

Java OOP Done Right
Create object oriented code you can be proud of
with modern Java

Alan Mellor

This book is for sale at http://leanpub.com/javaoopdoneright

This version was published on 2021-04-05

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean
Publishing process. Lean Publishing is the act of publishing an in-progress ebook
using lightweight tools and many iterations to get reader feedback, pivot until you
have the right book and build traction once you do.

© 2021 Alan Mellor. All rights reserved.

http://leanpub.com/javaoopdoneright
http://leanpub.com/
http://leanpub.com/manifesto

To Reverend Mike Cavanagh
You’ve inspired me in more ways than you know.

You once said I would make a good consultant, “but I didn’t have the stories yet”.

It’s taken a while, but here they are.

Contents

Preface . 1

Optimise for Clarity . 1

What is an object, anyway? . 3
What’s all this got to do with Java? . 4
A simple example: Greeting users . 5
The big idea: calling code is simple . 9
Object Oriented Design is Behaviour Driven Design 9

Clean Code . 11
Good Names . 11
Design methods around behaviours, not data 11
Hidden data - No getters, no setters . 11

Aggregates: More than one . 12
Greeting more than one user . 12
Using forEach - not a loop . 12
Aggregate methods work on all the things 12

Collaboration . 13
Basic Mechanics . 13
Example: Simple Point of Sale . 13

Test Driven Development . 14
Outside-in design with TDD . 14
First test: total starts at zero . 15
Arrange, Act, Assert - a rhythm inside each test 18

CONTENTS

Red, Green, Refactor - a rhythm in between tests 18
Second test: Adding an item gives us the right total 18
Designing the second feature . 18
TDD Steps - Too much? Too little? . 18
YAGNI - You Ain’t Gonna Need It . 19
YAYA - Yes, You Are . 19
Optimise for Clarity with well-named tests 19
TDD and OOP - A natural fit . 19
FIRST Tests are usable tests . 19
Real-world TDD . 19

Polymorphism - The Jewel in the OOP Crown 21
Classic example: Shape.draw() . 21
The Shape Interface . 21
Tell Don’t Ask - the key to OOP . 21

The SOLID Principles . 22
The five SOLID principles . 22
SRP Single Responsibility - do one thing well 22
DIP Dependency Inversion: Bring out the Big Picture 22
LSP Liskov Substitution Principle - Making things swappable 24
OCP Open/Closed Principle - adding without change 24
ISP Interface Segregation Principle - honest interfaces 24

TDD and Test Doubles . 26
Test Doubles - Stubs and Mocks . 26
DIP for Unit Tests - Stubs and Mocks . 26
Mocking libraries . 26
Self-Shunt mocks and stubs . 26

Refactoring . 27
What is refactoring? . 27
Rename Method, Rename Variable . 27
Extract Method . 29
Change Method Signature . 29
Extract Parameter Object . 30
Can we refactor anything into anything else? 30

CONTENTS

Hexagonal Architecture . 31
The problems of external systems . 31
The Test Pyramid . 31
Removing external systems . 31
The Hexagonal Model . 31
Inversion / Injection: Two sides of the same coin 31

Handling Errors . 32
Three kinds of errors . 32
The null reference . 32
Null object pattern . 32
Zombie object . 32
Exceptions - a quick primer . 32
Design By Contract, Bertrand Meyer style 33
Fatal errors: Stop the world! . 33
Combined approach: Fixable and non-fixable errors 33
Which approach is best? . 33
NullPointerException . 33
Application Specific Exceptions . 33
Error object . 34
Optionals - Java 8 streams approach . 34
Review: Which approach to use? . 34

Design Patterns . 35
Mechanism and Domain . 35
Patterns: Not libraries, not frameworks . 35
Strategy . 35
Observer . 37
Adapter . 38
Command . 38
Composite . 38
Facade . 38
Builder . 38
Repository . 38
Query . 39
CollectingParameter . 39

CONTENTS

Item-Item Description . 39
Moment-Interval . 39
Clock . 39
Rules (or Policy) . 41
Aggregate . 42
Cache . 42
Decorator . 42
External System (Proxy) . 42
Configuration . 42
Order-OrderLineItem . 42
Request-Service-Response . 43
Anti-Patterns . 43

OOP Mistakes - OOP oops! . 44
Broken Encapsulation - Getters Galore! . 45
Broken Inheritance . 46
Bird extends Animal . 46
Square extends Rectangle . 46
Inheriting implementation . 47
Broken Shared State . 47
Ordinary Bad Code . 47

Data Structures and Pure Functions . 48
System Boundaries . 48
Fixed Data, Changing Functions . 48
Algorithms and Data Structures . 48

Putting It All Together . 49
No step-by-step plans . 49
Getting Started . 49
Perfection and Pragmatism . 49
Getting Past Stuck . 49

Further Reading . 50
Agile Software Development, Robert C Martin 50
Growing Object Oriented Software Guided By Tests, Freeman and Pryce 50
Refactoring, Martin Fowler . 50

CONTENTS

Design Patterns Helm, Johnson, Richards, Vlissides 50
Domain Driven Design, Eric Evans . 51
Applying UML with Patterns, Craig Larman 51
Home page for this book . 51
My Blog . 51
My Quora Space . 51
LinkedIn . 51
LeanPub page . 52

Cheat Sheet . 53
Behaviours First . 53
Design Principles . 53
Clean Code . 53
General Code Review Points . 53

About the Author . 54
Thanks . 54

Buy the book! . 55

Preface
Why another book on OOP in Java?

I’ve been a writer on Quora for a few years now. I really enjoy it. I get to interact
with people from all over the world about a subject I love - the craft of designing
good software. I started learning this craft in 1981. I haven’t finished yet.

This book came about after seeing a common thread amongst new Java developers on
Quora. Many of them thought OOP in Java was ‘verbose’ or ‘complex’ or ‘outdated’.
And that it needed ‘getters and setters’ everywhere.

Yet we’ve had great books on Java, as well as classics on OOP.

So what changed?

Here’s my theory. All the great books were written in the 1990s - before some of our
modern Java developers were even born. The reason nobody knows the lessons in
them is simple. We don’t teach them anymore.

This book is my distillation of those classic ideas plus a twist of experience. Each
chapter contains stuff I actually use, day to day, to get results. It’s full of hard-won
wisdom from 25 years at the code face. It’s practical. And very simple. Bugs hide in
complexity. I like to give bugs no place to hide.

My hope is this book gets you past ‘getter and setter’ coding and gets you into high
gear using objects as they were intended to be used. It might be your first insight
into how OOP fits together in the real world. Java has a reputation for being verbose.
I hope this book shows you how to fix that. I want you to take away the techniques
of crafting clean, powerful, readable OOP code.

