

[image: Learn Object-Oriented Java the Hard Way]

 Learn Object-Oriented Java the Hard Way

 Graham Mitchell

 This book is for sale at http://leanpub.com/javahard2

 This version was published on 2016-10-12

 [image: publisher's logo]

 * * * * *

 This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and many iterations to get reader feedback, pivot until you have the right book and build traction once you do.

 * * * * *

© 2015 - 2016 Graham Mitchell

 Table of Contents

 	
 Preface: Learning by Doing

 	
 Introduction: Object-Oriented Java

 	
 Exercise 0: The Setup

 	
 Exercise 1: Working With Objects

 	
 Exercise 2: Creating Your Own Single Objects

 	
 Exercise 3: Defining Objects in Separate Files

 	
 Exercise 4: Fields in an Object

 	
 Exercise 5: Programming Paradigms

 	
 Exercise 6: Accessing Fields in Methods

 	
 Exercise 7: Encapsulation and Automated Testing

 	
 Exercise 8: Failure to Encapsulate

 	
 Exercise 9: Private Fields and Constructors

 	
 Exercise 10: Automated Testing with Arrays

 	
 Exercise 11: Public vs Private vs Unspecified

 	
 Exercise 12: Reviewing Constructors

 	
 Buy the Full Book!

 Guide

 	
 Begin Reading

Preface: Learning by Doing

I have been teaching beginners how to code for the better part of two decades.
More than 2,000 students have taken my classes and left knowing how to write
simple programs that work. Some learned how to do only a little and others
gained incredible skill over the course of just a few years.

I have plenty of students who are exceptional but most of my students are
regular kids with no experience and no particular aptitude for programming.
This book is written for regular people like them.

Most programming books and tutorials online are written by people with great
natural ability and very little experience with real beginners. Their books
often cover far too much material far too quickly and overestimate what
true beginners can understand.

If you have a lot of experience or extremely high aptitude, you can learn to
code from almost any source. I sometimes read comments like “I taught my
9-year-old daughter to code, and she made her first Android app six weeks
later!” If you are the child prodigy, this book is not written for you.

I have also come to believe that there is no substitute for writing lots of
small programs. So that’s what you will do in this book. You will type in small
programs and run them.

“The best way to learn is to do.” – P.R. Halmos

Introduction: Object-Oriented Java

Java is an object-oriented programming language. My first book covered all the
basic syntax of the Java language, but avoided all the object-oriented parts.
This book covers the rest.

If you have never programmed before in any language, this book is probably
not for you. You need some experience in a similar language before you will be
able to make it through this book. If you already know the basics of Java or
another language like C, C++, C# or Javascript, you will be okay. If you only
know a very different language like Python or Ruby then you’ll have a little
catching up to do.

If you get lost trying to follow the code in exercise 1, then you should
probably go back and work through a simpler book before trying this one.

What You Will Learn

 	How to install the Java compiler and a text editor

 	How to work with Java objects and create your own classes

 	Fields and instance variables

 	Methods and Parameters

 	Constructors

 	Reference Variables vs Primitives

 	Generics and Casting

 	Inheritance

 	Interfaces

 	Abstract Classes and Methods

 	Packages

 	How to create JAR files

 	Graphical User Interfaces in JavaFX

 	Mouse and Keyboard Input in GUIs

 	Testing and Efficiency

 	Algorithmic Complexity and Big-O Notation

 	ArrayLists

 	Sorting

…and more!

In the final chapter you’ll write a graphical version of a popular
checker-dropping game and be able to package that up to send to others.

All the examples in this book will work in version 1.8 of Java or any newer
version. If you omit the last few chapters on JavaFX, most of the code will
work in Java version 1.6 or later.

What You Will Not Learn

 	How to compile and run Java programs in a terminal

 	The basics of Java

 	How to make an Android app

 	Specifics of different “versions” of Java

 	Javascript

 	Create, compile & run

 	If you have written some Java before but you have always used an IDE, you
should learn how to write your code in a simple text editor and how to
compile your code from a terminal. My first book has an
entire chapter on it which
is free to read online, so work through that first if you need to.

 	No basics

 	If you don’t already know how to create variables and write if statements,
loops and functions in Java, then you should learn that before trying
to work through this book.

 	No Android

 	Android apps are pretty complex, and if you’re a beginner, an app
is way beyond your ability. Nothing in this book will hurt your chances
of making an app, though, and the kinder, gentler pace may keep you going
when other books would frustrate you into quitting.

 	No specific version

 	I will not cover anything about the differences between Java SE 7 and Java
SE 8, for example. If you care about the difference, then this book is not
for you.
 Except for the last few graphics chapters, I will also not cover anything
that was only recently added to Java. This book is for learning the basics
of object-oriented programming and nothing has changed about the basics of
Java in many years.

 	No Javascript

 	“Javascript” is the name of a programming language and “Java” is
also the name of a programming language. These two languages have nothing
to do with each other. They are completely unrelated.

I hope to write more books after this one. My third book will cover making a
simple Android app, assuming you have finished working through the first two
books.

How to Use This Book

Although I have provided a zipfile containing the source code for all the
exercises in the book, you should type them in.

For each exercise, type in the code. Yourself, by hand. How are you going to
learn otherwise? None of my former students ever became great at programming by
merely reading others’ code.

Work the Study Drills. Then watch the Study Drill videos (if you have them) to
compare your solutions to mine. And by the end you will be able to code, at
least a little.

License

Some chapters of this book are made available free to read online but you are
not allowed to make copies for others without permission.

The materials provided for download may not be copied, scanned, or duplicated,
or posted to a publicly accessible website, in whole or in part.

Educators who purchase this book and/or tutorial videos are given permission to
utilize the curriculum solely for self-study or for one-to-one, face-to-face
tutoring of a single student. Large-group teaching of this curriculum requires
a site license.

Unless otherwise stated, all content is copyright 2015-2016 Graham Mitchell.

Exercise 0: The Setup

This exercise has no code but do not skip it. It will help you to
get a decent text editor installed and to install the Java Development
Kit (JDK). If you do not do both of these things, you will not be able
to do any of the other exercises in the book. You should follow these
instructions as exactly as possible.

 This exercise requires you to do things in a terminal window (also
called a “shell”, “console” or “command prompt”. If you have no
experience with a terminal, then you might need to go learn
that first.

 I’ll tell you all the commands to type, but if you’re interested in more
detail you might want to check out the first chapter of “Conquering the
Command Line” by Mark Bates. His book is designed for users of a “real”
command line that you get on a Linux or Mac OS X machine, but the commands
will be similar if you are using PowerShell on Windows.

 Read Mark’s book at conqueringthecommandline.com.

You are going to need to do three things no matter what kind of system you
have:

 	Install a decent text editor for writing code.

 	Figure out how to open a terminal window so we can type commands.

 	Install the JDK (Java Development Kit).
 And on Windows, you’ll need to do a fourth thing:

 	Add the JDK to the system PATH.

(The JDK commands are automatically added to the PATH on Apple computers and
on Linux computers.)

I have instructions below for Windows, then for the Mac OS, and finally for
Linux. Skip down to the operating system you prefer.

 	

Windows

Installing a Decent Text Editor (Notepad++)

 	Go to notepad-plus-plus.org with your web
browser, download the latest version of the Notepad++ text editor, and
install it. You do not need to be an administrator to do this.

 	Once Notepad++ is installed, I always run it and turn off Auto-Completion
since it is bad for beginners. (It also annoys me personally.) Open the
“Settings” menu and choose “Preferences”. Then click on “Auto-Completion”
about halfway down the list on the left-hand side. Finally uncheck the box
next to “Enable auto-completion on each input” and then click the “Close”
button.

 	Finally while Notepad++ is still running I right-click on the
Notepad++ button down in the Windows taskbar area and then click “Pin this
program to taskbar.” This will make it easier to launch Notepad++ for future
coding sessions.

Opening a Terminal Window (PowerShell)

 	Click the Start button to open the Start Menu.
(On Windows 8 and newer, you can open the search box directly by pressing
the Windows key + S.) Start typing “powershell” in the search box.

 	Choose “Windows PowerShell” from the list of results.

 	Right-click on the PowerShell button in the taskbar and choose “Pin this
program to taskbar.”

