

Java Programming: Beginner to Intermediate

ii

Java Programming

Beginner to Intermediate

Step by step instructions

for practical hands-on programming

Gerry Byrne and David Wilson

Copyright © 2025 Gerry Byrne & David Wilson

All rights reserved.

ABOUT THE AUTHORS

Gerry Byrne and David Wilson are Senior Technical Trainers for a Forbes 100 company. They

work to upskill and reskill software engineers who develop business-critical software

applications. They also help refine the programming skills of returners to the workforce and

introduce new graduates to the application of software development within the commercial

environment.

Their subject expertise has been developed over multi-decade careers as teachers, lecturers, and

technical trainers in a corporate technology environment. They have delivered a range of

courses across computer languages and frameworks and understand how to teach skills and

impart knowledge to a range of learners. They have taught software engineers in the use of

modern technologies and frameworks such as C#, Java, Spring, Android, JavaScript, Node,

HTML, CSS, Bootstrap, React, Python, and Test-Driven Development, not to mention legacy

technologies such as COBOL and JCL.

Gerry and David have mastered how to teach difficult concepts in a simple way that makes

learning accessible and enjoyable. Their delivery and content follow the same philosophy of

keeping it simple, while making the instructions detailed and applying concepts to real-world

scenarios. They are passionate about software development and believe we can all learn to

write code if we are patient, grasp the basic coding concepts, get plenty of hands-on coding,

and most of all, persevere through ‘thick and thin.’

DEDICATION

Writing a book is a rewarding undertaking, but it requires time, effort and patience. It requires

patience from those who help you write the book and those around you in your life.

So, we start by thanking our families for ‘facilitating’ us as we worked over many hours, days,

weeks and months to write this programming book.

We also wish to thank each other, we have learnt so much in writing this book and in

delivering many enjoyable programming courses. When we need coding inspiration, we work

together, we try things, and we persevere in pursuit of excellence.

ACKNOWLEDGMENTS

We would like to express our deepest gratitude to everyone who contributed to the creation of

this book. We are especially grateful to those who offered invaluable guidance and insightful

feedback during the writing process.

Special thanks to the open-source community and all those who have contributed to the Java

platform and its resources, which have been fundamental in shaping the examples and content

presented here.

Finally, to all the readers, thank you for your interest and enthusiasm. We hope this book

serves as a valuable resource on your journey with Java programming, and programming in

general.

Contents

1 SOFTWARE INSTALLATION ... 3

SOFTWARE INSTALLATION .. 3
Java Development Kit ... 3
Download and install IntelliJ Community Edition IDEA... 7

CHAPTER SUMMARY... 9

2 ABOUT JAVA ... 10

From the seed to Java ... 10
What is it? .. 10
How is Java portable? ... 11

COMPONENTS OF THE JAVA ARCHITECTURE .. 12
The Java Development Kit - JDK .. 12
The Java Runtime Environment - JRE .. 13
The Java Virtual Machine - JVM ... 13
Interpretation ... 14
Just-In-Time Compilation .. 14
Difference between JVM, JRE, and JDK ... 15

JAVA LANGUAGE VERSIONING ... 16
Compatibility .. 17
Performance and Features ... 17
Security Updates ... 17

JAVA COMPILATION PROCESS .. 17
Compile time and runtime .. 18
Library and framework ... 19
Library ... 19
Framework ... 20

CHAPTER SUMMARY... 23

3 PROGRAM STRUCTURE ... 24

Computer Program ... 24
Programming Languages ... 25
A Computer Program: A Recipe .. 25
Type in Java .. 28
The Basic Operations of a Computer .. 28

JAVA PROGRAM APPLICATION FORMATS .. 29
Format 1: Console Application ... 29
Format 2: Window Application using Swing ... 31
Format 3: Web Application... 33
The Structure of a Java Program .. 34
Import ... 37
Classes .. 38

Java Programming: Beginner to Intermediate

vii

Naming A Class: Class identifiers ... 40
CHAPTER SUMMARY .. 42

4 INPUT AND OUTPUT .. 43

SCANNNER CLASS .. 47
INPUT FROM THE CONSOLE ... 57
CHAPTER SUMMARY .. 65

5 COMMENTING CODE ... 66

JAVA SINGLE LINE COMMENTS .. 68
PROJECTS AND SOLUTIONS .. 69

Create a new package ... 71
JAVA MULTIPLE-LINE COMMENTS .. 76
CHAPTER SUMMARY .. 79

6 DATA TYPES ... 80

CONVERSION FROM ONE DATA TYPE TO ANOTHER .. 82
CONVERTING .. 82
SOMETHING A LITTLE DIFFERENT WITH OUR VARIABLES .. 95
CHAPTER SUMMARY .. 110

7 CASTING AND PARSING .. 111

PARSING.. 112
CHAPTER SUMMARY .. 125

8 ARITHMETIC OPERATIONS ... 126

COMMON ARITHMETICAL OPERATORS .. 128
INTEGER DIVISION ... 128
PLUS EQUALS (+=) ... 145
MINUS EQUALS (-=) .. 146
MULTIPLY EQUALS (*=) .. 147
DIVIDE EQUALS (/=) ... 149
SQUARE ROOT .. 150
CHAPTER SUMMARY .. 152