This book is not an introduction to Java. It should be suitable for beginners who can
write Java “Hello World” and understand the basic syntax for variables, conditionals
and classes. Examples use Java 11 syntax. Many work in Java 1.

Alan Mellor
Rock Cottage
February 2021

Optimise for Clarity
Before we start, here’s the big theme of this book:

OPTIMISE FOR CLARITY

Programming is all about explaining to another human what the computer happens
to be doing at any given moment. As a by-product, it also tells the computer what to
do.

The reason this is so important is that what the computer actually runs is almost
incomprehensible to anyone.

As an example, if I write this:

1 clearScreen();

you can understand that I want the computer to clear everything off the screen,
leaving it blank.

The computer can’t though. It’s as dumb as rocks. Literally. Silicon chips are made
of Silicon Dioxide - Sand.

We need to pass this code through some kind of translator to turn this into the
language of the computer. One that looks nothing like English.

One of my old computers would need something like this:

Optimise for Clarity 2

1 LD HL, 4000H 00100001 00000000 01000000

2 LD DE, 4001H 00010001 00000001 01000000

3 LD BC, 6143 00000001 11111111 00010111

4 LD (HL), 0 00110110 00000000

5 LDIR 11101101 10110000

Where the assembly language on the left was still a human-readable form. The binary
on the right was what that computer ran on its Z80A microprocessor.

I know which one I like better.

The art of programming is making programs clear. Readable. Easy to skim read. No
tricks.

It is the difference between having to read all that binary and work out that it meant
‘clear the screen’, compared to reading ‘clearScreen()’.

In a working professional team, nobody has the time, money, or desire to do that.
Ever.

This book is all about helping you create code that both you and your colleagues can
understand.

What is an object, anyway?
The best way to think about objects is as people at work. Each one has a specific
job to do. They know how to do their job. They have all the knowledge, tools and
supplies they need to do it.

Think about how a handwritten letter gets sent through the post.

We have a writer. They choose what words go in that letter, then write them down.
This letter is then handed to a postman. The postman drives the letter to a sorting
office.

The sorting office has inside it a big map of postcodes. On that map, each postcode
has a little pin with the another postman’s name, who is responsible for delivering
the letters.

The sorting office hands over the letter to the correct postman, who delivers it to a
reader.

So far, so dull. Just an everyday story about an outdated way of sending mail. But it
contains the two key insights into Object Oriented Programming.

Notice how the writer asks the postman to deliver the letter. The writer does not tell
the postman how to deliver the letter. That’s not the writer’s job. The writer writes.
The postman delivers. They each do their own job without interference from the
other.

The writer also doesn’t ask the postman anything at all about how the delivery will
be done. The postman is free to do that however they see fit. They can even change
how they do the delivery later. The writer will not be affected at all.

This is the essence of OOP. Instead of people, we have objects. Each object knows
how to do its own job.

You’ll notice that this description is quite independent of programming languages.
OOP itself is a design approach that can be done in any language - even assembler
or C.

What is an object, anyway? 4

Languages like Java are called OOP languages because they provide direct support
for writing code that reads like this.

What’s all this got to do with Java?

As an object oriented language, Java was designed to reflect the real world, like in
our example above. It allows us to write code that speaks about Postman and Letter
and deliver() and so on. It allows us to write computer code that reads like an English
description of our problem. Not like code.

We canwrite short pieces of code that can hold secrets, and present behaviours. Those
short pieces of code can be asked to do things. The code representing what a postman
knows and does can be asked to deliver a letter.

The way Java does this is in two parts.

First, it provides a ‘traditional’ computer language. It has variables, conditionals,
loops and all the other good stuff we think of as code.

Then it gives us a way to package up that code to represent real world concepts.

These packages of code and data are called ‘objects’. Each object has a certain type -
like “this object represents a postman”, or “this one is a user”. We call these Classes
in Java. All objects belong to a class, which tells you what they represent. You can
have any number of objects of the same class. You can have any number of classes.

A Class represents an idea. It can create multiple objects. Objects can store their own
data. They provide methods, which are small chunks of code that can be called by
a program. These methods represent the behaviours we talked about. Things like
‘deliver a letter’, or ‘check spelling’ on a word.

Methods can describe absolutely any behaviour we can think of. This is the super-
power of object oriented programming.

Confusing? Yes. It is at first. There’s a lot to learn.

The easiest way to understand it all, I think, is by the ‘User’ example in the next
section. But let’s introduce some terminology and Java syntax before we look at
that.

What is an object, anyway? 5

Classes, methods, constructors, objects, references

Object An object is a small bundles of methods and data, used to represent a single,
specific thing: a person, a train, a word, a product.

Class In Java, all objects belong to a class. A class allows one or more objects to be
created. It is a blueprint or a template for the common features of each object.

Method A method is used to describe the behaviours our object gives us. It is rather
like a function that is specific to a class.

New Keyword new takes a class name, then creates a specific object. It returns a
reference to that object that we can store. This lets us use that object later in our
code.

Constructor A special method that new will call. It is responsible for setting up the
object as it is being created. We can supply initial values of things here.

Fields These are variables that are unique to each object. To help our behaviour
methods do their work, we can store data in our object in fields.

Object reference keyword new will create an object, set it up with a constructor,
then return a ‘reference’. We can store this reference in a local variable, or in an
object field. We can then call methods on that object, using the reference and the dot
operator.

this Inside a method, keyword ‘this’ is an object reference that refers to the ‘current
object’. It is the same idea as when I talk to you and say ‘me’. I am referring to myself.

private A keyword to mark a field or method as being usable only inside the Class.
Outside, it is invisible. It is used to mark ‘secrets’.

publicA keyword to mark a method as being usable from outside the Class in calling
code. Can be used on fields, but that is rare.

A simple example: Greeting users

To show what we mean, let’s make a simple object: a User.

Most systems have users. Hopefully, we’ll have loads of users - if our marketing
works right. Our job is to show a personalised greeting to every one of them.

What is an object, anyway? 6

The first design decision is to represent each user as an object. And to do that, we’ll
need to code up a ‘blueprint’ for what all user objects have in common. A Java ‘User’
class:

1 public class User {

2 private String name ; // 3. private data

3

4 public User(String name){. // 2. constructor

5 this.name = name ;

6 }

7

8 public void greet() { // 1. greet method

9 System.out.println("Hello, " + name);

10 }

11 }

Before we can do anything with them, we need to create a simple test application.
We’ll use the standard bit of Java boilerplate code to create an Application class with
a ‘static main()’ - That’s a ‘magic method’ that tells the operating system where to
start our Java program.