 	In the Powershell/Terminal window, type

 javac -version

You will probably get an error in red text that says something like “The
term ‘javac’ is not recognized as the name of a cmdlet….”

This just means that the JDK isn’t installed and added to the PATH, which
is what we expect at this point.

 If you are using a very old version of Windows, PowerShell might not be
installed. You can do all of the exercises in this book using “Command
Prompt” (cmd.exe) instead, but the navigation commands will be different
and adding the JDK to the PATH will also be different.

 I recommend trying to get PowerShell installed if you can.

Installing the Java Development Kit (JDK)

 	Go to Oracle’s Java SE downloads page
with your web browser.

 	Click the big “Java” button on the left near the top to download the
Java Platform (JDK) 8u102. Clicking this will take you to a different
page titled “Java SE Development Kit 8 Downloads.”

 	On this page you will have to accept the license agreement and then
choose the “Windows x86” version near the bottom of the list. Download
the file for version 8u102 or any newer version.
 If you know for sure that you are running a 64-bit version of Windows,
it is okay to download the “Windows x64” version of the JDK. If you’re
not sure, then you should download the “x86” (a.k.a. 32-bit) version,
since that version will work on both 32-bit Windows and on 64-bit Windows.

 You do not need to download the “Demos and Samples”.

 	Once downloaded, run jdk-8u102-windows-i586.exe to install it.
After you click “Next >” the very first time you will see a screen
that says Install to: C:\Program Files (x86)\Java\jdk1.8.0_102\ or
something similar. Make a note of this location; you will need
it soon.

 	Just keep clicking “Next” until everything is done. Unless you really
know what you’re doing it’s probably best to just let the installer do
what it wants.

Adding the JDK to the PATH

 	Now that the JDK is installed you will need to find out the exact name
of the folder where it was installed. Look on the C: drive inside
the Program Files folder or the C:\Program Files (x86) folder
if you have one. You are looking for a folder called Java. Inside
that is a folder called jdk1.8.0_102 that has a folder called
bin inside it. The folder name must have jdk1.8 in it;
jre8 is not the same. Make sure there’s a bin folder.

 	Once you have clicked your way inside the bin folder, you can left-click
up in the folder location and it will change to something that looks like
C:\Program Files (x86)\Java\jdk1.8.0_102\bin. You can write this down or
highlight and right-click to copy it to the clipboard.

 	Once the JDK is installed and you know this location open up your
terminal window (PowerShell). In PowerShell, type this:

 <<(code/set-environ-var-8u102.txt)

Put it all on one line, though. That is:

Type or paste [Environment]::SetEnvironmentVariable("Path", "$env:Path;

Don’t press ENTER yet. You can paste into PowerShell by right-clicking.

Then type or paste the folder location from above. If you installed the x86
(32-bit) version of JDK version 8u102, it should be

 C:\Program Files (x86)\Java\jdk1.8.0_102\bin

(Still don’t press ENTER.)

Then add ", "User") at the end. Finally, press ENTER.

If you get an error then you typed something incorrectly. You can press the up
arrow to get it back and the left and right arrows to find and fix your
mistake, then press ENTER again.

Once the SetEnvironmentVariable command completes without giving you an
error, close the PowerShell window by typing exit at the prompt. If
you don’t close the PowerShell window the change you just made won’t
take effect.

Making Sure the JDK is Installed Correctly

 	Launch PowerShell again.

 	Type javac -version at the prompt.

 javac -version

You should see a response like javac 1.8.0_102.

 	Type java -version at the prompt.

 java -version

You should see a response like java version "1.8.0_102".

Make sure they both report the same version number! If not, you might have two
different (incompatible) versions of Java installed and you will have trouble
completing the exercises in this book.

If the version numbers don’t match, go into the Control Panel and Add/Remove
Programs. Remove all programs related to Java, the JDK, the JRE. Remove Eclipse
if it is installed. Remove everything Java related and start again.

However, if both commands worked and you didn’t get any errors and the
version numbers did match, then congratulations! Getting all that to work
is pretty hard and you probably have what it takes to finish the rest of the
book!

Don’t move on to the next exercise yet, though! We should get used to
navigating using the command-line, since that’s how you will be running
the programs you write in this book.

Navigation in the Command-Line (PowerShell)

You should create a new folder to put all your code in. After finishing this
book, you will have at least 100 new files and it will be better if they are
all in one place.

 In the following text, I will use the word “folder” and the word “directory”
interchangably. They mean the same thing. The word “directory” is much older,
but ever since the 1980s graphical operating systems have used a picture of a
folder to represent a directory, so that word is now used, too.

 ls

Type ls then press ENTER. (That’s an “L” as in “list”.) This command will
list the contents of the current folder/directory.

 cd Documents

The cd command means “change directory” and it will move you into the
“Documents” folder so that future commands will take effect there.

Notice that your prompt will change to show that you are now inside a new
folder. For example, when I first open PowerShell on my Windows 7 machine,
my prompt is

 PS C:\Users\Mitchell>

Then once I change into the “Documents” directory the prompt changes to

 PS C:\Users\Mitchell\Documents>

You should type ls again once you get in there to see the contents of your
Documents directory.

 If you are using an older version of Windows, the folder might be called
“My Documents” instead of “Documents”. If so, you will need to put quotes
around the folder name for the cd command to work, since the name of the
folder contains a space:

cd "My Documents"

 mkdir javahard2

mkdir means “make directory” and will create a new folder in the current
location. Typing ls afterward should show you that the new directory is now
there. You can call the folder something different than “javahard2” if you want
to. You will only need to create this folder once per computer.

 cd javahard2

Change into the javahard2 folder. Afterward, type ls and it should list
nothing. (The directory is empty, after all.)

 cd ..

This is how you use the cd command to back out one level. After you type
it you will be back in just the “Documents” directory, and your prompt should
have changed to reflect that.

Issue the command to get back into the “javahard2” folder again.

Now, use the mouse to open the text editor you installed earlier. Type a
sentence or something and then save the file as test.txt. Save it into the
“javahard2” folder you just created.

Go back to the terminal window and issue the ls command to see the file you
just created.

 If you’re feeling fancy, you won’t have to use the mouse to switch back to
the terminal; you can just press Alt + Tab on Windows or Linux or press
Command + Tab on a Mac to switch applications.

 Press and hold the Alt key. Keep it pressed. Then press and release the Tab
key a single time. While still holding the Alt key, press Tab several more
times until your terminal window is selected, then let go of the Alt key to
make the switch.

 If you just quickly press Alt+Tab and let go of both keys right away, it
usually takes you back to the previous application. I do this a lot. When
I’m in the text editor I press Alt+Tab to get back to the terminal, then when
I’m done in the terminal I press Alt+Tab again to get back to my text editor.
It’s very fast once you get used to it.

You should skip down to the bottom of this chapter and read the “Warnings for
Beginners”, but otherwise you’re done with the setup and you are ready to
begin Exercise 01 on Windows! Nice job.

 	

Mac OS X

 I don’t own an Apple computer, so I don’t currently have a way to test these
directions for myself. I have tried to explain things, but there might be
some small errors.

 If you use these directions, I would appreciate any emails about things
that worked or didn’t work on your computer.

Installing a Decent Text Editor (TextWrangler)

 	Go to barebones.com
with your web browser.
Download the Disk Image for TextWrangler version 5.0 or any newer version.

 	Run the disk image, then open the Appliciations Folder and drag the icon
over to it as indicated. You may have to authenticate with the administrator
username and password.

 	Once installed, launch TextWrangler and add it to the dock if that doesn’t
happen automatically.

Opening a Terminal Window (Terminal)

 	Minimize TextWrangler and switch to Finder. Using the search (Spotlight),
start searching for “terminal”. That will open a little bash terminal.

 	Put your Terminal in your dock as well.

 	In Terminal window, type

 javac -version

You should probably get an error that tells you that “javac” is an unknown
command. (Feel free to email me a screenshot of the error message so I can
update this paragraph.)

This just means that the JDK isn’t installed, which is what we expect at this
point.

 If you are using a very old version of Mac OS X, the javac command might
not give you an error! It might just print a version number on the screen!

 As long as it is version 1.5 or higher, you can do all of the exercises
in this book.

Installing the Java Development Kit (JDK)

 	Go to Oracle’s Java SE downloads page
with your web browser.