9 SELECTION ... 153

COMPARISON OPERATORS .. 154
if statement ... 154
if-else statement ... 155
Switch statement ... 158
The if construct .. 159
The if-else construct ... 164
The if else if construct .. 165
The switch construct .. 171
Switch with strings ... 177

Java Programming: Beginner to Intermediate

viii

Switch with strings - Additional example ... 182
LOGICAL OPERATORS .. 189

Using AND operator ... 191
Using OR operator .. 195
Using NOT operator .. 199
Conditional operator (ternary operator) .. 202
Nested ternary conditional operator .. 205

CHAPTER SUMMARY... 210

10 ITERATION AND LOOPS .. 211

For Loop .. 212
Break Statement ... 223
Continue Statement .. 226
While Loop .. 229
Break Statement ... 236
Continue Statement .. 238
Do-While loop ... 240
Break Statement ... 246
Continue Statement .. 247

CHAPTER SUMMARY... 250

11 ARRAYS – A DATA STRUCTURE ... 251

Single-Dimensional Arrays .. 253
Choice 1 - Declaring and Creating an Array in Two Stages .. 256
Choice 2: Declaring and Creating an Array in One Stage ... 257
Referencing the array elements ... 258
foreach Loop ... 268
IndexOutOfBounds Exception ... 271
Getting a Range of Values from an Array ... 279
Copying Elements ... 280
copyOfRange() Method .. 284
Sorting a String Array in Ascending Order .. 289
Sorting a String Array in Descending Order .. 290

CHAPTER SUMMARY... 292

12 COLLECTIONS ... 293

Collections Framework Hierarchy ... 293
The Interfaces ... 294
The Implementation Class .. 295
Methods ... 296

API INTERFACES IN THE COLLECTIONS FRAMEWORK ... 296
Collection Interface ... 296
List Interface ... 296
Set Interface ... 296
Queue Interface .. 296

Java Programming: Beginner to Intermediate

ix

Deque Interface ... 296
Map Interface .. 297
SortedSet Interface .. 297
SortedMap Interface .. 297
ArrayList ... 297
LinkedList ... 297
HashSet .. 297
LinkedHashSet .. 297
TreeSet ... 298
PriorityQueue ... 298
ArrayDeque .. 298
HashMap.. 298
LinkedHashMap ... 298
TreeMap... 298
Hashtable ... 298
Stack .. 298
Vector ... 298
Examples of Real-World Business Applications.. 299
ArrayList ... 299
LinkedList ... 309
HashSet .. 315
LinkedHashSet .. 320
TreeSet ... 324
PriorityQueue ... 329
ArrayDeque .. 337
HashMap.. 341
LinkedHashMap ... 345
TreeMap... 349
Stack .. 353
Vector ... 356

CHAPTER SUMMARY .. 362

13 METHODS .. 364

CONCEPTS OF METHODS AND FUNCTIONS ... 364
One definition of a method .. 365
Some Points Regarding Methods ... 366
Three types of methods ... 369
Value Methods ... 383
Parameter Methods ... 393
Create and use parameter methods. .. 396

METHOD OVERLOADING .. 408
CHAPTER SUMMARY .. 412

14 CLASSES ... 414

CLASSES AND OBJECTS ... 414

Java Programming: Beginner to Intermediate

x

UNDERSTANDING CLASSES ... 414
OOP Pillars .. 414

MODELING A PHYSICAL OBJECT .. 415
Properties (Attributes) .. 416
Behaviors (Methods) .. 416

MODELING AN ABSTRACT CONCEPT .. 417
Properties (Attributes) .. 417
Behaviors (Methods) .. 417

HOW TO CREATE AN OBJECT IN CODE .. 418
DOT NOTATION IN JAVA .. 419

How It Works .. 420
Putting It All Together .. 421
Creating a second object .. 424
Constructors in Java - The Smarter Way to Build Objects .. 425
InsurancePolicy Constructor ... 426
Using this Keyword ... 429
Use this Keyword or give the parameters a different name ... 431
Autogenerate constructors in IntelliJ .. 432

MULTIPLE INSURANCE POLICIES USING COLLECTIONS ... 434
From ArrayList to List .. 436

COMPOSITION ... 438
CUSTOMER WITH INSURANCE POLICIES .. 439

Benefits of composition .. 445
ENCAPSULATION .. 448
VEHICLE PARTS ORDERING SYSTEM ... 452

Create the Customer class .. 452
Create the Product class ... 453
Create the Order class .. 454
Create the OrderApplication class .. 455
Handle multiple orders ... 456

SUMMARY .. 460
THE WAY FORWARD ... 461

i

Introduction

The chapters in the Java Programming: Beginner to Intermediate and Java Programming:

Intermediate to Advanced books will cover coding in Java using the IntelliJ IDEA, Integrated

Development Environment from JetBrains. Other Integrated Development Environments

exist, such as Visual Studio Code and Eclipse. The code from the applications in the chapters

will work within any Integrated Development Environment capable of running Java code.

Whilst the step-by-step instructions and screenshots in the book are based around the IntelliJ

IDEA, Integrated Development Environment, they can still be used by those preferring a

different Integrated Development Environment.