1 public class GreetingsApplication {

2 public static void main(String[] commandLineArgs) {

3 User u1 = new User("Jake");

4 User u2 = new User("Katy");

5

6 u1.greet();

7 u2.greet();

8 }

9 }

Running this program shows us ‘Hello, Jake’ and ‘Hello, Katy’. It does this by creating
two, separate user objects and asking them to greet the user they represent.

This code might look underwhelming, but it contains the most important basics of
OOP. Let’s go through the key pieces.

What is an object, anyway? 7

Methods - Making objects do stuff

The most important part about each object is what you can ask it to do: the public
methods.

Class User has a single method on it called ‘greet()’ (see 1).

The method name tells uswhat the method does, not how. When we write the calling
code, this name describes what this method will do for us. It also insulates us from
having to care about how this gets done.

This is important because it lets us change the internals of method greet(). When we
do, there will be no change at all to the calling code.

Our test app creates two user objects and calls the greet() method on each of them.
Notice how close to plain English the test app reads. OOP is all about designing
customised objects that do exactly the right thing for our app. We can name methods
the same way we talk in English about the problem we’re solving.

When we design objects, we start with behaviour methods. We add data and logic
later, if it is needed to make those methods do their job.

Secrets - Specialist knowledge for our objects

Just like the people in our example know things and have tools to help them work,
objects have their secrets, too.

Objects typically have two secrets:

• Data - which is unique to each object
• Algorithms - the logic of how work is done

Our greet method has both kinds of secrets.

The logic secret of greet() is simple.We use Java’s System.out.println() librarymethod
to write text to the console.

This is the how - how our method greets a user. Because it is hidden behind the
greet method’s signature, we are free to change how we do this without affecting

What is an object, anyway? 8

the calling code. This is important. This stops changes from ‘rippling out’ through
the system. That makes the code easier to understand and safer to change.

This is also why the calling code looks so simple. It is not concerned with deep
technical details. It just asks for what it needs doing - user.greet(). It leaves it up
to the object to get the work done.

This is called the Tell Don’t Ask principle

We tell the object what we would like it to do for us. We don’t ask it for any of its
secrets and try to do its job ourselves in the calling code. It is a huge advantage in
simplifying our code.

Our object also has the other secret - data.

For our greet() method to work, it will need to know the user’s name.

We decided upfront that each User object will represent one individual user in the
real world. That user has a name. So our user objects make the perfect place to store
their name. We do this in the private field called ‘name’ (see 3)

Having just one String field can be confusing to OOP beginners. How do you store
the names of all the users without an array or something?

Non-OOP code might well have an array or dictionary to store all the names of the
users. OOP code splits this problem up a different way. As we have one object per
user and only store one name for each user, our object only needs to store one name.

Instead of one array with many names, we have many objects each with only one
name. It’s less to think about and a lot more obvious. Where can we find a user’s
name? In their object.

This idea of self-contained objects makes Object Oriented programs simpler to
understand.

Constructors - Getting objects ready to use

As we create one object per user, we want to make sure that the object is ready to use
after creation. This avoids many problems of ‘uninitialised data’ that plague other
approaches.

We have a special method to do this: the Constructor.

What is an object, anyway? 9

The big idea of a constructor is that it creates an object, loads it up and makes it ready
to use.

For our User objects, the private ‘name’ field (see 3) is set inside the constructor. We
pass each individual name into the constructor as a parameter.

Constructors help keep our private data secret. They provide a way for the calling
code to set up an object without knowing anything about its secrets.

The big idea: calling code is simple

Now we understand how the User class has been coded inside, let’s look at the big
win of OOP: the public interface. The part that the calling code sees.

It’s really simple.

1 User u = new User("Alan");

2 u.greet();

To write a program that knows how to greet a user, all we need to know - and call -
are the two public pieces. We call the constructor to create the object and get it ready
for use. Then we call greet(). It really couldn’t be any easier.

Now, imagine how this helps us as we grow bigger programs. We might have
hundreds or thousands of classes. Maybe tens of millions of lines of code. But with
OOP, we only need to understand what our object’s public interface can do. It
insulates us from the details.

This is the key of OOP done right: the calling code is simple

And if it isn’t … we’re doing it wrong.

Object Oriented Design is Behaviour Driven
Design

The key to doing OOP right is to let behaviours drive the design.

What is an object, anyway? 10

The first question is always ‘what does this object need to do?’. We represent that as
a method, using the name to describe the behaviour.

Then, we can add supporting code inside that method to make it work. We might add
calls to private methods to break the work into small chunks. We might need stored
data as fields in the object. We would need a constructor in that case.

Clean Code
This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/javaoopdoneright.

Good Names

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/javaoopdoneright.

Method names: Tell me the outcome

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/javaoopdoneright.

Variable names: Tell me the contents

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/javaoopdoneright.

Design methods around behaviours, not data

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/javaoopdoneright.

Hidden data - No getters, no setters

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/javaoopdoneright.

http://leanpub.com/javaoopdoneright
http://leanpub.com/javaoopdoneright
http://leanpub.com/javaoopdoneright
http://leanpub.com/javaoopdoneright
http://leanpub.com/javaoopdoneright
http://leanpub.com/javaoopdoneright

Aggregates: More than one
This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/javaoopdoneright.

Greeting more than one user

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/javaoopdoneright.

Type safe collections, not raw arrays

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/javaoopdoneright.

Using forEach - not a loop

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/javaoopdoneright.

Aggregate methods work on all the things

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/javaoopdoneright.

Common themes

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/javaoopdoneright.

http://leanpub.com/javaoopdoneright
http://leanpub.com/javaoopdoneright
http://leanpub.com/javaoopdoneright
http://leanpub.com/javaoopdoneright
http://leanpub.com/javaoopdoneright
http://leanpub.com/javaoopdoneright

Collaboration
This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/javaoopdoneright.

Basic Mechanics

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/javaoopdoneright.

How to decide: field or parameter?

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/javaoopdoneright.

Example: Simple Point of Sale

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/javaoopdoneright.

Review of design so far

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/javaoopdoneright.

Exercise: Total Amount

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/javaoopdoneright.

http://leanpub.com/javaoopdoneright
http://leanpub.com/javaoopdoneright
http://leanpub.com/javaoopdoneright
http://leanpub.com/javaoopdoneright
http://leanpub.com/javaoopdoneright
http://leanpub.com/javaoopdoneright

Test Driven Development
This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/javaoopdoneright.

Outside-in design with TDD

TDD helps us design the public interface of our objects to be easy to use.

