECE MYOBJECT)oceeeeeeeeeeeeee et e ettt e e ettt e e et a e e st a e e e stsasesssssaaesasaeaans 490
CHAPTER SUMMARY....ceutteetteestteesseeestaeassseesaseassseessseesssessssessssessssesasessssesansessssssssessssesessessnssssnsessnses 494
THE WAY FORWARD ...uveeuveeueeeseeseesseassesssessaesssesseesssesseassssssssssessssssesssesssesssesssssssessssssesssesssessenssnssenns 495

15 Understanding Inheritance

Inheritance is a mechanism that allows one class, the subclass, to inherit the properties and
behaviors of another class, the superclass. Inheritance is used to share structure and behavior

between classes This promotes code reuse and reduces redundancy.

In our insurance scenario, inheritance could work by having the base class where we define the
common offerings and then we can extend the base class into tailored products without

duplicating logic. It is efficient and keeps policies consistent across product lines.

Think about the Policy class we mentioned in the encapsulation pillar in Chapter 14. The
policy could be used as a base class and has shared features like policyHolder, startDate, and
premiumAmount. From this base class we could derive specialized policies like

LifeInsurancePolicy or AutolnsurancePolicy, each adding its own traits.

In our insurance example, we can create a base class InsurancePolicy and derive specialized
policies from it. We will create three new classes inside a package, one called InsurancePolicy
which will be the superclass, one called LifelnsurancePolicy which will be a sub class of the
superclass, and the third will be called AutolnsurancePolicy which will also be a sub class of

the superclass. The hierarchy is shown below:
InsurancePolicy
|— LifelnsurancePolicy
L AutolnsurancePolicy

We will also create an InsuranceApplication class with a main() method that will demonstrate

the use of the super and sub classes.

Right click on the code folder.
Choose New.

Choose Package.

Name the package chapter15.

Press the Enter key.

Right click on the chapterl5 package.
Choose New.

S AN AT R A A e

Choose package.

10.
11.
12.
13.

Java — Intermediate to Advanced

Name the package inheritance.

Right click on the inheritance package.
Choose New.

Choose Java Class.

Name the class InsurancePolicy.

This will be our base class, the superclass. The class contains:

Five private properties, policyHolderName, premiumAmount, coverageType, startDate

and endDate

A parameterized constructor that has five parameters and is used to initialize all the

properties.
A method that is used to display the details of the insurance policy.
Getters and setters for the private properties (encapsulation).

A toString() method.

14. Amend the code as Listing 15-1.

Listing 15-1. Creating the superclass

package code.chapterl5.inheritance;

public class InsurancePolicy

{

// Declare the class properties, these are the attributes of the class
private String policyHolderName;

private double premiumAmount;

private String coverageType;

private String startDate;

private String endDate;

// Declare the parameterized constructor of the class
public InsurancePolicy (String policyHolderName, double premiumAmount,
String coverageType, String startDate, String endDate)

this.policyHolderName = policyHolderName;
this.premiumAmount = premiumAmount;
this.coverageType = coverageType;
this.startDate = startDate;
this.endDate = endDate;

} // End of parameterized constructor

// Declare the displayPolicyDetails() method, this is a behavior of the class
public void displayPolicyDetails() {
System.out.println("Policy Details");
System.out.printf ("%$-20s %s\n", "Policy Holder Name:", policyHolderName) ;
System.out.printf ("%-20s $%.2f\n", "Premium Amount:", premiumAmount) ;
System.out.printf ("%-20s %s\n", "Coverage Type:'", coverageType) ;

3

Java — Intermediate to Advanced

System.out.printf("%-20s %s\n", "Start Date:", startDate);
System.out.printf("%-20s %s\n", "End Date:", endDate) ;
} // End of displayPolicyDetails() method

// Getters and Setters for encapsulation

public String getPolicyHolderName () {
return policyHolderName;