The first two chapters of this Java Programming: Beginner to Intermediate will cover Java

from the very basics to get the Integrated Development Environment software installed and

the Java Development Kit working with it. With the necessary tools installed, we are then

introduced to what a computer program is, before we start to write our own computer

programs. We then begin to cover the core concepts needed when developing Java code and

which can be applied to other programming languages. We cover a wide range of core

programming concepts including data types, casting and parsing, arithmetic operations,

selection, iteration, arrays, collections, methods, classes and objects. Studying these chapters is

more than enough to allow us to develop applications that emulate commercial application

code, but they are essential if we want to progress beyond an intermediate level of

programming. The core concepts in this Java Programming: Beginner to Intermediate book are

required to help us advance through the intermediate to advanced concepts in the Java

Programming: Intermediate to Advanced book. Having completed both books, we will have

gained all the necessary concepts and skills to make us capable of being competent

programmers.

All examples in the chapters are fully commented to ensure we can understand the code and to

enhance our knowledge of the Java programming language. Reading the comments within the

code examples is essential, they are an integral part of the book and will enhance our

understanding of Java and will help explain why the code does something or what the code is

doing. Read the comments, do not ignore them. In enterprise application code detailed

comments would not be seen as good practice but remember, we are learning to code and need

all the help we can in mastering the Java language.

This first book is ideal for beginners, those refreshing their Java skills or those moving from

another object-oriented programming language. It is ideally suited for students studying

Java Programming: Beginner to Intermediate

ii

programming at high school or at university and is an excellent resource for teachers who

deliver programming lessons. The book offers detailed explanations and comments to support

learning. By using clean code with proper naming, the code is intuitive to read and understand.

Reading the books is one thing, but coding the examples using an Integrated Development

Environment is the most important thing if we wish to get the best understanding of the Java

language. Hands on experience whilst reading this book is the key to success.

We should think about two things before we begin our programming journey through this

book:

Life begins at the edge of our comfort zone and

Think about now and believe.

Often the thought of getting started can make us frightened and uncomfortable. We need to

believe in ourselves and understand that whilst there will be lows during the learning and

coding, we will survive them and move to the inevitable highs.

Programming can be rewarding and thankfully it is within our ability to write code. The

chapters in the two books, Java Programming: Beginner to Intermediate and Java

Programming: Intermediate to Advanced, will help us to learn about coding, teach us how to

code and make us realize that it is indeed realistic for us to program in the Java language.

As we start learning Java it is important to realize that our target of being able to write

computer applications in Java will seem large, as there is a lot to learn, but we should take

comfort in the fact that as we complete each chapter and gain experience in writing our

applications the target gets closer, and the amount of learning gets smaller. In essence, as we

move along our learning pathway, we gain competence in concepts that will be continually

used in our application code.

Source code for this book is available to readers on GitHub

(https://github.com/gerardbyrne/Java-Programming-Beginners-to-Intermediate.git)

3

1 Software Installation

Software Installation

Java Development Kit

As we want to write Java code to build applications, we will need to install the required

software and tools. We will use the Java SE Development Kit for the Windows operating

system, but it is available for the Mac operating system, as well as other operating systems. The

software can be downloaded from the website:

https://adoptium.net/temurin/releases or https://adoptium.net/en-GB/temurin/releases/

The version of the Java Development Kit, JDK, to be downloaded will depend on

• The release version we wish to have on our computer and use for development. We will

use Java 24 for the examples in this book.

• The computer on which it is being installed e.g., Windows, macOS or Linux. In our case it

will be for a Windows platform as the chapters in the book use the instructions and

screenshots from a Windows installation, but, if you choose to use a different installation

the instructions and screenshots will be very similar, and little if any changes will be

required. The Windows version, like the MacOS and Linux versions, have different

architecture options, and by selecting the architecture we are specifying the device we wish

to use with the JDK. The types of architecture include:

o x64

This refers to a 64-bit CPU and operating system.

o x86 (x32)

This represents a 32-bit CPU and operating system.

o Aarch64, ARM32, and ARM64

Aarch64 or ARM64 is the 64-bit Execution state of the ARM architecture family.

Traditionally we would have had the x86 32-bit CPU, then we had the x64 64-bit CPU

and now we have the ARM32 and ARM64 which are used on a range of devices such

as mobile devices and even Internet of Things (IoT) devices.

ARM32 and x86 are for 32-bit processors, whereas ARM64 and x64 are for 64-bit

processors.

To download the required Java software go to the https://adoptium.net/temurin/releases or

https://adoptium.net/en-GB/temurin/releases webpage.

• Choose the Operating System you are using e.g. Windows, MacOS, Linux, Solaris.

https://adoptium.net/temurin/releases
https://adoptium.net/en-GB/temurin/releases/
https://adoptium.net/temurin/releases
https://adoptium.net/en-GB/temurin/releases/

Java Programming: Beginner to Intermediate

4

• Choose the required Architecture, x64 is the most likely.

• Choose JDK as the Package Type. There is also a JRE, but the JDK has the JRE built in.

• Choose 24 as the Version or we could choose a different version.

We will then have the option to download a .msi file or a .zip file, so which will we choose?

• A .msi file is an installer and therefore if we chose this file the software installation would

launch automatically.

• A .zip file is simply an archive of the required file and will not do anything without user

intervention. When the .zip file is downloaded it needs to be extracted.

• Now click on the .msi or the .zip version.

Figure 1-1 shows the steps for downloading. The webpage you are on may have a different

layout, e.g., Figure 1-2, but you will still be able to make the same choices.