The key is to write code that calls our object using what we think will be a good
public interface. We do this before writing code inside our object. This forces us to
think about making the calling code simple. Our ‘backwards thinking’ of OOP again.

This piece of code is known as the test code. It will set up our object, call a behavioural
method on it, and then check whether that method worked or not.

This test does two things for us:

• verifies the behaviour is correct
• verifies the call is easy to make - a hallmark of good design

If our design is hard to set up or hard to use, we’ll see that in hard to read test code.

Java projects use the wonderful JUnit test framework to help out with this. I like to
add AssertJ to help with the checking part.

Let’s use TDD to build a little calculator that can add up our restaurant bill. As you
follow along, notice the rhythm of TDD - write a bit of test, see a failure, fix it with
a bit of code, repeat.

Our calculator class should do two things:

• give us a running total of all the items we’ve added
• add another item.

http://leanpub.com/javaoopdoneright

Test Driven Development 15

We start by writing an empty test. We want this test to prove something that will be
true of our BillCalculator class as soon as we create it. If we create this object and
don’t add any items to it, the total must be zero.

Let’s start to write a test for that.

First test: total starts at zero

1 class BillCalculatorTest {

2 @Test

3 public void totalStartsAtZero() {

4 // ... todo

5 }

6 }

We’ve got a test class and a test harness method all named for what they do.

Now we do a tiny step of design for our object. We want to be able to access the
latest running total. For this, despite all my bleating in previous chapters, a getTotal()
method seems like the simplest, most clear design.

Optimise for Clarity again, even if it means ignoring what I say ;)

Let’s add this design decision to the test:

1 class BillCalculatorTest {

2 @Test

3 public void totalStartsAtZero() {

4 // Act

5 float total = calculator.getTotal();

6 }

7 }

Test Driven Development 16

The compiler will be loudly complaining at this point, as indeed might you if this is
your first TDD session: “There isn’t any object yet!”

Quite right. Let’s fix that.

Using your IDE shortcuts, create a new Class called BillCalculator:

1 class BillCalculator {

2 }

Now, we can fix the first of our compiler’s many complaints and create a calculator
object:

1 class BillCalculatorTest {

2 @Test

3 public void totalStartsAtZero() {

4 // Arrange

5 var calculator = new BillCalculator();

6

7 // Act

8 float total = calculator.getTotal();

9 }

10 }

I’m using the ‘var’ keyword from recent Java editions (don’t ask me which one; I
never was a language lawyer kind of guy). I think this reads very clearly here.

The compiler will grudgingly accept we are now not complete idiots and remove the
red X from under ‘calculator’. It will then move on to its next complaint. We need to
add the getTotal() method.

Let the IDE shortcuts do this, because the IDE has all the information it needs to get
it right:

Test Driven Development 17

1 class BillCalculator {

2 public float getTotal() {

3 return 0.0;

4 }

5 }

I love working backwards like this. The IDE has enough information to do most of
the grunt work and not make as many typing mistakes as I do. It’s also a very fast
way to work once you get into the rhythm of it. You even look (to the clueless) like
a 10x mega ninja rock star programmer.

Anyway. The compiler will be happy, allowing us to add our check that everything
is ok. We’ll use the wonderful ‘AssertJ’¹ library to provide the ‘assertThat’ method.

1 class BillCalculatorTest {

2 @Test

3 public void totalStartsAtZero() {

4 // Arrange

5 var calculator = new BillCalculator();

6

7 // Act

8 float total = calculator.getTotal();

9

10 // Assert

11 assertThat(total).isZero();

12 }

13 }

We can run this test - and it will pass! Our calculator object has passed its first and
only test. It just so happens that the only thing we are testing is that the total is zero
and the IDE generated code always returns zero.

¹https://assertj.github.io/doc/

Test Driven Development 18

Arrange, Act, Assert - a rhythm inside each
test

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/javaoopdoneright.

Red, Green, Refactor - a rhythm in between
tests

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/javaoopdoneright.

Second test: Adding an item gives us the right
total

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/javaoopdoneright.

Designing the second feature

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/javaoopdoneright.

TDD Steps - Too much? Too little?

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/javaoopdoneright.

http://leanpub.com/javaoopdoneright
http://leanpub.com/javaoopdoneright
http://leanpub.com/javaoopdoneright
http://leanpub.com/javaoopdoneright
http://leanpub.com/javaoopdoneright

Test Driven Development 19

YAGNI - You Ain’t Gonna Need It

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/javaoopdoneright.

YAYA - Yes, You Are

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/javaoopdoneright.

Optimise for Clarity with well-named tests

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/javaoopdoneright.

TDD and OOP - A natural fit

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/javaoopdoneright.

FIRST Tests are usable tests

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/javaoopdoneright.

Real-world TDD

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/javaoopdoneright.

http://leanpub.com/javaoopdoneright
http://leanpub.com/javaoopdoneright
http://leanpub.com/javaoopdoneright
http://leanpub.com/javaoopdoneright
http://leanpub.com/javaoopdoneright
http://leanpub.com/javaoopdoneright

Test Driven Development 20

The Good

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/javaoopdoneright.

The Bad

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/javaoopdoneright.

The Ugly

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/javaoopdoneright.

http://leanpub.com/javaoopdoneright
http://leanpub.com/javaoopdoneright
http://leanpub.com/javaoopdoneright

Polymorphism - The Jewel in the
OOP Crown
This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/javaoopdoneright.

Classic example: Shape.draw()

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/javaoopdoneright.

The Shape Interface

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/javaoopdoneright.

Tell Don’t Ask - the key to OOP

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/javaoopdoneright.

http://leanpub.com/javaoopdoneright
http://leanpub.com/javaoopdoneright
http://leanpub.com/javaoopdoneright
http://leanpub.com/javaoopdoneright

The SOLID Principles
This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/javaoopdoneright.

The five SOLID principles

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/javaoopdoneright.

SRP Single Responsibility - do one thing well

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/javaoopdoneright.

What is ‘one thing’, anyway?

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/javaoopdoneright.

DIP Dependency Inversion: Bring out the Big
Picture

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/javaoopdoneright.

What is an ‘inverted dependency’?

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/javaoopdoneright.

http://leanpub.com/javaoopdoneright
http://leanpub.com/javaoopdoneright
http://leanpub.com/javaoopdoneright
http://leanpub.com/javaoopdoneright
http://leanpub.com/javaoopdoneright
http://leanpub.com/javaoopdoneright

The SOLID Principles 23

Why is ‘new’ such a problem?

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/javaoopdoneright.

Inverting the input Dependency

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/javaoopdoneright.