} // End of getPolicyHolderName ()

public void setPolicyHolderName (String policyHolderName) {
this.policyHolderName = policyHolderName;
} // End of setPolicyHolderName ()

public double getPremiumAmount () {
return premiumAmount;
} // End of getPremiumAmount ()

public void setPremiumAmount (double premiumAmount) {
this.premiumAmount = premiumAmount;
} // End of setPremiumAmount ()

public String getCoverageType () {
return coverageType;
} // End of getCoverageType ()

public void setCoverageType (String coverageType) {
this.coverageType = coverageType;
} // End of setCoverageType ()

public String getStartDate() {
return startDate;
} // End of getStartDate ()

public void setStartDate (String startDate) {
this.startDate = startDate;
} // End of setStartDate ()

public String getEndDate () {
return endDate;
} // End of getEndDate ()

public void setEndDate (String endDate) ({
this.endDate = endDate;
} // End of setEndDate ()

// Override the toString() method to provide a string

// representation of the object

@Override

public String toString() {

return "InsurancePolicy{" +

"policyHolderName='" + policyHolderName + '\'' +
", premiumAmount=" + premiumAmount +
", coverageType='" + coverageType + '\'' +
", startDate='" + startDate + '\'' +
", endDate='" + endDate + '\'' +
"}

} // End of toString() method

} // End of InsurancePolicy class

Java — Intermediate to Advanced

Polymorphism in Java

Imagine we are building a software system for an insurance company that offers various types
of policies, health, auto, and life insurance. While each policy type calculates its premium
differently, they all share common behaviors, such as displaying the policyholder’s information.
To design a system that’s flexible, maintainable, and scalable, we need a way to handle these
variations without duplicating code or creating rigid structures. This is where polymorphism

becomes essential.
To see this, follow the instructions below:

15. Right click on the chapterl5 package.

16. Choose New.

17. Choose Package.

18. Name the package polymorphism.overloading.
19. Right click on the overloading package.

20. Choose New.

21. Choose Java Class.

22. Name the class PremiumCalculator.

23. Amend the code as Listing 15-7.

Listing 15-7. Create the PremiumCalculator class

package code.chapterl5.polymorphism.overloading;
public class PremiumCalculator {

/*
Method to calculate premium for Health Insurance. It takes age as a parameter
of type int and returns the premium amount based on the age criteria.
*/
public double calculatePremium(int age) {
return age < 40 ? 5000 : 8000;
} // End of calculatePremium() method with int parameter

/*
Overloaded method to calculate premium for Auto Insurance. It is overloaded
because of the different parameter type (String instead of int or double).
*/
public double calculatePremium(String vehicleModel) {

return vehicleModel.equalsIgnoreCase ("SUV") ? 10000 : 7000;
} // End of calculatePremium() method with String parameter

/*
Overloaded method to calculate premium for Life Insurance. It is overloaded
because of the different parameter type (double instead of int or String).

5

Java — Intermediate to Advanced

*/
public double calculatePremium(double coverageAmount) {
return coverageAmount * 0.02;
} // End of calculatePremium() method with double parameter
} // End of PremiumCalculator class

Java — Intermediate to Advanced

16 Abstraction and Interfaces

Abstraction is about defining what an object should do, without specifying how it does it. It
is the art of hiding complexity and exposing only the essential features. In other words,

abstraction lets us design systems that are clean, extensible, and easy to reason about.

Imagine we are building an insurance platform. We do not want to worry about the internal
details of every policy type, we just want to know that each one can calculate a premium,
validate coverage, or generate a summary. That is what abstraction is, we define the required

behaviours and let each policy type handle the specifics. In Java, abstraction is implemented

through:
e Abstract classes which can define both concrete and abstract methods.
e Interfaces which declare method signatures that implementing classes must

fulfill and, since Java 8, can also include default and static methods

with concrete implementations.

An abstract class in Java lets us define a common structure and expected behaviors for a
group of related classes, while leaving the specific implementation to each subclass. If we think
about our insurance platform, we may have an insurance policy template which states that
every policy must calculate a premium and print its details. When we use the template to design
a real insurance policy, we will need to calculate the premium and print the details specific to

the policy type e.g., CarPolicy, HealthPolicy, HomePolicy.