Figure 1-1. Downloading the JDK

Figure 1-2. Downloading the JDK from Adoptium website

Java Programming: Beginner to Intermediate

5

If the .msi was downloaded, follow the instructions during the automatic installation, and if the

.zip file was downloaded, extract the files into a Java folder within the Program Files folder.

The extraction will create a folder for the JDK, and inside this folder will be the bin folder

containing the binary files. Now we need to set the PATH for the Java bin folder.

1. In the Windows search box type Environment Variables.

2. Click on the Edit the system environment variables option as shown in Figure 1-3.

Figure 1-3. Setting the environment variables

3. Now click on the Environment Variables button.

4. Click on the New button.

5. For the variable name enter JAVA_HOME, as shown in Figure 1-4.

6. For the variable value enter the location of the downloaded JDK e.g., C:\Program

Files\Eclipse Adoptium\jdk-24.0.0.36-hotspot\bin or click on the Browse Directory and

locate the folder.

Figure 1-4. Java Home variable

7. Click the OK button.

8. Click on the Path variable in the System Variables section.

9. Click on the Edit button.

10. Click on the New button.

11. Add the location %JAVA_HOME%\bin as shown in Figure 1-5.

Java Programming: Beginner to Intermediate

6

Figure 1-5. Add the %JAVA_HOME%\bin location

12. Click OK.

13. Click OK.

14. Click OK.

We will now check that the installation was successful.

15. In the Windows search box type Command Prompt or Windows PowerShell.

16. Click on Command Prompt or Windows PowerShell when it appears.

17. In the shell window type the command java -version, as shown in Figure 1-6.

18. Press the Enter key.

19. In the shell window type the command javac -version, as shown in Figure 1-6.

20. Press the Enter key.

The two commands should confirm that the installation has worked as shown in Figure 1-6.

Figure 1-6. Installation and version check

Java Programming: Beginner to Intermediate

7

Download and install IntelliJ Community Edition IDEA

When we want to develop a Java application by writing code, we could use a text editor and

then compile the code from the command line, but this would be an antiquated methodology,

and one that would not fit well in a modern development environment. As developers, we now

have a choice of development tools to help us when writing Java code. The Integrated

Development Environment, IDE, tool that we choose will generally have a visual environment

that has an editor where the code is typed, and it will have a file browser. More importantly it

will have tools that assist us through autocompletion of code, help by giving us warnings

regarding the code that has been entered etc. There are many Integrated Development

Environments available but, in this book, we will use the JetBrains IntelliJ IDEA

Community Edition, but other editors like NetBeans, Eclipse, and Visual Studio Code can be

used. All editors will have the functionality to connect to the Java Development Kit, JDK, we

downloaded and can therefore be used to compile the Java we have saved to a location of our

choice.

We need to install the JetBrains IntelliJ Community Edition, and the version will depend on

the type of operating system we have. The software can be downloaded from the website:

https://jetbrains.com/idea/download

From the downloads we will be provided with two available editions, the free IntelliJ IDEA

Community Edition and the paid IntelliJ IDEA Ultimate edition, as shown in Figure 1-7. We

will install the IntelliJ IDEA Community Edition.

Figure 1-7. Downloading the Integrated Development Environment Software

https://jetbrains.com/idea/download

Java Programming: Beginner to Intermediate

8

21. Click on the dropdown in the IntelliJ IDEA Community Edition section as shown in

Figure 1-8.

22. Click on the .exe (Windows) option, as shown in Figure 1-8.

23. Click on the Download button.

Figure 1-8. Download IntelliJ IDEA Community Edition

24. Locate the downloaded file in the download location.

25. Double click on the .exe to run the installer file.

26. Choose the default folder location.

27. Click the Next buttons until we get to the button that says Finish.

28. Click the Finish button.

Now we can open the IntelliJ IDEA Community Edition from the Programs menu.

9

Chapter Summary

In this chapter we have learned about the different versions of Java, and where we can access

the files required to install both the JDK and JRE. We looked at the installation process and

discussed the use of an Integrated Development Environment.

We then looked at the process to download and install the free edition of IntelliJ IDEA

Community Edition from JetBrains. This Integrated Development Environment will be our

development tool for the Java applications we will use throughout the chapters.

Java Programming: Beginner to Intermediate

10

2 About Java

From the seed to Java

Many of the features of Java can be traced back to, and are related to, features in the C++

programming language. In turn C++ is a direct descendant of C and that is why Java is closely

related to C and C++. While James Gosling at Sun Microsystems is often credited with

developing Java, the language was the product of contributions from multiple individuals. At

the time Java was created the existing programming languages involved the program code

being written for the purpose of compiling it for a specific architecture. The program would

then have to be modified for each new type of architecture it was to be run on. Whilst this was

possible it was a costly and time-consuming job, and generally there was little appetite for

converting the code for all possible architectures. This meant that the developers of Java had a

very clear objective, develop a programming language that was independent of the platform it

would run on, or to use fancy terminology, make it architecturally neutral. One big objective

was that the software would be capable of running on embedded systems in the consumer

electronics market. The ‘dream’ was a computer program written in a language that could be

run on any device e.g., TV, washing machine, microwave, without having to make any changes

to the underlying computer code. A write once run anywhere philosophy. When the World

Wide Web emerged during the development of Java it added a new concept for the Java

developers to solve. How could portability be used within the many systems that made up the

World Wide Web?