Making a concrete KeyboardInput class

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/javaoopdoneright.

Dependency Injection - using our inverted dependency

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/javaoopdoneright.

Swappable input sources

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/javaoopdoneright.

Inverting the output to display

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/javaoopdoneright.

Inversion - Injection: two sides of the same coin

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/javaoopdoneright.

http://leanpub.com/javaoopdoneright
http://leanpub.com/javaoopdoneright
http://leanpub.com/javaoopdoneright
http://leanpub.com/javaoopdoneright
http://leanpub.com/javaoopdoneright
http://leanpub.com/javaoopdoneright
http://leanpub.com/javaoopdoneright

The SOLID Principles 24

LSP Liskov Substitution Principle - Making
things swappable

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/javaoopdoneright.

When Shapes go Bad

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/javaoopdoneright.

Substitutability

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/javaoopdoneright.

OCP Open/Closed Principle - adding without
change

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/javaoopdoneright.

Strategy Pattern: Externalising behaviour

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/javaoopdoneright.

ISP Interface Segregation Principle - honest
interfaces

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/javaoopdoneright.

http://leanpub.com/javaoopdoneright
http://leanpub.com/javaoopdoneright
http://leanpub.com/javaoopdoneright
http://leanpub.com/javaoopdoneright
http://leanpub.com/javaoopdoneright
http://leanpub.com/javaoopdoneright

The SOLID Principles 25

Bad Example: TV Controls

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/javaoopdoneright.

Fixing our ISP violation

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/javaoopdoneright.

Redesigning to Command objects

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/javaoopdoneright.

Pragmatics: I would choose to do it wrong

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/javaoopdoneright.

http://leanpub.com/javaoopdoneright
http://leanpub.com/javaoopdoneright
http://leanpub.com/javaoopdoneright
http://leanpub.com/javaoopdoneright

TDD and Test Doubles
This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/javaoopdoneright.

Test Doubles - Stubs and Mocks

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/javaoopdoneright.

DIP for Unit Tests - Stubs and Mocks

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/javaoopdoneright.

Mocking libraries

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/javaoopdoneright.

Self-Shunt mocks and stubs

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/javaoopdoneright.

http://leanpub.com/javaoopdoneright
http://leanpub.com/javaoopdoneright
http://leanpub.com/javaoopdoneright
http://leanpub.com/javaoopdoneright
http://leanpub.com/javaoopdoneright

Refactoring
This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/javaoopdoneright.

What is refactoring?

Refactoring is the name given to changing the structure of our code whilst keeping
its behaviour the same. Re-structuring our code, but without breaking anything.

The name comes from factoring, which comes from algebra. Factoring is the basic
idea of splitting something up into smaller parts. Refactoring is simply ‘doing it
again’.

I am always refactoring.

I’ll refactor as part of the TDD process, as is standard. I will write a failing test, add
the simplest production code to make it pass, then refactor.

When faced with new code that’s hard to understand, I’ll refactor it first. That way,
I capture any insights I get and preserve this hard-won understanding in the code.

That’s why refactoring is useful. But how do we do it?

Martin Fowler’s book Refactoring is the reference on this subject. The first edition
is all Java-based and the one I recommend for Java devs. The second edition uses
JavaScript ES6 with class support for the examples. It’s okay, but not as direct for us
Java developers.

Here are the refactoring steps I use all the time - and why.

Rename Method, Rename Variable

http://leanpub.com/javaoopdoneright

Refactoring 28

1 class User {

2 private final String text ;

3

4 public User(String name) {

5 this.text = name ;

6 }

7

8 public void printout() {

9 System.out.println("Welcome back, " + text);

10 }

11 }

This User class will print out ‘Welcome back, Alan’ after creating the object passing
in the name Alan.

The name is stored in a field called ‘text’. Hmm. It is text - but that’s not really telling
me what that field is used for. It is being used to store the User’s name that we want
to put into the welcome message.

The fix is to use Refactor > Rename of that field. Call it ‘name’.

In the same vein, method ‘printout()’ isn’t very helpful in understanding the code,
either. Yes, the method will print something out. We can read that. But that isn’twhat
it is doing, that’s how. We want our methods to explain why they are there and what
their outcome is.

We can use Refactor > Rename on the method name to give it a descriptive name.
Let’s choose ‘welcome()’. This better explains what is being done.

1 class User {

2 private final String name ;

3

4 public User(String name) {

5 this.name = name ;

6 }

7

8 public void welcome() {

9 System.out.println("Welcome back, " + name);

Refactoring 29

10 }

11 }

These two refactorings - changing the name of a field or method - are the ones I use
all the time. Literally. To the point where I no longer stress out about thinking up
‘the best’ names. I just code, come up with a first stab at a name, then come back and
refactor it when I get a better idea.

I find my brain works like that. Something happens in the background as I am
working away. I’ll get a better insight a little later.

Prefer IDE tools over manual changes

Your IDE if it is IntelliJ, Eclipse, NetBeans or VS Code will automate this process. As
Java is a strongly typed language, the IDE can find all references to that field text
and change them all in one go. Same for the method and all its call sites.

Use the IDE Refactoring tool always

Use the tools. It is much faster. You will introduce fewer bugs.

Extract Method

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/javaoopdoneright.

Change Method Signature

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/javaoopdoneright.

http://leanpub.com/javaoopdoneright
http://leanpub.com/javaoopdoneright

Refactoring 30

Extract Parameter Object

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/javaoopdoneright.

Can we refactor anything into anything else?

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/javaoopdoneright.

http://leanpub.com/javaoopdoneright
http://leanpub.com/javaoopdoneright

Hexagonal Architecture
This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/javaoopdoneright.

The problems of external systems

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/javaoopdoneright.

The Test Pyramid

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/javaoopdoneright.

Removing external systems

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/javaoopdoneright.

The Hexagonal Model

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/javaoopdoneright.

Inversion / Injection: Two sides of the same
coin

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/javaoopdoneright.

http://leanpub.com/javaoopdoneright
http://leanpub.com/javaoopdoneright
http://leanpub.com/javaoopdoneright
http://leanpub.com/javaoopdoneright
http://leanpub.com/javaoopdoneright
http://leanpub.com/javaoopdoneright

Handling Errors
This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/javaoopdoneright.

Three kinds of errors

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/javaoopdoneright.

The null reference

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/javaoopdoneright.

Null object pattern

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/javaoopdoneright.

Zombie object

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/javaoopdoneright.