—_

Right click on the code folder.

Choose New.

Choose Package.

Name the package chapter16.

Press the Enter key.

Right click on the chapterl6 package.
Choose New.
Choose package.

Y >® N ko»N

Name the package abstraction.

_
e

Right click on the abstraction package.
Choose New.

—_
—_

Java — Intermediate to Advanced

12. Choose Java Class.

13. Name the class InsurancePolicy.

We will now create an abstract class called InsurancePolicy to serve as a blueprint for different
types of insurance policies. In this class, we will add two protected fields, policyHolder and
basePremium. These fields will store information common to all insurance policies and will be

accessible to subclasses.

Next, we will create a parameterized constructor to initialize these fields when an object is
created. Then, we will declare an abstract method named calculatePremium(), which will

require all subclasses to provide their own implementation for calculating the premium.

Finally, we will implement two concrete methods, printPolicyHolder() and
printBasePremium(). These methods will allow us to display the policy holdet's name and the
base premium, and they can be used by any subclass, but this is not mandatory. Our class

design helps to establish a flexible and extensible foundation for various insurance policy types.

14. Amend the code as Listing 16-5.

Listing 16-5. Abstract class

package code.chapterlé6.abstraction;

// Create an abstract class- InsurancePolicy by adding the keyword abstract
public abstract class InsurancePolicy
{
/*
Create the fields common to all insurance policies. These are protected
so that subclasses can access them directly.
*/
protected String policyHolder;
protected double basePremium;

// Parameterized constructor

public InsurancePolicy(String policyHolder, double basePremium) {
this.policyHolder = policyHolder;
this.basePremium = basePremium;

// Abstract method which must be implemented by subclasses
public abstract double calculatePremium() ;

// Concrete method which is shared by all policies
public void printPolicyHolder ()

{
System.out.println("Policy Holder: " + policyHolder) ;

} // End of printPolicyHolder () method

8

Java — Intermediate to Advanced

// A method to print the base premium and is optional for subclasses to use
public void printBasePremium() {
System.out.println("Base Premium: $" + basePremium) ;
} // End of printBasePremium() method
}// End InsurancePolicy class

The class can be thought of as a contract that all policies must abide by. It says, “Every
insurance policy must have a policyholder, a base premium, and a way to calculate the final

premium.”

To setup this contract any subclass must extend the abstract InsurancePolicy class, thereby

agreeing to fulfill certain responsibilities defined by the base class.

15. Right click on the abstraction package.
16. Choose New.
17. Choose Java Class.

18. Name the class AutoInsurancePolicy.

Interfaces

Imagine we are building a software system for an insurance company that offers various types
of insurance, such as auto, home, and life. Each type of insurance has some common tasks, like
calculating premiums, issuing policies, and processing claims, but they each perform these tasks

differently.

Our challenge, therefore, is to ensure that every type of insurance follows the same basic rules

while still allowing them to operate in their unique ways.

This is where interfaces come to our assistance.

ink of an interface like a contract. It says: ou want to be considered an Insurance type,
Think of terface lik tract. It says: “If y ttob dered an I p

you must promise to do these things.” But it does not care how we do them, that is up to us.
In Java, an interface is a way to define what methods a class should have, without writing the

actual code for those methods. In Java, an interface is a special type that:
e Defines method names, but not how they work.

e Says, “Any class that implements me must provide these methods.”
Y

Java — Intermediate to Advanced

e Does not contain properties, except constants.
e (Can be implemented by any class, even if they are unrelated.

e Lets us build flexible systems where different classes can share behavior without sharing

structure.

From Java 8 onwards, interfaces can also contain default methods and static methods.
Default methods provide a way to specify a default implementation for a method, which can be
overridden by implementing classes if needed. Static methods in interfaces can be called

independently of any object instance, providing utility methods related to the interface.

Listing 16-13 shows a simple interface.