What is it?

Java is a programming language and a computing platform which was first released by

Sun Microsystems in 1995. It has evolved and is now one of the most popular programming

languages used in modern software development, as shown in Figure 2-1.

Figure 2-1. Number 1 programming language

Java Programming: Beginner to Intermediate

11

3 Program Structure

Computer Program

We will be using Java to write computer programs, just like many programmers in companies

around the world who use Java to write programs in the commercial environment. So, a very

good starting point before we write programs using Java code, is to fully understand what a

computer program is. We can think of a computer program as:

• A sequence of data instructions created by a programmer.

• Instructions that tell the computer what operations it should execute.

• Instructions that tell the computer how it should execute an operation.

• Instructions written in a special programming language, for example, C#, C++, COBOL.

Besides Java, there are many programming languages available to developers. Each

programming language will have advantages and disadvantages when compared to the other

programming languages, but they will all be useful for writing software applications. It is

important to understand that some programming languages are:

• More powerful than others, for example, Java.

• Better for developing applications requiring fast processing, for example, C.

• Better for developing web-based software applications, for example, JavaScript.

• Better for developing computer games, for example, C++.

• Better for data analytics, for example, Python.

• Better for statistical analysis and data visualization, for example, R.

• Better for scripting, for example, Perl.

Once we understand the core concepts of programming, such as variables, loops, conditionals,

functions, and data structures, in one language, learning another language becomes significantly

easier. This is because most programming languages share fundamental principles, even if their

syntax and specific features differ. So, by the time we finish reading this book, entering and

running all the example code, and doing all the exercises, we will be in a strong position to

recognize and apply constructs in the C# programming language or the C++ language and

indeed other programming languages, as well as our focus, the Java language.

Java Programming: Beginner to Intermediate

12

Listing 3-1 shows Java code, which will ask the user to input two values, and then totals the

values. The program is like our recipe; it is a set of instructions. We will not write this code

because it is being used to illustrate the point that code is like a recipe.

Listing 3-1. Sample Java program code

package labs.chapter3;

import java.util.Scanner;

public class Example1

{

 public static void main(String[] args)

 {

 Scanner myScanner = new Scanner(System.in);

 // Declare the variables

 int counter = 0;

 int totalofallclaims = 0;

 int inputnumber = 0;

 while (counter < 2)

 {

 System.out.println("What is the value of the claim: -- ");

 inputnumber = myScanner.nextInt();

 // Add the number to the total

 totalofallclaims = totalofallclaims + inputnumber;

 //Add one to the value of count

 counter = counter + 1;

 // Print out the total of the claims that have been entered

 System.out.println("The total of the claims is " + totalofallclaims);

 } // End of while loop

 } // End of main() method

} // End of Example1 class

Listing 3-2 shows Python code, which will ask the user to input two values, and then totals the

values. The program is like our recipe; it is a set of instructions. We will not write this code

because it is being used to illustrate the point that code is like a recipe.

Listing 3-2. Sample Python program code

counter = 0

totalofallclaims = 0

while counter < 2:

 #Input a number

 inputnumber = int(input("What is the value of the claim:-- "))

 #Add the number to the total

 totalofallclaims = totalofallclaims + inputnumber

statements (list of statements)

variables (list of ingredients)

statements (list of statements)

Java Programming: Beginner to Intermediate

13

 #Add one to the value of count

 counter = counter + 1

Print out the total of the claims that have been entered

print("The total of the claims that have been input is ", totalofallclaims)

Java Programming: Beginner to Intermediate

14

4 Input and Output

We learned in Chapter 3 that under the direction of a program, written in a programming

language, and converted to machine-readable code, the computer can perform tasks, as shown

in Table 4-1.

Table 4-1. Input, output and process

Input The computer can accept user input from the keyboard.

Process The computer can perform arithmetic calculations and other types of
processing.

Output The computer can display a message or a result on the screen.

This chapter will concentrate on how to output to the console. We will also use a Java

method to read from the console, which is an example of input. It is important to

understand that what we learn by completing the examples in this chapter will:

• Help us build more complex code examples in future chapters.

• Show us commands that are used in real-world applications.

• Get us started with two important aspects of any programming language - input and

output .

Looking back at Figure 3-2 from Chapter 3, we can think of the console as a black and white

screen where input from the user is accepted and output from the computer program is

displayed as shown in Figure 4-1. The console colors can be changed as we can see from the

lower part of Figure 4-1.

Figure 4-1. Console in black and white and alternative color

Java Programming: Beginner to Intermediate

15

In using the Scanner class, we will use System. in, which represents the standard input stream.

1. Open the IntelliJ Integrated Development Environment.

2. Click on the New Project button or go to the File menu and choose New Project, as

shown in Figure 4-6.

3. Enter the name CoreJava for the project name in the Name text box.

4. In the Location text box enter the location where the project is to be stored, or select the

location, e.g. the location might be C:\CoreJava.