Exceptions - a quick primer

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/javaoopdoneright.

http://leanpub.com/javaoopdoneright
http://leanpub.com/javaoopdoneright
http://leanpub.com/javaoopdoneright
http://leanpub.com/javaoopdoneright
http://leanpub.com/javaoopdoneright
http://leanpub.com/javaoopdoneright

Handling Errors 33

Design By Contract, Bertrand Meyer style

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/javaoopdoneright.

Fatal errors: Stop the world!

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/javaoopdoneright.

Combined approach: Fixable and non-fixable
errors

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/javaoopdoneright.

Which approach is best?

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/javaoopdoneright.

NullPointerException

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/javaoopdoneright.

Application Specific Exceptions

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/javaoopdoneright.

http://leanpub.com/javaoopdoneright
http://leanpub.com/javaoopdoneright
http://leanpub.com/javaoopdoneright
http://leanpub.com/javaoopdoneright
http://leanpub.com/javaoopdoneright
http://leanpub.com/javaoopdoneright

Handling Errors 34

Error object

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/javaoopdoneright.

Optionals - Java 8 streams approach

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/javaoopdoneright.

Review: Which approach to use?

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/javaoopdoneright.

http://leanpub.com/javaoopdoneright
http://leanpub.com/javaoopdoneright
http://leanpub.com/javaoopdoneright

Design Patterns
This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/javaoopdoneright.

Mechanism and Domain

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/javaoopdoneright.

Patterns: Not libraries, not frameworks

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/javaoopdoneright.

Strategy

[GoF] Gives you pluggable behaviour

Strategy is used when you have an object that needs a way to change its behaviour.
Depending on configuration, or in response to external events, it needs to do some
processing differently. You could do this with conditionals like switch statements.
But you want to respect OCP and keep that object unmodified.

Injecting a Strategy object enables this.

As an example, employees can have different bonus schemes as they hit different
targets.

Here is our Strategy pattern interface. It will allow us to make various implementa-
tions:

http://leanpub.com/javaoopdoneright
http://leanpub.com/javaoopdoneright
http://leanpub.com/javaoopdoneright

Design Patterns 36

1 interface BonusScheme {

2 void applyTo(Money pay);

3 }

We can now inject that in our Employee objects:

1 class Employee {

2 private BonusScheme bonus ;

3

4 public Employee(BonusScheme bonus) {

5 this.bonus = bonus;

6 }

7

8 Money totalPay() {

9 Money pay = calculateBasePay();

10

11 // Use the strategy

12 bonus.applyTo(pay);

13

14 return pay;

15 }

16

17 private Money calculateBasePay() {

18 // ... code

19 }

20 }

This Employee object is now open for behaviour changes in its bonus scheme. But it
is closed to modification. We don’t need to change the insides just to change a bonus
scheme.

Let’s demonstrate that with two simple schemes - NoBonus and BonusTwenty

Design Patterns 37

1 class NoBonus implements BonusScheme {

2 void apply(Money pay) {

3 // No Action

4 }

5 }

6

7 class BonusTwenty {

8 void apply(Money pay) {

9 pay.add(new Money("20.00"));

10 }

11 }

Whenwe create employee objects, we inject whichever bonus scheme concrete object
we want to use.

Real payment systems are more complex and would have logic in the bonus scheme.
That would collaborate with other objects, like Targets perhaps, to see if we qualify.
The BonusScheme objects might even get Strategy pattern objects of their own.

Strategy crops up everywhere youwant to vary behaviour. In the sameway a variable
handles variable data, the Strategy pattern handles variable behaviour. It’s as simple
as that.

Strategy can be a low-level mechanism technique. At a higher level, it can express
domain ideas that have changing behaviour in the real world. The classic being
Employee objects that start out as juniors but then get promoted to managers.
Strategy makes for a direct model of that.

Examples: Tax Calculation, Payment schedule, Data source selection, Graphics filters,
Plugins of all kinds, Extension points, Customisations, Skins, Complex rules.

Observer

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/javaoopdoneright.

http://leanpub.com/javaoopdoneright

Design Patterns 38

Adapter

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/javaoopdoneright.

Command

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/javaoopdoneright.

Composite

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/javaoopdoneright.

Facade

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/javaoopdoneright.

Builder

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/javaoopdoneright.

Repository

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/javaoopdoneright.

http://leanpub.com/javaoopdoneright
http://leanpub.com/javaoopdoneright
http://leanpub.com/javaoopdoneright
http://leanpub.com/javaoopdoneright
http://leanpub.com/javaoopdoneright
http://leanpub.com/javaoopdoneright

Design Patterns 39

Query

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/javaoopdoneright.

Simple Query Object

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/javaoopdoneright.

CollectingParameter

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/javaoopdoneright.

Item-Item Description

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/javaoopdoneright.

Moment-Interval

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/javaoopdoneright.

Clock

[Own] Provides a way to represent current time that can be stubbed

Time driven functions need to know the actual real-world time now. Writing this, it
is the 11 Nov 2020, 22:54:23 BST.

http://leanpub.com/javaoopdoneright
http://leanpub.com/javaoopdoneright
http://leanpub.com/javaoopdoneright
http://leanpub.com/javaoopdoneright
http://leanpub.com/javaoopdoneright

Design Patterns 40

All usable systems provide a way to get real-world time. Java provides the older
new Date() syntax to access the system clock. The Java 8 Joda-time inspired update
provides newer features and a less zany syntax.

But both systems share the same problem. If you use them directly in your code,
you are stuck with the actual time, right now, in the real world. This makes testing
either hard or impossible. Recreating a production fault from logs captured earlier is
impossible, too.

In both cases, we need a way to force the time to a test value.

The Clock pattern is a simple abstraction of the system clock. Using the older Date
syntax for simplicity, it looks like this:

1 interface Clock {

2 Date now();

3 }

This is a Dependency Inversion (DIP). Our code now depends on only this interface
for its source of the current time, using the now() method.

For production, we define a SystemClock class:

1 class SystemClock implements Clock {

2 public Date now() {

3 return new Date();

4 }

5 }

We Dependency Inject this SystemClock class to everywhere that needs to know the
time. Often, this comes from a Config class that runs at application startup.

For testing, we inject a stub class:

Design Patterns 41

1 class StubClock implements Clock {

2 private Date date ;

3

4 public Date now() {

5 return date ;

6 }

7

8 public void setTo(Date d) {

9 this.date = d;

10 }

11

12 public void oneHourLater() {

13 // code to go forward one hour

14 }

15

16 public void oneHourEarlier() {

17 // code to go back one hour

18 }

19 }

This stub has features to set to a specific time, then move to an hour later or earlier.
You would change these to your specific test requirements. The idea is that you are
creating a Domain Specific Language (DSL) about test times, to make your test code
into readable documentation.