 	Click the big “Java” button on the left near the top to download the
Java Platform (JDK) 8u102. Clicking this will take you to a different
page titled “Java SE Development Kit 8 Downloads.”

 	On this page you will have to accept the license agreement and then
choose the “Mac OS X x64” version in the middle of the list. Download
the file for version 8u102 or any newer version.
 You do not need to download the “Demos and Samples”.

 	Once downloaded, run jdk-8u102-macosx-x64.dmg to install it.

 	Just keep clicking “Next” until everything is done. Unless you really
know what you’re doing it’s probably best to just let the installer do
what it wants.

Adding the JDK to the PATH

You get to skip this part, because the JDK installer does this for you on
Apple computers. You might need to close the terminal and open it again,
though, for the change to take effect.

Making Sure the JDK is Installed Correctly

 	Launch Terminal again.

 	Type javac -version at the prompt.

 javac -version

You should see a response like javac 1.8.0_102.

 	Type java -version at the prompt.

 java -version

You should see a response like java version "1.8.0_102".

Make sure they both report the same version number! If not, you might have two
different (incompatible) versions of Java installed and you will have trouble
completing the exercises in this book.

If the version numbers don’t match, uninstall all programs related to Java, the
JDK, the JRE. Remove Eclipse if it is installed. Remove everything Java
related and start again.

However, if both commands worked and you didn’t get any errors and the
version numbers did match, then congratulations! Getting all that to work
is pretty hard and you probably have what it takes to finish the rest of the
book!

Don’t move on to the next exercise yet, though! We should get used to
navigating using the command-line, since that’s how you will be running
the programs you write in this book.

Navigation in the Command-Line (Terminal)

You should create a new folder to put all your code in. After finishing this
book, you will have at least 100 new files and it will be better if they are
all in one place.

 In the following text, I will use the word “folder” and the word “directory”
interchangably. They mean the same thing. The word “directory” is much older,
but ever since the 1980s graphical operating systems have used a picture of a
folder to represent a directory, so that word is now used, too.

 ls

Type ls then press ENTER. (That’s an “L” as in “list”.) This command will
list the contents of the current folder/directory.

 cd Documents

The cd command means “change directory” and it will move you into the
“Documents” folder so that future commands will take effect there.

Notice that your prompt will change to show that you are now inside a new
folder. For example, when I first open Terminal, my prompt is

 localhost:~ mitchell$

Then once I change into the “Documents” directory the prompt changes to

 localhost:Documents mitchell$

You should type ls again once you get in there to see the contents of your
Documents directory. Now we are ready to create the folder.

 mkdir javahard2

mkdir means “make directory” and will create a new folder in the current
location. Typing ls afterward should show you that the new directory is now
there. You can call the folder something different than “javahard2” if you want
to. You will only need to create this folder once per computer.

 cd javahard2

Change into the javahard2 folder. Afterward, type ls and it should list
nothing. (The directory is empty, after all.)

 cd ..

This is how you use the cd command to back out one level. After you type
it you will be back in just the “Documents” directory, and your prompt should
have changed to reflect that.

Issue the command to get back into the “javahard2” folder again.

Now, use the mouse to open the text editor you installed earlier. Type a
sentence or something and then save the file as test.txt. Save it into the
“javahard2” folder you just created.

Go back to the terminal window and issue the ls command to see the file you
just created.

 If you’re feeling fancy, you won’t have to use the mouse to switch back to
the terminal; you can just press Command + Tab on a Mac or press Alt + Tab on
Windows or Linux to switch applications.

 Press and hold the Command key. Keep it pressed. Then press and release the Tab
key a single time. While still holding the Command key, press Tab several more
times until your terminal window is selected, then let go of the Command key to
make the switch.

 If you just quickly press Command+Tab and let go of both keys right away, it
usually takes you back to the previous application. I do this a lot. When
I’m in the text editor I press Command+Tab to get back to the terminal, then when
I’m done in the terminal I press Command+Tab again to get back to my text editor.
It’s very fast once you get used to it.

You should skip down to the bottom of this chapter and read the “Warnings for
Beginners”, but otherwise you’re done with the setup and you are ready to
begin Exercise 01 on Mac OS X! Nice job.

 	

Linux

There are a lot of different versions of Linux out there, so I am
going to give instructions for the latest version of Ubuntu. If
you are running something else, you probably know what you are doing
well enough to figure out how to modify the directions for your setup.

Installing a Decent Text Editor (gedit)

 	On Ubuntu, gedit is already installed by default. It’s called “Text Editor”.
If you search for it in the Dash, you’ll find it with “gedit” or “text”.
 If it’s not installed on your Linux distro, use your package manager to
install it.

 	Make sure you can get to it easily by right-clicking on its icon in
the Launcher bar and selecting “Lock to Launcher”.

 	Run gedit so we can change some of the defaults to be better for
programmers:

 	In the menu bar, open the “Edit” menu then choose “Preferences”.

 	In the “View” tab, put a check mark next to “Display line numbers”

 	Make sure there’s not a check mark next to “Enable text wrapping”

 	Switch to the “Editor” tab and change Tab width: to 4.

 	Put a check mark next to “Enable automatic indentation”

Opening a Terminal Window (Terminal)

 	Minimize your text editor and search for “Terminal” in the Dash.
Other Linux distributions may call it “GNOME Terminal”, “Konsole” or
“xterm”. Any of these ought to work.

 	Lock the Terminal to the Launcher bar as well.

 	In Terminal window, type

 javac -version

You should get an error message that says “The program ‘javac’ can be found
in the following packages” followed by a list of packages.

This just means that the JDK isn’t installed, which is what we expect at this
point.

Installing the Java Development Kit (JDK)

 	One of the nice things about Linux is the package manager. You can manually
install Oracle’s “normal” version of Java if you want, but I always just use
the OpenJDK release:

 sudo apt-get install openjdk-8-jdk openjfx

That’s pretty much it. Everything in this book works fine using OpenJDK. (In
fact, I use Linux for most of my day-to-day work and the exercises in this
book were actually written and tested using OpenJDK!)

If, however, you’re determined to have to install something like Windows and
Mac users have to, you can download it from
Oracle’s Java SE downloads page.

You’re on your own for installing it, though. Seriously. Just use the version
provided by your package manager.

Adding the JDK to the PATH

You get to skip this part, because this is already done for you on
Linux computers. You might need to close the terminal and open it again,
though, for the change to take effect.

However, on my computer running any Java tool prints an annoying message
to the terminal window:

 Picked up JAVA_TOOL_OPTIONS: -javaagent:/usr/share/java/jayatanaag.jar

This is because Eclipse doesn’t work right without this JAR file. But we aren’t
going to be using Eclipse, and this message annoys me, so you need to add a
line to the end of a hidden file called .profile. (The filename starts with
a dot/period, which is why it’s hidden.)

 	Launch your text editor. Click “Open”.

 	Make sure you’re in the “Home” directory.

 	Right-click anywhere in the “Open” window and put a checkmark next to “Show
Hidden Files”.

 	Open the file called .profile.

 	Add the following line at the bottom of the file:

 unset JAVA_TOOL_OPTIONS

Save the file and close it. You might want to click “Open” again and remove
the checkmark next to “Show Hidden Files”.

Making Sure the JDK is Installed Correctly

 	Launch Terminal again.

 	Type javac -version at the prompt.

 javac -version

You should see a response like javac 1.8.0_91.

 	Type java -version at the prompt.

 java -version

You should see a response like openjdk version "1.8.0_91".

Make sure they both report the same version number! If not, you might have two
different (incompatible) versions of Java installed and you will have trouble
completing the exercises in this book.

If the version numbers don’t match, uninstall all programs related to Java, the
JDK, the JRE. Remove Eclipse if it is installed. Remove everything Java
related and start again.

However, if both commands worked and you didn’t get any errors and the
version numbers did match, then congratulations! Getting all that to work
is pretty hard and you probably have what it takes to finish the rest of the
book!

Don’t move on to the next exercise yet, though! We should get used to
navigating using the command-line, since that’s how you will be running
the programs you write in this book.

Navigation in the Command-Line (Terminal)

You should create a new folder to put all your code in. After finishing this
book, you will have at least 100 new files and it will be better if they are
all in one place.