5. Select the Build system as IntelliJ.

6. Choose the JDK from the dropdown list, e.g. Temurin-24

7. Leave the Module name as CoreJava.

8. Leave the Content Root as it appears.

9. Leave the Module file location as it appears.

10. Click on the Create button.

Figure 4-6. New Project

11. Click on the File menu.

12. Choose Settings.

13. Expand the Appearance & Behavior option.

14. Click on the Appearance option.

15. Choose a Theme from the drop-down list, as shown in Figure 4-7.

16. Change the font and font size as required.

Java Programming: Beginner to Intermediate

16

5 Commenting Code

We learned in Chapter 4 that our application code can involve input and output, and that the

input and output can be displayed in the console window. The output from our application is

the visible part for an end user, and it is important they have a good experience when looking

at the output. The user experience is referred to as the UX, and can involve the developer

making use of colors, emphasis, layout and more, to make the application readable and pleasing

to look at.

Java single line comments

Single-line comments in Java, and other programming languages, are preceded by two forward

slash symbols, //. The // indicates a single-line comment which is used for brief comments.

Some developers will write the comments above the code, whilst others will use the comment

on the same line as the code. Both types are shown in Listing 5-1, Listing 5-2, and Listing 5-3

Example one

Listing 5-1 shows an example of three single-line comments, which could be used at the start

of a program to give the user information about the program, the developer, and the creation

date. The comments are at the start of the program code before any Java statements are

entered.

Listing 5-1. Single line comments

// Program: A simple Java program to output text and read input

// Authors: Gerry Byrne and David Wilson

// Date of creation: 01/09/2027

Example two

Listing 5-2 shows a single-line comment which gives the user information about the class called

Program that follows it. The single-line comment appears above the code statement.

Listing 5-2. Single line comment above code

// This is our only class and it will contain the main method

public class ConsoleV1

{

Java Programming: Beginner to Intermediate

17

6 Data Types

We learned in Chapter 5 that whilst we can use single-line and multiple-line comments, they

should not be a replacement for self-documenting code. Comments are added to help the

reader of the code, but when the code is written expressively with proper package names, class

names, variable names, etc., there is a limited need for comments. We should set an objective

of zero need for comments.

In this chapter we will use code which is well documented for the purposes of helping us

understand and read the code. It is not how we would do it in a real application, and if it was

enterprise code, we would be breaking the objective of zero need for comments and the

concept of self-documenting code.

We will now learn about the very important concepts of data types and variables. We will

use data types and variables in all the Java programs in this book, that is how crucial they are to

Java programming. We should also be aware that data types and variables exist in all

programming languages and are a core building block for the code we will write.

The Java programming language is said to be statically typed, which means that when variable

is declared we must declare the data type of the variable along with the name of the variable.

There are different data types in Java, but we will now look at the category called Value

Types. The data type of a variable will determine the value that it can contain, and the

operations that can be performed on it. In Java there are built in data types, and these are called

the primitive data types. In Java, primitive types are also value types. This means that

variables of primitive types directly contain their values. The eight primitive data types

supported by the Java programming language are shown in Table 6-1.

Table 6-1. Primitive data types (value types) in Java

boolean char

Arithmetic integral types (integer)

byte short int long

Arithmetic floating-point types (floating-point)

float double

Notice that char, which holds one character, is a data type but there is no String, more than

one character. Java still supports strings, but strings are a reference to an instance of the

Java Programming: Beginner to Intermediate

18

class String. We will not worry about this statement too much, for now, we will use strings

and characters in our programming. However, note that the String type has a capital S,

and the other data types have lower-case letters.

In Java, and indeed in other languages, the value types are referred to as primitive types and

primitive types are predefined by Java, with their names being reserved keywords. When we

declare a data type, we are reserving memory to store a value. Each data type will have a

particular size of memory that needs to be set aside. The primitive data types in Java along with

their memory size are shown in Table 6-2.

Table 6-2. Value types in Java

Java data type default size description

boolean false 1 byte Contains either true or false

char \u0000 2 bytes Contains a single character

Integral types

byte 0 1 May contain integers from
-128 to 127

short 0 2 Ranges from
32,768 to 32,767

int 0 4 Ranges from
-2,147,483,648 to 2,147,483,647

long 0 8 Ranges from
-9,223,372,036,854,775,808 to
9,223,372,036,854,775,807

Floating-point types

float 0.0 4 unlimited

double 0.0 8 unlimited

Java Programming: Beginner to Intermediate

19

7 Casting and Parsing

Parsing

In Java, parsing is a method used to convert a String to a primitive data type. With parsing

we use methods of type parseDATATYPE(), where DATATYPE will be replaced by the data

type it is being converted to. Examples are, parseInt(), parseDouble(), parseByte(),

parseFloat(). The operation performed using the specific method is called parsing and the

parsing methods are available through Wrapper classes. For now, we will not worry about this

idea of wrapper classes, we will concentrate on the fact that we can do conversions using

parsing and using casting.

Now we will look at using casting in different ways. Remember to read the comments carefully

as they fully explain what we are doing.

Create a new package

1. Right click on the code package.

2. Choose New.

3. Choose Package.

4. Enter the new name for the package, we will call it chapter07.

5. Press the Enter key.

6. Expand the click chapter06 package.

7. Right click on the Program file.

8. Choose Copy.

9. Right click on the chapter07 package.

10. Choose Paste.

11. Name the class Program, the same name as was copied.

We will amend the Java code to use a casting from int to short, and to do this we will add two

new variables, one of data type int called maximumAmountForRepairCosts, and the other of

data type short called minmumAmountForRepairCosts.