This is one of those insanely useful patterns that it is actually muscle memory for
me.

Rules (or Policy)

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/javaoopdoneright.

http://leanpub.com/javaoopdoneright

Design Patterns 42

Aggregate

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/javaoopdoneright.

Cache

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/javaoopdoneright.

Decorator

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/javaoopdoneright.

External System (Proxy)

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/javaoopdoneright.

Configuration

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/javaoopdoneright.

Order-OrderLineItem

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/javaoopdoneright.

http://leanpub.com/javaoopdoneright
http://leanpub.com/javaoopdoneright
http://leanpub.com/javaoopdoneright
http://leanpub.com/javaoopdoneright
http://leanpub.com/javaoopdoneright
http://leanpub.com/javaoopdoneright

Design Patterns 43

Request-Service-Response

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/javaoopdoneright.

Anti-Patterns

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/javaoopdoneright.

Design Pattern Soup

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/javaoopdoneright.

Unneeded Flexibility

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/javaoopdoneright.

Mechanism Madness

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/javaoopdoneright.

http://leanpub.com/javaoopdoneright
http://leanpub.com/javaoopdoneright
http://leanpub.com/javaoopdoneright
http://leanpub.com/javaoopdoneright
http://leanpub.com/javaoopdoneright

OOP Mistakes - OOP oops!
So far, we’ve covered ways to use OOP well.

We’ve seen a lot of techniques that make code readable, easy to test and compact.
Remember how easy it was to combine Repository with Cache with Decorator and
get a pluggable speed boost?

It turns out that not everybody agrees that OOP is a good thing.

In part, of course, they are right. Plenty of things just are not suited to OOP. I
can think of simple batch scripts, build scripts and Terraform scripts that set up
infrastructure. We also have ‘Serverless Designs’, which use many small functions
to do their work. OOP often gets in the way there.

Another driver of non-OOP designs has been processing power limitations.

For decades, CPUs followed Moore’s Law. Computing power doubled every two
years. But then it hit a physical limit. CPUs had as many transistors on them as
could be fitted. “I cannae change the laws o’ physics!” said Scottie in Star Trek; So
it is with photolithography. A transistor can be made only so small, but no smaller.
Then physics fights back.

To get around this, CPUs created multiple cores - multiple copies of a CPU design on
the same chip.

This impacted software design. Suddenly, we needed parallel processing rather than
sequential. The kinds of state that lived inside one object of OOPwas not accessible to
other CPU cores. OOP became less useful as a model of communicating state across
CPU cores. Functional Programming - “stateless” programming - is useful here.

However, none of that was what gave OOP a bad name. What gave it a bad name
was OOP done wrong.

So, what are the common mistakes?

OOP Mistakes - OOP oops! 45

Broken Encapsulation - Getters Galore!

At Number 1 in my chart of badness, a very common error:

1 class User {

2 private String name ;

3

4 // This is painful to type ...

5 public String getName() {

6 return name ;

7 }

8

9 // ... so is this

10 public void setName(String name) {

11 this.name = name;

12 }

13 }

14

15 class UserGreeter {

16

17 // I swear fairies and kittens are dying right now

18 public void greet(User u) {

19 System.out.prinltn(u.getName());

20 }

21 }

We’ve all seen this - getters and setters everywhere!

It makes me sad. It really does.

Now, to be fair, Java has to take a lot of blame for this. Right from version 1.0, Java
had this idea of “Java Beans” which were things like User above.

You had fields, but every field had a getter and setter. Somehow, that became A Thing
(TM), and it was used everywhere. Then taught everywhere. Then somebody decided
this was an “object” - because it is in a class and has private data and public methods.

OOP Mistakes - OOP oops! 46

This caught on with developers who had understood procedural programming but
hadn’t yet learned OO. They hadn’t learned about objects exposing behaviour and
hiding secrets.

When you think in that way, every problem looks like getters-and-setters. Object
secrets are made un-secret. Code that should be a method on the User object now
appears in some redundant “class” UserGreeter. It’s not really a class, because it
doesn’t really have any real secret. It has stolen a secret from User.

It’s just procedural programming, plain and simple.

Procedural designs simply do not gain the benefits of OOP. But they do have the
words ‘class’ and ‘private’ in them. To the uninformed, they look like an OO design.
But they are not.

When people criticise OOP for not delivering on its promises - but base it on code
like this - it is obvious where the fault lies: This one is on them.

If you don’t even realise your code is not OOP, then don’t criticise OOP for your
code!

Broken Inheritance

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/javaoopdoneright.

Bird extends Animal

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/javaoopdoneright.

Square extends Rectangle

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/javaoopdoneright.

http://leanpub.com/javaoopdoneright
http://leanpub.com/javaoopdoneright
http://leanpub.com/javaoopdoneright

OOP Mistakes - OOP oops! 47

Inheriting implementation

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/javaoopdoneright.

Broken Shared State

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/javaoopdoneright.

Ordinary Bad Code

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/javaoopdoneright.

http://leanpub.com/javaoopdoneright
http://leanpub.com/javaoopdoneright
http://leanpub.com/javaoopdoneright

Data Structures and Pure
Functions
This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/javaoopdoneright.

System Boundaries

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/javaoopdoneright.

Fixed Data, Changing Functions

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/javaoopdoneright.

Algorithms and Data Structures

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/javaoopdoneright.

http://leanpub.com/javaoopdoneright
http://leanpub.com/javaoopdoneright
http://leanpub.com/javaoopdoneright
http://leanpub.com/javaoopdoneright

Putting It All Together
This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/javaoopdoneright.

No step-by-step plans

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/javaoopdoneright.

Getting Started

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/javaoopdoneright.

Perfection and Pragmatism

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/javaoopdoneright.

Getting Past Stuck

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/javaoopdoneright.

http://leanpub.com/javaoopdoneright
http://leanpub.com/javaoopdoneright
http://leanpub.com/javaoopdoneright
http://leanpub.com/javaoopdoneright
http://leanpub.com/javaoopdoneright

Further Reading
This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/javaoopdoneright.

Agile Software Development, Robert C Martin

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/javaoopdoneright.

Growing Object Oriented Software Guided By
Tests, Freeman and Pryce

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/javaoopdoneright.

Refactoring, Martin Fowler

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/javaoopdoneright.

Design Patterns Helm, Johnson, Richards,
Vlissides

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/javaoopdoneright.

http://leanpub.com/javaoopdoneright
http://leanpub.com/javaoopdoneright
http://leanpub.com/javaoopdoneright
http://leanpub.com/javaoopdoneright
http://leanpub.com/javaoopdoneright

Further Reading 51

Domain Driven Design, Eric Evans

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/javaoopdoneright.