 In the following text, I will use the word “folder” and the word “directory”
interchangably. They mean the same thing. The word “directory” is much older,
but ever since the 1980s graphical operating systems have used a picture of a
folder to represent a directory, so that word is now used, too.

 ls

Type ls then press ENTER. (That’s an “L” as in “list”.) This command will
list the contents of the current folder/directory.

 cd Documents

The cd command means “change directory” and it will move you into the
“Documents” folder so that future commands will take effect there.

Notice that your prompt will change to show that you are now inside a new
folder. For example, when I first open Terminal, my prompt is

 mitchell@localhost:~$

Then once I change into the “Documents” directory the prompt changes to

 mitchell@localhost:~/Documents$

You should type ls again once you get in there to see the contents of your
Documents directory. Now we are ready to create the folder.

 mkdir javahard2

mkdir means “make directory” and will create a new folder in the current
location. Typing ls afterward should show you that the new directory is now
there. You can call the folder something different than “javahard2” if you want
to. You will only need to create this folder once per computer.

 cd javahard2

Change into the javahard2 folder. Afterward, type ls and it should list
nothing. (The directory is empty, after all.)

 cd ..

This is how you use the cd command to back out one level. After you type
it you will be back in just the “Documents” directory, and your prompt should
have changed to reflect that.

Issue the command to get back into the “javahard2” folder again.

Now, use the mouse to open the text editor you installed earlier. Type a
sentence or something and then save the file as test.txt. Save it into the
“javahard2” folder you just created.

Go back to the terminal window and issue the ls command to see the file you
just created.

 If you’re feeling fancy, you won’t have to use the mouse to switch back to
the terminal; you can just press Alt + Tab on Windows or Linux or press
Command + Tab on a Mac to switch applications.

 Press and hold the Alt key. Keep it pressed. Then press and release the Tab
key a single time. While still holding the Alt key, press Tab several more
times until your terminal window is selected, then let go of the Alt key to
make the switch.

 If you just quickly press Alt+Tab and let go of both keys right away, it
usually takes you back to the previous application. I do this a lot. When
I’m in the text editor I press Alt+Tab to get back to the terminal, then when
I’m done in the terminal I press Alt+Tab again to get back to my text editor.
It’s very fast once you get used to it.

You should read the “Warnings for Beginners” below, but otherwise you’re done
with the setup and you are ready to begin Exercise 01 on Linux! Nice job.

Warnings for Beginners

You are done with the first exercise. This exercise might have been quite
hard for you depending on your familiarity with your computer. If it was
difficult and you didn’t finish it, go back and take the time to read
and study and get through it. Programming requires careful reading and
attention to detail.

If a programmer tells you to use vim or emacs or Eclipse, just say
“no.” These editors are for when you are a better programmer. All you
need right now is an editor that lets you put text into a file. We will
use gedit, TextWrangler, or Notepad++ (from now on called “the text
editor” or “a text editor”) because it is simple and the same on all
computers. Professional programmers use these text editors so it’s good
enough for you starting out.

A programmer will eventually tell you to use Mac OS X or Linux. If the
programmer likes fonts and typography, he’ll tell you to get a Mac OS X
computer. If he likes control and has a huge beard, he’ll tell you
to install Linux. Again, use whatever computer you have right now that
works. All you need is an editor, a terminal, and the Java Development Kit.

Finally, the purpose of this setup is so you can do three things very
reliably while you work on the exercises:

 	Write exercises using your text editor (gedit on Linux, TextWrangler
on OSX, or Notepad++ on Windows).

 	Run the exercises you wrote.

 	Fix them when they are broken.

 	Repeat.

Anything else will only confuse you, so stick to the plan.

 Common Student Questions

 	Do I have to use this lame text editor? I want to use Eclipse!

 	
Do not use Eclipse. Although it is a nice program it is not
for beginners. It is bad for beginners in two ways:

 	It makes you do things that you don’t need to worry about right now.

 	It does things for you that you need to learn how to do for yourself first.

 So follow my instructions and use a decent text editor and a terminal
window. Once you have learned how to code you can use other tools if
you want, but not now.

 	Can I work through this book on my tablet? Or my Chromebook?

 	Unfortunately not. You can’t install the Java development kit (JDK)
on either of those machines. You must have some sort of traditional computer.

Exercise 1: Working With Objects

There’s no getting away from it, Java is an object-oriented language. In the
original “Learn Java the Hard Way”, I tried to avoid the object-oriented parts
of Java as much as possible, but some of them still snuck in!

In this chapter we will look at some common patterns Java uses when creating
and working with objects, and I’ll also have a brief reminder of how to
compile and execute Java programs from a command-prompt or terminal window.

Type in the following code into a single file called WorkingWithObjects.java
and put it into a folder you can get to from the terminal window.

If some of this is unfamiliar, don’t worry about it. We’re just going to
be looking at patterns, and the details aren’t that important in this
assignment. In particular, you might not have ever used ArrayList or
Random, and that’s perfectly fine.

If this code is extremely overwhelming, then you might have a problem. Maybe
you don’t know what an if statement is, or System.out.println, or you’ve
never used a for loop. In that case, this book is probably going to be too
difficult for you. You should go back and work through an easier book first and
then come back here once you’re quite comfortable with the basics of Java.

Anyway, type up the code below and then I’ll remind you how to compile it
from the terminal. Remember that you shouldn’t be using any IDE for these
exercises. Also remember not to type in the line numbers in front of each line;
those are just there to make it easier to talk about the code later.

 WorkingWithObjects.java

 1 import java.io.File;
 2 import java.util.ArrayList;
 3 import java.util.Random;
 4 import java.util.Scanner;
 5
 6 public class WorkingWithObjects {
 7 public static void main(String[] args) throws Exception {
 8 File f = new File("datafiles/phonetic-alphabet.txt");
 9
10 if (f.exists() == false) {
11 System.out.println(f.getName() + " not found in this folder. :(");
12 System.exit(1);
13 }
14
15 ArrayList<String> words = new ArrayList<String>();
16 Scanner alpha = new Scanner(f);
17
18 System.out.print("Reading words from \"" + f.getPath() + "\"... ");
19 while (alpha.hasNext()) {
20 String w = alpha.next();
21 words.add(w);
22 }
23 alpha.close();
24 System.out.print("done.\n\t");
25
26 Random rng = new Random();
27 rng.setSeed(12345);
28 // rng.setSeed(23213);
29
30 for (int n=0; n<3; n++) {
31 int i = rng.nextInt(words.size());
32 String s = words.get(i);
33 System.out.print(s.toLowerCase() + " ");
34 }
35 System.out.println();
36 }
37 }

Once you’ve got the code typed in I’m going to assume that you saved the
file WorkingWithObjects.java into a folder called javahard2. If you
saved it into a different folder, substitute the name below.

Open up a terminal window and change into the javahard2 folder:

 cd javahard2

ls

(If you’re stuck on a much older version of Windows that doesn’t have
Powershell, then you will have to type dir. Everybody else gets to type ls,
though.)

Hopefully you’ll see an output listing that includes:

 WorkingWithObjects.java

That means you’re in the right place. Then you’ll compile the file using the
Java compiler, which is called javac:

 javac WorkingWithObjects.java

If this command gives an error about javac itself, then you skipped
Exercise 0! Go back and make sure the JDK is installed and in the PATH,
then come back!

Assuming you have good attention to detail and did everything that I told you,
this command will take a second to run, and then the terminal will just display
the prompt again without showing anything else.

However, if you made a mistake, you will see some error. If you have any error
messages, fix them, then save your code, go back to the terminal and
compile again.

 If you make a change to the code in your text editor, you must save the
file before attempting to re-compile it. If you don’t save the changes, you
will still be compiling the old version of the code that was saved
previously, even if the code in your text editor is correct.

Eventually you should get it right and it will compile with no errors and no
message of any kind. Do a directory listing and you should see the bytecode
file has appeared in the folder next to your code:

 javac WorkingWithObjects.java

ls

 WorkingWithObjects.class

WorkingWithObjects.java

Now that we have successfully created a bytecode file we can run it (or
“execute” it) by running it through the Java Virtual Machine (JVM) program
called java:

 java WorkingWithObjects

What You Should See

Reading words from "datafiles/phonetic-alphabet.txt"... done.
	juliett uniform foxtrot

Okay, now that that is working, let’s talk about some of the patterns we
see in this exercise.