Listing 16-13. Interface example

§ public interface InsurancePolicy {
// Every insurance policy must be able to calculate its premium
double calculatePremium/() ;

Notice the use of the name interface rather than the name class. To use an interface, a class
must say it implements that interface as shown in Listing 16-14. This means the class agrees

to provide concrete versions of all the methods listed in the interface.

10

Java — Intermediate to Advanced
17 Records, Sealed classes and interfaces

Records

Records were introduced in Java 14 as a preview feature and became a standard feature in Java
16. Records are a special kind of class in Java, designed to simplify the creation of classes that
are primarily used to store data. In programming we can refer to boilerplate code as including
things like getters and setters, constructors, and other common methods that do not add much
value but are necessary for the program to function correctly. Using a record can help reduce
boilerplate code by automatically providing a constructor to initialize the fields and adding
implementations for methods such as equals(), hashCode(), and toString(), as well as providing

a compact syntax for defining immutable fields.

Traditional class to hold data
We will look at an example to see how we would create a ‘traditional’ class to hold data and
have the constructor and methods, equals(), hashCode(), and toString(), Then we will see the

new way to do things using a record, and therefore there will be less boilerplate code.

—_

Right click on the code package.
Choose New.

Choose Package.

Name the package chapterl7.

Press the Enter key.

Right click on the chapterl7 package.
Choose New.

Choose Java Class.

Name the class PolicyHolder.

Y ® &Nk >

10. Press the Enter key.

The PolicyHolder class will be used to represent a PolicyHolder with:
e Three private fields: name, address, and email.
e A constructor to initialize all fields.
e Getter methods for each field, getName(), getAddress(), getEmail().
e Override methods for:
e The equals() method to compare PolicyHolder objects based on their fields.

11

Java — Intermediate to Advanced

e The hashCode() method to generate a hash code based on the fields.

e The toString() method to return a formatted string representation of the object.

11. Amend the code as shown in Listing 17-1, and add any required imports.

Listing 17-1. InsurancePolicy traditional class

package code.chapterl?;

import java.util.Objects;

// A traditional class that represents a PolicyHolder

public class PolicyHolder {

// Private fields for the PolicyHolder class

private final String name;

private final String address;
private final String email;

// Parameterized constructor with all fields
public PolicyHolder (String name, String address, String email) {

this.name = name;

this.address = address;

this.email = email;

// Getters

public String getName () {

return name;

}

public String getAddress() {

return address;

public String getEmail () {

return email;

// Methods

// The equals method is used to compare the
// object with another object

@QOverride

public boolean equals (Object myObject) ({
if (this == myObject) {

return true;

}

if (myObject == null
return false;

}

|| getClass() !'= myObject.getClass()) {

// Cast the object to a PolicyHolder
PolicyHolder otherPolicyHolder = (PolicyHolder) myObject;
return Objects.equals(name, otherPolicyHolder.name) &&
Objects.equals(address, otherPolicyHolder.address) &&
Objects.equals(email, otherPolicyHolder.email) ;
} // End of equals() method

// The hashCode method is used to determine the

12

Java — Intermediate to Advanced

// location of the object in the memory
QOverride
public int hashCode () {

return Objects.hash(name, address, email);
} // End of hashCode () method

// The toString method is used to return the string representation of the object
@Override
public String toString() {
return String.format("PolicyHolder{name='%s', address='%s', email='%s'}",
name, address, email);
} // End of toString() method
} // End of the PolicyHolder class

Sealed class example

In this example, we will use a sealed class to define different insurance policy types,
AutolnsurancePolicy, HomelnsurancePolicy and HealthInsurancePolicy. These classes will be
declared final. We will also create a PolicyHolder record, InsurancePolicy sealed class and an
InsuranceApplication class, which contains the main method and a method to generate an

insurance policy document using the sealed class.

1. Right click on the chapterl7 package.
Choose New.
Choose Package.

Name the package sealedclasses.

AR

Press the Enter key.

We will create the PolicyHolder record.

13

Java — Intermediate to Advanced
18 Exception Handling

What is an Exception?