12. Amend the code as shown in Listing 7-1.

Listing 7-1. Two variables, one of type int, one of type short with initial values

Java Programming: Beginner to Intermediate

20

 int vehicleCurrentMileage;

 String dateOfBirthOfMainDriver;

/*

The maximum value of an int is 2,147,483,647

We could use Integer.MAX_VALUE to find it.

*/

 int maximumAmountForRepairCosts = 32767;

/*

The maximum value of a short is 32,767

We could use Short.MAX_VALUE to find it.

*/

 short maximumAmountForCarHire = 0;

 System.out.println();

 System.out.println("---- Car Quotation Application ----");

13. Click on the File menu.

14. Choose Save All.

We will now assign the value of the maximumAmountForRepairCosts variable to the variable

called maximumAmountForCarHire.

15. Amend the code as shown in Listing 7-2.

Listing 7-2. Assign one variable value to another variable

 } catch (ParseException e) {

 System.out.println("EXCEPTION - enter date in yyyy-MM-dd format");

 throw new RuntimeException(e);

 }

 /*

 We are trying to put the maximumAmountForRepairCosts variable

 of data type int into the variable maximumAmountForCarHire

 which is of data type short. This is not possible without

 something being changed and this is where the error message

 will appear and a cast comes into play

 */

 maximumAmountForCarHire = maximumAmountForRepairCosts;

 // Close the Scanner object we created earlier

 myScanner.close();

 } // End of main() method

} // End of Program class

Java Programming: Beginner to Intermediate

21

8 Arithmetic Operations

1. Right click on the code package.

2. Choose New.

3. Choose Package.

4. Name the package chapter08.

5. Press the Enter key.

6. Right click on the chapter08 package.

7. Choose New.

8. Choose Java Class.

9. Name the class Arithmetic.

The class code in the editor window will be similar that shown in Listing 8-2.

Listing 8-2. Basic class code

package code.chapter08;

public class Arithmetic

{

} // End of Arithmetic class

We will now rename the class in the Project panel and ensure that the class is also renamed in

the editor window.

10. Right click on the Arithmetic class in the Project panel.

11. Choose Refactor.

12. Choose Rename.

13. Change the name to QuoteArithmetic.

14. Click the Refactor button.

15. The refactoring should have amended the class name in the editor window, as shown in

16. Listing 8-3:

Listing 8-3. Renamed class code

package code.chapter08;

public class QuoteArithmetic

Java Programming: Beginner to Intermediate

22

{

} // End of QuoteArithmetic class

The class has also been renamed in the Project panel. Now that we have renamed the class

using the refactor option, we can see that this process could be useful when renaming

packages, classes, variables etc. Refactoring will be a useful tool to have as we develop our

coding skills.

We will now set up variables that will be used in the mathematical calculation to produce a

vehicle insurance quotation. We will declare variables to hold user input and variables that will

be used in calculating the quote. We will use a base mileage of 10000 kilometers and a base rate

of $100 for the quotation. We will also use a base age of 10 years for the vehicle. We will then

calculate the age factor, mileage factor, and their respective premiums before we calculate a

discount based on the age of the vehicle and determine the final quotation value.

In the code in Listing 8-4, and future listings, there are detailed comments to help us get a full

understanding of the code. In this example all code is contained within the opening and closing

curly braces, , of the main() method.

First, we will add the variables we will use in our insurance quotation application code.

17. Amend the code as shown in Listing 8-4.

Listing 8-4. Declaring the variables in the main() method

// Program: Performing arithmetical operations

// Authors: Gerry Byrne and David Wilson

// Date of creation: 01/09/2027

package code.chapter08;

public class QuoteArithmetic

{

 public static void main(String[] args) {

 /*

 Setup our variables that will be used in the mathematical

 calculation used to produce a vehicle insurance quotation.

 First we will setup the variables that will hold the user

 input and that will be used in calculating the quote */

 int vehicleAgeInYears;

 int vehicleCurrentMileage;

Java Programming: Beginner to Intermediate

23

 /*

 For the quotation we will use 10000 kilometers as a base line

 for calculating a mileage factor. If the average kilometers

 travelled per year is above the base mileage of 10000 the

 mileage factor will be above 1, if the average kilometers

 travelled per year is the lower than the base mileage of

 10000 the mileage factor will be below 1 */

 double quoteAverageExpectedKilometers = 10000;

 /*

 For the quotation we will use £100 as a base figure (this is

 just an example) and this figure will be multiplied by the

 mileage and age factors */

 double quoteBaseRate = 100.00;

 /*

 For the quotation we will use 10 as a base figure for the age

 of the vehicle (this is just an example). If the vehicle is

 older than 10 years, the age factor will be above 1. If the

 vehicle is less than 10 years the age factor will be below 1.*/

 int quoteBaseAge = 10;

 /*

 This variable will be used to hold the value of

 the age factor */

 double quoteAgeFactor;

 /*

 This variable holds the quote amount based on the age

 factor and the base rate */

 double quoteAgeFactorPremium;

 /*

 This variable holds the quote mileage factor based on the

 number of kilometers travelled each year and how the

 kilometers per year is a ratio of the average expected 10000

 kilometers as decided by the insurance company */

 double quoteMileageFactor;

 /*

 This variable will hold the amount for the quote based only

 on the mileage factor. The quote also has to take into

 account the age of the vehicle */

 double quoteMileageFactorPremium;

 /*

 This variable will hold the discount amount. A discount will

 be applied to the quote based on the age of the vehicle.