Line 1 imports a “library”. java.io.File contains the definition for a
object/class called File. Once we have imported it, we can create File
objects in our code and call methods defined inside those objects.

The next three lines import three more libraries, each defining an object. Some
programming languages call these imported things “modules” instead of
libraries. Same thing.

On line 8 we instantiate a File object and name it f. The File object is
passed a String parameter containing the name of a file to connect itself to.

 You should have been provided a folder called datafiles with several
files in it, including a text file named phonetic-alphabet.txt. Make sure
this folder is inside the folder where your Java file is located. Copy
or move the folder there if it isn’t already.

On line 9, we now have a File object named f that is somehow connected
to the text file on our computers.

On line 15 we created a second object. This is an ArrayList of Strings named
words, and instantiating it didn’t use any parameters.

On line 16, we create a third object. This one is a Scanner object, and it
uses the File object from before as its parameter.

Finally, on line 26 we instantiate our fourth object: a Random object. Notice
the pattern. If you want to instantiate an object called “Bob”, you’d write
code like this:

Bob b = new Bob();

Or maybe:

String s = "Robert";
Bob b = new Bob(s);

That’s pretty much how Java creates objects. The keyword new is always
involved, and the name of the class (twice) and some parens.

Now let’s look at method calls. A method is a chunk of code inside an object
that accomplishes a single purpose, and “calling” a method means asking the
object to execute the code in that method for you.

On line 10, we call a “method” named exists() that is contained inside the
File object f. This method will return a Boolean value (either true or
false) depending on whether or not that file exists. The code that figures
out how to do that is contained inside the library java.io.File that we
imported. Make sense?

Line 11 features another method in the File class: getName(). It returns
a String containing the name of the file associated with the object. If
you skip down to line 18 you can also see a method named getPath()
being called.

Line 19 calls the hasNext() method, which is in the Scanner class (our
Scanner object is named alpha. It returns true if there’s text in the
file we haven’t read yet.

The next() method reads a single String from the file and then on line 21
we call the add() method of ArrayLists to add that String to the list.

On line 23 we call the close() method, which closes the Scanner object so
that we can’t read from its file anymore.

Line 27 calls the setSeed() method of the Random class, and line 31 calls
the nextInt() method of the same class. Line 31 also calls the size()
method of ArrayLists, and line 32 calls get() to retrieve a single String
out of the list.

Finally line 33 calls a method named toLowerCase(), which is part of the
String class. Could you have figured that out if I hadn’t told you? I hope
so, because “toLowerCase()” looks like a method call, and the variable s
is a String.

Okay, so that’s enough for this exercise. The specific details of how this
program works aren’t important, but at this point you should have a good sense
of how you do the following in Java:

 	Import libraries containing classes or objects

 	Instantiate (or “create”) an object

 	Call methods on that object

Enough until next time.

 Study Drills

 After most of the exercises, I will list some additional tasks you should try
after typing up the code and getting it to compile and run. Some study drills
will be fairly simple and some will be more challenging, but you should
always give them a shot.

 	Computers are pretty bad at being “random”. They can only generate a
random sequence of values, but that sequence is typically based on a
“seed”. If you use the same seed, the sequence of random numbers will be
the same. (This is useful for debugging.) Change the seed on line 27 to
something else (maybe 23213 or whatever). Then run the program again and
confirm that although the output is different from before, it doesn’t
change when you run the program many times.
 Add a comment explaining what seed you picked and what the output was.

Exercise 2: Creating Your Own Single Objects

In the last chapter, we imported a few objects from Java’s “standard library”:
the collection of classes and methods that are pre-built by the creators of the
language.

In this chapter, we will create objects of our own, and each one will contain
a single method.

Type up the following code and get it to compile. Save it in your ‘javahard2’
folder with a name of OldMacDonald.java.

 OldMacDonald.java

 1 class Cow {
 2 public void moo() {
 3 System.out.println("Cow says moo.");
 4 }
 5 }
 6
 7 class Pig {
 8 public void oink() {
 9 System.out.println("Pig says oink.");
10 }
11 }
12
13 class Duck {
14 public void quack() {
15 System.out.println("Duck says quack.");
16 }
17 }
18
19 public class OldMacDonald {
20 public static void main(String[] args) {
21
22 Cow maudine = new Cow();
23 Cow pauline = new Cow();
24 maudine.moo();
25 pauline.moo();
26
27 Pig snowball = new Pig();
28 snowball.oink();
29 snowball.oink();
30
31 Duck ferdinand = new Duck();
32 ferdinand.quack();
33 }
34 }

What You Should See

 java OldMacDonald

Cow says moo.
Cow says moo.
Pig says oink.
Pig says oink.
Duck says quack.

Lines 1-5 define an object called Cow. The definition of the Cow class
includes the definition of a method called moo(). Note that on line 2 it
says “public void moo()”, not “public static void moo()”. Except for main(),
you won’t be using the keyword static very much anymore.

Lines 7 through 11 define a class named Pig, containing an oink() method.
And lines 13 through 17 define a class named Duck, which contains a
quack() method.

Lines 19 to 34 define the class that matches the name of the Java
file. Notice that in this file, the class OldMacDonald has the keyword
public in front, but none of the other classes do. In Java, each file
may only have one public class in it, and the name of that public class
has to match the name of the file.

This class contains the main() method in it, which is where the Java Virtual
Machine begins when executing a file. The OldMacDonald class is listed
after the other classes in the file, but it would work the same if the classes
were in a different order.

When we run this program, execution begins on the first line of the main()
method. Any other code in the file will only execute if it gets called from
inside main().

Lines 22 and 23 instantiate two Cow objects. Lines 24 and 25 call the moo()
method on behalf of each object. This causes execution to jump up to line 3,
run the println() statement inside the method, and return back down below.

On line 27 we create an instance of a Pig object and then call its oink()
method twice. And on line 31 we instantiate a Duck object and call its only
method on the next line.

Then on line 33 we hit the close curly brace of the main() method, which
typically means the end of the program.

Do you see? Defining your own objects isn’t so hard, and calling their methods
is pretty easy, too, once you’ve instantiated an object.

 Study Drills

 	Try moving the entire definition of the Duck class below the
OldMacDonald class. Does the code still compile and work? Answer in
 a comment.

 	Inside the main() method, instantiate another object and call its method.
(It doesn’t matter which of the three objects; just pick one.)

Exercise 3: Defining Objects in Separate Files

In the previous exercise, we defined three objects (actually four if you count
the one that had main() in it), but they were all implemented in the same file.
This is not typically how things are done. Usually Java puts the implementation
for each class into its own file, and then there’s another file that just
holds the main() method that instantiates the objects and makes them do their
thing. This class is often called the “driver” class, so usually I’ll put the
word “Driver” in the name of the file.

Type up the following code, and put each class into its own file, named as
shown. Save them all in the same folder.

 OldMacCow.java

1 public class OldMacCow {
2 public void moo() {
3 System.out.println("Cow still says moo.");
4 }
5 }

After you’ve typed in and saved OldMacCow.java, you should probably try to
compile it to make sure you haven’t made any mistakes before you move on.

 OldMacDuck.java

1 public class OldMacDuck {
2 public void quack() {
3 System.out.println("Duck still says quack.");
4 }
5 }

Did you accidentally try to run this file or the first one? Neither one
contains a main() method, and so executing it by itself won’t work.

 OldMacDriver.java

 1 public class OldMacDriver {
 2 public static void main(String[] args) {
 3 OldMacCow maudine = new OldMacCow();
 4 OldMacCow pauline = new OldMacCow();
 5 maudine.moo();
 6 pauline.moo();
 7
 8 OldMacDuck ferdinand = new OldMacDuck();
 9 ferdinand.quack();
10 }
11 }

Ah, there’s the main() method. Once done you can compile these a few ways.

 javac OldMacCow.java

javac OldMacDuck.java

javac OldMacDriver.java

You can compile them one at a time. That works just fine.

 javac OldMacCow.java OldMacDuck.java OldMacDriver.java

Although you have probably only used the Java compiler on one file at a time,
it will happily compile as many files as you give it, in order from left to
right.