Applying UML with Patterns, Craig Larman

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/javaoopdoneright.

Home page for this book

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/javaoopdoneright.

My Blog

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/javaoopdoneright.

My Quora Space

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/javaoopdoneright.

LinkedIn

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/javaoopdoneright.

http://leanpub.com/javaoopdoneright
http://leanpub.com/javaoopdoneright
http://leanpub.com/javaoopdoneright
http://leanpub.com/javaoopdoneright
http://leanpub.com/javaoopdoneright
http://leanpub.com/javaoopdoneright

Further Reading 52

LeanPub page

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/javaoopdoneright.

http://leanpub.com/javaoopdoneright

Cheat Sheet
This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/javaoopdoneright.

Behaviours First

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/javaoopdoneright.

Design Principles

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/javaoopdoneright.

Clean Code

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/javaoopdoneright.

General Code Review Points

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/javaoopdoneright.

http://leanpub.com/javaoopdoneright
http://leanpub.com/javaoopdoneright
http://leanpub.com/javaoopdoneright
http://leanpub.com/javaoopdoneright
http://leanpub.com/javaoopdoneright

About the Author
Starting from age 12, AlanMellor has four decades of experience developing software,
for various companies, startups and as a freelancer.

From a humble Sinclair ZX81 home computer with 1k of RAM, Alan has progressed
to creating systems for industrial automation, defence, e-commerce, games and
mobile phones.

Some you may have heard of: Nokia Bounce, The Ericsson R380s smartphone, The
Red Arrows flight simulator from 1985 and Fun School 2. All had Alan’s code in them.
Other code sits there quietly, doing its thing unnoticed. Yet more has been consigned
to the great /dev/null of history.

More recently, Alan has been involved with training UK Level 4 Apprentices. He
has designed and delivered content that hopefully helps ‘switch the light on’ about
programming.

Alan also enjoys dabbling variously with guitars, electronics, videography and
cheeseboards. You just can’t beat a great Roquefort with Rioja.

Thanks

BJSS Limited and Manchester Digital for opportunities to use and teach this stuff.

Steven Taylor - great suggestions on the first draft (despite more work!)

My Mum. That ZX81 didn’t buy itself. You made my career happen.

Stephanie, Katy, Jake. Who would have guessed a 1980s computer nerd would end
up surrounded by amazing humans he can call ‘family’. What a privilege.

Katy for front cover art https://www.redbubble.com/people/kath-ryn/shop

Buy the book!
What you read was just a sample of various chapters. If you like the style, why not
buy the full book? Go on - treat yourself!

	Table of Contents
	Preface
	Optimise for Clarity
	What is an object, anyway?
	What's all this got to do with Java?
	A simple example: Greeting users
	The big idea: calling code is simple
	Object Oriented Design is Behaviour Driven Design

	Clean Code
	Good Names
	Design methods around behaviours, not data
	Hidden data - No getters, no setters

	Aggregates: More than one
	Greeting more than one user
	Using forEach - not a loop
	Aggregate methods work on all the things

	Collaboration
	Basic Mechanics
	Example: Simple Point of Sale

	Test Driven Development
	Outside-in design with TDD
	First test: total starts at zero
	Arrange, Act, Assert - a rhythm inside each test
	Red, Green, Refactor - a rhythm in between tests
	Second test: Adding an item gives us the right total
	Designing the second feature
	TDD Steps - Too much? Too little?
	YAGNI - You Ain't Gonna Need It
	YAYA - Yes, You Are
	Optimise for Clarity with well-named tests
	TDD and OOP - A natural fit
	FIRST Tests are usable tests
	Real-world TDD

	Polymorphism - The Jewel in the OOP Crown
	Classic example: Shape.draw()
	The Shape Interface
	Tell Don't Ask - the key to OOP

	The SOLID Principles
	The five SOLID principles
	SRP Single Responsibility - do one thing well
	DIP Dependency Inversion: Bring out the Big Picture
	LSP Liskov Substitution Principle - Making things swappable
	OCP Open/Closed Principle - adding without change
	ISP Interface Segregation Principle - honest interfaces

	TDD and Test Doubles
	Test Doubles - Stubs and Mocks
	DIP for Unit Tests - Stubs and Mocks
	Mocking libraries
	Self-Shunt mocks and stubs

	Refactoring
	What is refactoring?
	Rename Method, Rename Variable
	Extract Method
	Change Method Signature
	Extract Parameter Object
	Can we refactor anything into anything else?

	Hexagonal Architecture
	The problems of external systems
	The Test Pyramid
	Removing external systems
	The Hexagonal Model
	Inversion / Injection: Two sides of the same coin

	Handling Errors
	Three kinds of errors
	The null reference
	Null object pattern
	Zombie object
	Exceptions - a quick primer
	Design By Contract, Bertrand Meyer style
	Fatal errors: Stop the world!
	Combined approach: Fixable and non-fixable errors
	Which approach is best?
	NullPointerException
	Application Specific Exceptions
	Error object
	Optionals - Java 8 streams approach
	Review: Which approach to use?

	Design Patterns
	Mechanism and Domain
	Patterns: Not libraries, not frameworks
	Strategy
	Observer
	Adapter
	Command
	Composite
	Facade
	Builder
	Repository
	Query
	CollectingParameter
	Item-Item Description
	Moment-Interval
	Clock
	Rules (or Policy)
	Aggregate
	Cache
	Decorator
	External System (Proxy)
	Configuration
	Order-OrderLineItem
	Request-Service-Response
	Anti-Patterns

	OOP Mistakes - OOP oops!
	Broken Encapsulation - Getters Galore!
	Broken Inheritance
	Bird extends Animal
	Square extends Rectangle
	Inheriting implementation
	Broken Shared State
	Ordinary Bad Code

	Data Structures and Pure Functions
	System Boundaries
	Fixed Data, Changing Functions
	Algorithms and Data Structures

	Putting It All Together
	No step-by-step plans
	Getting Started
	Perfection and Pragmatism
	Getting Past Stuck

	Further Reading
	Agile Software Development, Robert C Martin
	Growing Object Oriented Software Guided By Tests, Freeman and Pryce
	Refactoring, Martin Fowler
	Design Patterns Helm, Johnson, Richards, Vlissides
	Domain Driven Design, Eric Evans
	Applying UML with Patterns, Craig Larman
	Home page for this book
	My Blog
	My Quora Space
	LinkedIn
	LeanPub page

	Cheat Sheet
	Behaviours First
	Design Principles
	Clean Code
	General Code Review Points

	About the Author
	Thanks

	Buy the book!