We should think of an exception as an exceptional event that occurs when an application is
being executed. If we think about a time when we have seen an unhandled exception in our
personal life, we will understand the consequences of such exceptions. An example of an
unhandled exception in our personal life could be forgetting an important appointment, such
as a doctot's visit. Imagine we have scheduled the appointment weeks in advance but did not
set a reminder. When the appointment day arrives, we carry on with our life as usual, oblivious
to the missed appointment we needed so much. The consequences might range from simply
having to reschedule the appointment, to more serious outcomes, like missing a critical medical

test.

exceptions that we might encounter are:

File not found exception

When code is required to read a text file, as Listing 18-1, it is possible that the text file could be
corrupted or not at the location. If the application runs, we would get a file not found

exception.

Listing 18-1. Code will cause an exception

import java.io.FileReader;

public class FileNotFoundExample {
public static void main (String[] args) { FileReader reader = new
FileReader ("policydetail. txt")
int character;

/) DPa I ~hararcrterae 191F+7 7 he onA - he file 1o rea~rhed
/ Read characters until the end of the file is reached

while ((character = reader.read()) != -1) {
System.out.print ((char) character);

In Java we will not be allowed to compile the code without having code in place that handles a

possible exception. Figure 18-1 shows the exception handling being requested by the compiler.

14

Java — Intermediate to Advanced

package code.chapterl8;

import java.io.FileReader;

public class FileNotFoundExample {
public static void main(String[] args) {

FileReader reader =
int character;

Unhandled exception: java.io FileNotFoundException
Add exception to method signature Alt+Shift+Enter More actions
while ((character = reader.read

System.out.print((char) cha
} public FileReader(
} 2d of main th @NotNull 2 String fileName
End L g)

} End of Fi Examg throws java.io.FileNotFoundException

© java.io.FileReader

Figure 18-1. Compile Error as FileReader could cause an error

15

Java — Intermediate to Advanced
19 File Handling

An Overview of File Class

It is great to be able to read and write files, but we should understand that files need to be in a
directory, which needs to be created, and this is one role for the File class. Equally we may
need to rename, delete, or move a file or directory, and these ate other roles for the File class
methods. We might even need to check if a file exists before we move, rename or delete it, and
once again the File class can help us. The File class exists within the java.io package and we can

use the pathname java.io.File.

The FileMakeDirectory class code with the main() method added should be like the code
shown in Listing 19-1.
Listing 19-1. FileMakeDirectory class with main() method

package code.chapterl9;

public class FileMakeDirectory

{
public static void main(String[] args)

{

} // End of main method
} // End of FileMakeDirectory class

16

Java — Intermediate to Advanced

The way forward

Now that we've covered the core and advanced concepts in Java, we are in a great position to
develop and understand enterprise application code. As with many things in life, there is always

more to learn. Java programming is no different, there is still plenty to explore and master.

This is a great beginning, and now it’s time to think about real-world applications that use Java
integrated with Spring Boot. Spring Boot is a powerful framework that makes it much easier to

build robust, production-ready applications and APIs with Java.

APIs (Application Programming Interfaces) are now commonplace in the technology world.
Many people use APIs every day without even realizing it. For example, when we listen to
music on Spotify, get directions from Google Maps, or check the weather on our phone, we
are interacting with APIs developed by others, which provide access to specific features or

data.

In the next book in the Java Spring Series, Spring Boot API — Insurance Quote
Application, we build on the extensive Java knowledge we have gained from the Java
Programming: Beginners to Intermediate book and the Java Programming: Intermediate to
Advanced book. We will learn how to create APIs and microservices using our existing Java
skills, while extending our expertise with frameworks and libraries that help us build scalable,
enterprise-style applications. We will cover the layers of a typical Spring Boot API (Controller,
Service, Repository, Exception, and Model), use Agile user stories and the Gherkin format with
Test Driven Development (TDD), and work with Spring Boot features such as JPA, database

connectivity, database queries, and derived queries.

There is a lot to learn, so let’s get started with Spring Boot API — Insurance Quote
Application.

17