If there’s an error, though, you’ll have to pay attention to the filename
in the error message. For example:

 OldMacCow.java:2: error: illegal start of type

This error message is on line 2 in the file OldMacCow.java, whereas the next
mistake is on line 6 or earlier in the file OldMacDuck.java for this error
message:

 OldMacDuck.java:6: error: reached end of file while parsing

So just watch for that.

 javac OldMac*.java

If the filenames you’re trying to compile are similar, you can compile them
all at once with something like this. The star/asterisk gets expanded by your
terminal into all filenames in the current folder that begin with OldMac
and which end in .java. (This includes the file OldMacDonald.java from the
previous exercise. Which is fine, compiling doesn’t “combine” the files in any
way, it just converts each file one at a time into its own bytecode (.class)
file.)

 javac OldMacDriver.java

So, what magic is going on here? Only one file name? Well, what happens
is that javac starts compiling OldMacDriver.java. On line 3 we refer to
an object called OldMacCow. There’s no object called that defined in
this file. And there are no import statements to import a class called
that, either.

So the Java compiler goes hunting. It knows it needs an object called
OldMacCow, which would be implemented in a bytecode file named
OldMacCow.class. If this file exists in the current folder, then it pulls the
definitions from this bytecode file automatically! (This is a big deal for
C++ programmers.)

And if there’s no bytecode file in the current folder, it then looks for a
source code file called OldMacCow.java that it can compile to create
that bytecode file. If such a file is in the current folder, it’ll just
automatically compile it for you.

It does this for any objects referenced in the file you’re compiling. If
it can resolve all the dependencies itself, it’ll do so. If not, it’ll
throw a compiler error about the undefined symbol it couldn’t find.

So, to sum up, from here until the end of the book you should probably
compile each file as you finish it to make sure there aren’t any
mistakes. But if you’re lazy or just confident, it is usually okay to
just compile the one file containing the main(), and let the compiler find
the rest of the files for you.

What You Should See

As you might suspect, when executing the bytecode, you only need to run the
file containing the main() method.

 java OldMacDriver

Cow still says moo.
Cow still says moo.
Duck still says quack.

You’ll notice that the process of actually instantiating the objects or
calling their methods isn’t any different. (See lines 3 through 9 in the driver
file.) You just make an instance of an object, then call its method, just like
before.

Hopefully this process of doing one program that is broken up into multiple
files makes sense. Because that’s what we will be doing from here on out
in the rest of the book!

(I’m not trying to be difficult; that’s just how object-oriented programming
works. Code is broken up into classes/objects each in their own file and
those objects are combined to make a working program. I’ll talk more about
the reasons behind this in the chapters to come.)

 Study Drills

 	Edit the message in the moo() method inside OldMacCow. Save the file
with the changes but do not compile it! Then edit the message in the
quack() method inside OldMacDuck(). Save the file but don’t compile it
either. Then confirm that the single command javac OldMacDriver.java
will compile all three files. Answer in a comment in the driver file
how things worked out.

Exercise 4: Fields in an Object

So far we have only looked at methods inside of objects. But most objects have
variables inside them, too, called “fields” (or sometimes “instance variables”).

This program will illustrate accessing fields in an object.

Type up this code and save it in its own file, named as indicated.

 TVActor.java

1 public class TVActor {
2 String name;
3 String role;
4 }

Then type up this one and save it in the same folder as the first file.

 TVActorDriver.java

 1 public class TVActorDriver {
 2 public static void main(String[] args) {
 3 TVActor a = new TVActor();
 4 a.name = "Thomas Middleditch";
 5 a.role = "Richard Hendricks";
 6
 7 TVActor b = new TVActor();
 8 b.name = "Martin Starr";
 9 b.role = "Bertram Gilfoyle";
10
11 TVActor c = new TVActor();
12 c.name = "Kumail Nanjiani";
13 c.role = "Dinesh Chugtai";
14
15 System.out.println(a.name + " played " + a.role);
16 System.out.println(b.name + " played " + b.role);
17 System.out.println(c.name + " played " + c.role);
18 }
19 }

Remember that you only need to compile the one file containing the main()
method, though it is a good idea to test compiling each file as you finish it
to make sure it’s correct before moving on.

What You Should See

 javac TVActorDriver.java

java TVActorDriver

Thomas Middleditch played Richard Hendricks
Martin Starr played Bertram Gilfoyle
Kumail Nanjiani played Dinesh Chugtai

So the class TVActor contains two instance variables, and they are both
Strings. The first variable is called name and the second is called role.

They are called “instance” variables because each instance (copy) of the
object gets its own copies of the variables.

That is, just after line 11 is over, there are three instances of the TVActor
class created. public class TVActor makes a pattern or recipe or blueprint
of sorts, and then line 3 actually sews together the clothing or cooks the
recipe or builds the structure when it instantiates the object.

And so the instance named a has a copy of the name variable and a copy of
the role variable. We can put values into a’s copies of these variables as
shown on lines 4 and 5, though we’ll see later in the book that this is
considered bad style.

Line 7 creates a second instance of the class, with its own copies of the
instance variables.

And line 11 creates a third instance of the class, which also has its own
copies of the variables. So by line 14, there are at least nine objects floating
around in memory: three TVActor objects and six String objects (two per
TVActor).

 Study Drills

 	Add a third instance variable to the TVActor class, either a String, an
int, or a double. Name it something suitable, then add code to the driver
class to put values for each instance of the TVActor object.
 Also add code to print out the new field.

Exercise 5: Programming Paradigms

Before I get too far into the weeds of object-oriented programming (OOP), it
might be useful to see the difference between OOP-style code and doing the
same program in other programming paradigms.

I created a short program that does four things:

 	Allow the human to enter a message.

 	Reverse the order of the characters in the message.

 	“Camel-case” each word. That is, convert “Hello how are you” to “HelloHowAreYou”.

 	Display the result.

First, here’s the program using as much of a simple, monolithic style as
Java will allow. You don’t have to type this program in unless you really
want to.

 StringFunMonolith.java

 1 import java.util.Scanner;
 2
 3 public class StringFunMonolith {
 4 public static void main(String[] args) {
 5 Scanner keyboard = new Scanner(System.in);
 6
 7 // input it
 8 System.out.print("Enter a message: ");
 9 String msg = keyboard.nextLine();
10
11 // reverse it
12 String rev = "";
13 for (int i=msg.length()-1; i>=0; i--)
14 rev += msg.substring(i,i+1);
15
16 // camel-case it
17 String lower = rev.toLowerCase();
18 String[] words = lower.split(" ");
19 String result = "";
20 for (String w : words)
21 result += w.substring(0,1).toUpperCase() + w.substring(1);
22
23 // display it
24 System.out.println(result);
25 }
26 }

What You Should See

Enter a message: Hello how are you
UoyEraWohOlleh

So, lines 8-9 input the message, lines 12-14 reverse it, lines 17-21 camel-case
it, and line 24 displays it. Don’t worry too much if you don’t understand the
details of the camel-case part.

Next, I have coded the same program in a “functional” style. Functional style
uses only functions with a few inputs and only one output each. The functions
don’t share information with each other except through their inputs and outputs.

Again, there’s no sense typing up this version unless you want the practice.
(It does work, though.)

 StringFunFunctional.java

 1 import java.util.Scanner;
 2
 3 public class StringFunFunctional {
 4 public static void main(String[] args) {
 5 Scanner keyboard = new Scanner(System.in);
 6
 7 // input it
 8 System.out.print("Enter a message: ");
 9 String msg = keyboard.nextLine();
10
11 // reverse it
12 msg = reverse(msg);
13
14 // camel-case it
15 msg = camelCase(msg);
16
17 // display it
18 System.out.println(msg);
19 }
20
21 public static String reverse(String s) {
22 String rev = "";
23 for (int i=s.length()-1; i>=0; i--)
24 rev += s.substring(i,i+1);
25
26 return rev;
27 }
28
29 public static String camelCase(String s) {
30 String[] words = s.toLowerCase().split(" ");
31 String result = "";
32 for (String w : words)
33 result += w.substring(0,1).toUpperCase() + w.substring(1);
34
35 return result;
36 }
37 }

Lines 1-9 are the same as the previous version, because it’s kind of hard to
get input from the human in Java any other way.

But you can see on line 12, the message (in the variable msg) is passed in to
a function called reverse, and the result is put back into msg, overwriting
the previous value. This is a bit more understandable.