 The age of the vehicle is divided into 1 to get the discount.

 The decimal value is a representation of the discount and

 will then be multiplied by the quote value to get the actual

 discount in terms of £s */

 double quoteDiscount;

 /*

 This variable holds the total of the age factor premium and

 the mileage factor premium and will be used by the discount

 calculation to get the discount amount */

 double quoteAmountForPremium;

Java Programming: Beginner to Intermediate

24

 /*

 This variable holds the final quotation value, the premium */

 double quoteFinalAmountForPremium;

 } // End of main() method

} // End of QuoteArithmetic class

Now we will write some information to the console and ask for user input.

Java Programming: Beginner to Intermediate

25

9 Selection

Selection is an important concept and will be used in many commercial applications. However,

the concept of selection should be familiar to us through our everyday life. Many of the things

we do in everyday life require us to make decisions and often we will be directed down one

path or another. Figure 9-1 illustrates such a scenario.

Figure 9-1. Everyday decision using a Yes or No scenario

In a similar manner the programs we, and every developer, write will normally require the use

of decisions. Decisions in our code will change the execution flow depending on the decision

made. Figure 9-1 shows the decision-making process where:

• a yes decision changes execution down the yes path and

• a no decision changes execution down the no path

In Figure 9-1 the execution eventually returns to a common path, Go to the shops. In

programming, making decisions can be achieved in different ways and we will now look at the

use of the SELECTION statements within Java.

operators, and their corresponding symbols used in Java.

Java Programming: Beginner to Intermediate

26

10 Classes

Classes and Objects

In Chapter 13, we explored methods, blocks of reusable code designed to perform specific

tasks. Methods help organize code, reduce redundancy, and improve program efficiency. As

applications grow in size and complexity, methods alone are no longer sufficient for organizing

code. That’s where classes come in, grouping related data and behaviors into cohesive units.

This leads us to classes, the foundation of object-oriented programming (OOP) in Java.

Understanding Classes

A class serves as a blueprint for creating objects, defining their properties (fields or attributes)

and behaviors (methods). In simpler terms, a class is like a template, and objects are the real-

world instances formed from the template.

OOP Pillars

• Encapsulation means keeping related data (fields, attributes) and behavior (methods)

bundled together inside a class and controlling access to that data through visibility

modifiers like private, protected, and public.

We can think of a class as a protective shell. In an insurance application we could have a

Policy class that stores client details, some of which is sensitive, such as coverage limits or

medical history. By making the fields private and controlling access through getter and

setter methods, we protect the integrity of the data.

Modeling a Physical Object

Figure 14-1 shows an image of a car which we can say is a physical object. When we look at a

car we probably think of its properties subconsciously e.g., the make, the model, the age, the

color, and what its top speed is.

Java Programming: Beginner to Intermediate

27

Figure 14-1. A vehicle which is a physical object

When modeling a car, or the vehicle in Figure 14-1, in a Java class we could define these

properties and behaviors

Properties (Attributes)

1. make (String) The manufacturer of the car e.g., Toyota, Audi, Ford.

2. model (String) The specific model e.g., Rav4, Q5 Mustang.

3. year (int) The car’s year of manufacture e.g., 2025.

4. Color (String) The car’s color e.g., blue.

5. mileage (double) The odometer reading for the total distance travelled e.g., 10000.

Behaviors (Methods)

1. startEngine() Starts the car’s engine.

2. stopEngine() Turns off the engine.

3. accelerate() Increases the cars’s speed.

4. brake() Slows the car down.

5. displayInfo() Prints details about the car.

The methods reflect how a car behaves or interacts with the world; all neatly bundled into one

class. Once the class is defined, we can use it to create actual cars, known as objects e.g., we

could create an object for a specific car like a Toyota Rav4 or an Audi Q5 or a Ford Mustang

or any other object as shown in Figure 14-2. Each object is unique, but they all follow the

structure of the car class.

Java Programming: Beginner to Intermediate

28

Figure 14-2. Specific car types

Java Programming: Beginner to Intermediate

29

The way forward

Now that we've covered the core concepts in Java, including classes and objects, we are in a

great position to develop and read enterprise application code. But, like many things in life,

there is always more to learn. Java programming is no different; there is still plenty to explore

and master.

This is just the beginning. In this book Java Programming: Beginner to Intermediate, we

have reached an intermediate level. But the journey does not end here. In the next book in the

series Java Programming: Intermediate to Advanced, we will dive into the more advanced

topics that will elevate our Java programming skills to new heights.

Get ready to explore:

• Inheritance and Polymorphism

• Interfaces

• Records, Sealed Classes, and Interfaces

• Exception Handling

• File Handling

• Serialization

• Reflection and Annotations

• Enumerations

• Generics

• Lambda Expressions

• Streams - Map, Reduce, Filter

• Multithreading

• String Handling

These are crucial topics that will significantly enhance our programming capabilities. By

mastering these advanced concepts, we will be able to tackle complex programming challenges

with confidence and finesse.

So, are we ready to take our Java skills to the next level? There is a lot to learn, so let’s get

started with Java Programming: Intermediate to Advanced and unlock more complex

aspects of Java programming!