And lines 21-27 are the reverse() function itself. It’s the same code as
lines 12-14 of the previous assignment, but there’s a little extra setup to
name the function and name the parameter and also an extra line to “return” the
final result. Notice, though, that we get to call the input s instead of
having to care that it’s really called msg elsewhere. It’s a bit nice to be
able to call that variable whatever we want without caring what happens in
other parts of the program.

Line 15 is the camelCase function call, and lines 29 through 36 are the
function definition. Notice that on line 29 we were free to call the parameter
s without caring about other parts of the program.

Is the variable in main() really called s?

Doesn’t matter.

Is some other function already using a variable called s?

Doesn’t matter.

What variable is the return value going into?

It doesn’t matter. We can call it result or rev or whatever suits us.

Another nice thing about a functional style of programming is that since
each function receives an input and returns an output, functions can be
chained very compactly.

Here is the same functional version, but with the functions all nested inside
each other.

 StringFunFunctionalShort.java

 1 import java.util.Scanner;
 2
 3 public class StringFunFunctionalShort {
 4 public static void main(String[] args) {
 5 Scanner keyboard = new Scanner(System.in);
 6
 7 System.out.print("Enter a message: ");
 8 System.out.println(camelCase(reverse(keyboard.nextLine())));
 9 }
10
11 public static String reverse(String s) {
12 String rev = "";
13 for (int i=s.length()-1; i>=0; i--)
14 rev += s.substring(i,i+1);
15
16 return rev;
17 }
18
19 public static String camelCase(String s) {
20 String[] words = s.toLowerCase().split(" ");
21 String result = "";
22 for (String w : words)
23 result += w.substring(0,1).toUpperCase() + w.substring(1);
24
25 return result;
26 }
27 }

You read line 8 from the inside out. The inner-most thing happens first:
keyboard.nextLine() is called. Once it’s done, it returns a String, which
we pass immediately to reverse(), then camelCase(), then println().

Some programs are more difficult in a functional style, but when it works
it’s really nice and clean-looking.

 By the way, formulas in a spreadsheet program like Microsoft’s Excel,
Apple’s Numbers or LibreOffice’s Calc are programmed in a functional
style. This is a tricky way to code, as you know if you’ve ever struggled
to get one right!

 Graphics-processing shaders (like in OpenGL or Direct3D) are usually
written in a functional style, too, and that makes them well-suited for
parallel processing.

Okay, finally let’s do this same little program in an object-oriented style.
We’ll use two files as usual: one containing our class/object, and one with
the driver. These are the ones you should type in.

 StringFunObject.java

 1 public class StringFunObject {
 2
 3 String message;
 4
 5 public void setMessage(String s) {
 6 message = s;
 7 }
 8
 9 public String getMessage() {
10 return message;
11 }
12
13 public void reverse() {
14 String rev = "";
15 for (int i=message.length()-1; i>=0; i--)
16 rev += message.substring(i,i+1);
17
18 message = rev;
19 }
20
21 public void camelCase() {
22 String[] words = message.toLowerCase().split(" ");
23 String result = "";
24 for (String w : words)
25 result += w.substring(0,1).toUpperCase() + w.substring(1);
26
27 message = result;
28 }
29 }

There’s something new in this one. On line 3 there’s an instance variable /
field, just like you learned about in the previous exercise.

Notice that on line 6, there’s a method that stores a copy of the parameter s
into a variable named message. Where is this message declared? It’s the
field. We’ll look more at this in later chapters, so don’t worry too much about
it for now.

Just remember for this code, any time that “message” is referenced, it’s the
instance variable. All the other variables are “local”, which means they only
exist inside the method in which they are defined.

So, here’s the code for the driver. Type this one in, too.

 StringFunOODriver.java

 1 import java.util.Scanner;
 2
 3 public class StringFunOODriver {
 4 public static void main(String[] args) {
 5 Scanner keyboard = new Scanner(System.in);
 6
 7 // input it
 8 System.out.print("Enter a message: ");
 9 String msg = keyboard.nextLine();
10
11 StringFunObject sfo = new StringFunObject();
12 sfo.setMessage(msg);
13 sfo.reverse();
14 sfo.camelCase();
15
16 // display it
17 System.out.println(sfo.getMessage());
18 }
19 }

What You Should See (Reminder)

Enter a message: Hello how are you
UoyEraWohOlleh

(There’s the output again so you don’t have to scroll up for it.)

This is very typical object-oriented code. Line 11 declares and instantiates
an object. Line 12 calls the setMessage() method of that object, and passes
the message into it as a parameter. Then the next few changes happen inside
the object: the message gets reversed, then the message gets camel-cased.

Finally on line 17 of the driver we call the getMessage() method of the
object, and it returns to us the modified String for printing.

Maybe you don’t like the object-oriented style. Maybe you think the monolithic
version is better, or maybe the functional version.

You know what? I agree with you. Object-oriented programming isn’t a very good
fit for a tiny program like this. OOP works best when the programs are large
and complicated (like 10,000 lines of code or more).

Whenever I write a program to help me automate something annoying, I almost
never code it in an object-oriented style if it’s going to be only 500 lines
of code or less.

I write it in a monolithic style if it’s just going to be 10-50 lines long.
I use functions when it’s 50-500 lines long, and I start out object-oriented
if it’s going to be much bigger than that.

Unfortunately the rest of this book is going to be a little weird. I’m going
to use the object-oriented style even for tiny 20-line programs. It’ll be gross.
You might not like it. You might think “This program would be so much simpler
if he would just….”

But I can’t teach you object-oriented programming using only nice huge 1,000
line perfect examples where OOP makes sense. (Well, I could, but this book
would be about 800 pages longer and I wouldn’t have finished writing it yet!)
Instead I have to teach you OOP using small silly example programs where the
OOP feels weird and forced but the programs are small enough to understand.

Once you’re done with this book, you’re free to code for the rest of your life
in a non-object-oriented way. But, if someone dumps a 20,000 (or two-million!)
line program on you that uses OOP just to have any hope of preventing bugs,
then you’ll have the tools to make sense of it.

Deal?

 Study Drills

 	Using the reverse() method as a guide, add a method to the object-oriented
version to remove half of the letters from the message. (It can be the
first half, the last half, every other letter or whatever scheme you
like.) Then add a call for that method to the driver.

Exercise 6: Accessing Fields in Methods

In this exercise, we are going to look in closer detail at the concept of an
object having fields and methods that access those variables. This was
introduced in the OOP-version of the previous exercise.

Here is the source code for the object, which will take a phrase and a number
and produce a String with the specified number of copies of that message.

 PhraseRepeater.java

 1 public class PhraseRepeater {
 2
 3 String phrase;
 4 int repeats;
 5
 6 public void setValues(String p, int r) {
 7 phrase = p;
 8 repeats = r;
 9 }
10
11 public String getRepeatedPhrase() {
12 String result = "";
13 for (int i=0; i<repeats; i++)
14 result += phrase;
15 return result;
16 }
17 }

This class has two fields / instance variables, a String named phrase and
an int named repeats. Remember that if we were to instantiate several
versions of this object in a driver, each instance of the object would have its
own copies of both fields.

 “Instance variables” are variables defined in a class but outside of any
method. A “field” is just a generic name for a member of a class. They mean
pretty much the same thing, so I will use them interchangably in this book.

In case you didn’t remember it from the previous exercise, these instance
variables belong to the whole class, so all the methods in the object can
access them.

Lines 6-9 implement a method called setValues(). This method receives two
values from the outside world, a String we’re going to call p and an
integer we will call r.

On line 7 we store a copy of p’s value into our instance variable phrase,
and on the next line we store a copy of r’s value into repeats.
After line 9, the parameter variables p and r go away; those names don’t
have any meaning outside of this method. This method is void, so it doesn’t
return any value to the outside world.

Lines 11 through 16 have the implementation of a method called
getRepeatedPhrase(), which builds up and then returns a copy of the value of
a String.

On line 12 we start with a new String result, which is initialized to “the
empty String” (that’s what we call a String value with no characters in it).

Line 13 sets up a for loop that will execute its body repeats-many times.
That is, if repeats has a 4 in it, the loop will run through four times.
There are no curly braces in this loop, so the body of the loop is just a
single line: result += phrase;, which adds a copy of the value of phrase to
the end of whatever is already in result.

After the loop finishes, result now has several copies of the phrase in it.
Notice that just like the previous method, this method was able to access
the fields.

Finally, on line 15, a copy of the String in the local variable result is
returned to the outside world. This method returns a String, which is why the
first line of the method says public String getRepeatedPhrase() instead of
public void getRepeatedPhrase().

(Note that the method does not return the variable result itself; it merely
returns a copy of the value that was in that variable.)

Okay, here’s the driver code:

 PhraseRepeaterDriver.java

 1 import java.util.Scanner;
 2
 3 public class PhraseRepeaterDriver {
 4 public static void main(String[] args) {
 5 Scanner keyboard = new Scanner(System.in);
 6
 7 System.out.print("Enter a message: ");
 8 String msg = keyboard.nextLine();
 9 System.out.print("Number of times: ");
10 int n = keyboard.nextInt();
11
12 PhraseRepeater pr = new PhraseRepeater();
13 pr.setValues(msg, n);
14 System.out.println(pr.getRepeatedPhrase());
15 }
16 }

What You Should See

Enter a message: Boots and cats.
Number of times: 4
Boots and cats.Boots and cats.Boots and cats.Boots and cats.

The first ten lines of the driver are pretty straightforward if you’ve been
coding in Java for a bit: they allow the human to enter in some values which
get stored into local variables msg and n.

Then on line 12 we instantiate a single copy of the PhraseRepeater object
and store a reference to it in the variable pr.

Then on line 13 we call that object’s setValues() method, passing in copies
of our local variables. The driver does not know that the instance variables
inside the object are named phrase and repeats. The driver does not care
what they are named.

The driver does not know that the parameters to the setValues() method will
be called p and r. It makes no difference to the driver. Only the object
cares what those variables are called.

This sort of not-caring is one of the reasons that object-oriented programming
makes it easier to write very large complicated programs and debug them.

Anyway, the last useful line of the driver program is line 14, which calls
the getRepeatedPhrase() method. That method returns a String, and the String
that gets returned is fed to println() for… printing.

Notice that the setValues() method changes something inside the object.
The fields in that object are different after the method call. Thus methods
that change the internal state of an object in some way are often called
“modifier methods” or “mutator methods”.

On the other hand, the getRepeatedPhrase() method does not change anything
about the internals of the object; both instance variables are used but they
are not modified. But the method does return a value that lets you know
something about the internal state of the object. Methods like this are often
called “accessor methods” because they allow the driver to access the fields in
some way.

 Study Drills

 	On line 13 of the driver, change the order of the parameters in the
method call. Does it compile? What happens and why? (Answer in a comment.)

Exercise 7: Encapsulation and Automated Testing

The OOP part of this exercise isn’t any more difficult than the last exercise.
Two fields are changed by a mutator method and accessed (but not changed) by an
accessor method.

But in the driver… oh, you’ll see.

 SquareRootFinder.java

 1 public class SquareRootFinder {
 2
 3 double n;
 4 int iterations;
 5
 6 public void setNumber(double number) {
 7 n = number;
 8 iterations = 7;
 9 if (n < 10)
10 iterations++;
11 }
12
13 public double getRoot() {
14 if (n < 0) return Double.NaN;
15 if (n == 0) return 0;
16 double x = n/4;
17 for (int i=0; i<iterations; i++) {
18 x = (x+(n/x))/2.0;
19 }
20 return x;
21 }
22 }

So, there’s nothing new to see here. The SquareRootFinder class has two
instance variables (n and iterations). The setNumber() method allows the
user of the class to pass in a value that will be copied into the field n.

I guess I should mention that NaN stands for “not a number”. It’s a special
value that you sometimes get in Java when you try to do something undefined
like divide zero by zero or take the square root of a negative.

Then the getRoot() method does some complicated calculations to compute an
estimate of the square root of that number. Does it work? Yes. How does it
work? That’s the thing about programming. Sometimes you won’t know.

Go ahead and type in the driver code, then we’ll continue this thought.

 SquareRootDriver.java

 1 import java.util.Scanner;
 2
 3 public class SquareRootDriver {
 4 public static void main(String[] args) {
 5 Scanner keyboard = new Scanner(System.in);
 6 double n;
 7
 8 SquareRootFinder sqrt = new SquareRootFinder();
 9
10 do {
11 System.out.print("Enter a number (or <=0 to quit): ");
12 n = keyboard.nextDouble();
13
14 if (n > 0) {
15 sqrt.setNumber(n);
16 System.out.println(sqrt.getRoot());
17 }
18 } while (n > 0);
19 }
20 }

What You Should See

Enter a number (or <=0 to quit): 7
2.6457513110645907
Enter a number (or <=0 to quit): 81
9.0
Enter a number (or <=0 to quit): -99

I know that the square root of 4 is 2. (2.0 when it’s a double.) I know
that the square root of 2 is 1.414-something. I check it on my calculator on
my phone and it gives me “1.4142135624”, which fits with what the driver gives
me. I can type in a couple of other numbers and check them by hand and then
say “uh, close enough”, but how do I know?

Why does the getRoot() method start out x with n/4? Why is iterations set
to 7 inside setNumber()? Why not 5 or 6 or 70? Why don’t we let the user of
the class pass in a value for iterations like we do for n?

The answer to all these questions is that sometimes “the user of the class”
isn’t the same person as “the creator of the class” and sometimes the user
doesn’t have the training and has better things to do or would probably mess
these decisions up anyway.

For most programming tasks, there is more than one person involved. It is often
better to let a single person say “here is an object, you use it in this way:
put in a number here and the answer will come out here.” This is a form of
information hiding called “encapsulation”, and it is one of the important
concepts in object-oriented programming.

In encapsulation, an object has fields and forces the user of the object to use
the methods provided instead of messing with the variables directly. In this
example, SquareRootFinder allows the user of the class to pass in a value for
n through the setNumber() method but does not allow them to pass in a
value for iterations.

Make sense?

Okay, so how does the person who created the class know what value for
iterations is “right”? I tested it. Like, a lot. Like, not just “type in a
few numbers on the calculator and compare”, but like so:

 SquareRootTester.java

 1 public class SquareRootTester {
 2 public static void main(String[] args) {
 3
 4 SquareRootFinder sqrt = new SquareRootFinder();
 5
 6 double max = 0, maxN = 0;
 7 double fakeroot, realroot, diff;
 8
 9 System.out.print("Testing square root algorithm... ");
10 for (double n = 0; n<=2000; n += 0.01) {
11 sqrt.setNumber(n);
12 fakeroot = sqrt.getRoot();
13 realroot = Math.sqrt(n);
14 diff = Math.abs(fakeroot - realroot);
15 if (diff > max) {
16 max = diff;
17 maxN = n;
18 }
19 }
20
21 if (max > 0.000001) {
22 System.out.println("FAIL");
23 System.out.println("Worst difference was " + max + " for " + maxN);
24 }
25 else
26 System.out.println("PASS");
27 }
28 }

What You Would See If You Ran the Tester

Testing square root algorithm... PASS

In my tester program, I compare the output of the getRoot() method with
the “real” square root as computed by Java’s built-in Math.sqrt(). I test
every number from 0 to 2000, in increments of 0.01. For each number, I find
the absolute difference between “my” square root and the “real” square root,
and if the worst difference is more than 0.000001, then I throw an error.

Running this program over and over allowed me to test out different things.
The variable x is my initial estimate of the square root; I had initially
set x to n, but that starts to get too inaccurate as n gets bigger.
Starting x at n/2 is better, but then very small values of n get
inaccurate.

The best compromise I found was to start with a guess of n/4, which gets
me close enough within seven iterations for every number in the range.
Except for values of n between 0 and 1 (where [image: \sqrt{n} > n]).
I eventually gave up and just decided to give small numbers one extra
iteration to compensate for my poor initial estimate in those cases.

Often (for well-designed / well-managed software, anyway) the person who
creates a class or someone else on the team will design a “test suite”
for that class. For example, SQLite (a database that can be embedded
into other software) is famous for being very well tested. Quoting from
“How SQLite Is Tested”:

 The reliability and robustness of SQLite is achieved in part by thorough
and careful testing.

 As of version 3.8.10, the SQLite library consists of approximately 94.2
KSLOC of C code. (KSLOC means thousands of “Source Lines Of Code” or,
in other words, lines of code excluding blank lines and comments.) By
comparison, the project has 971 times as much test code and test scripts -
91515.5 KSLOC.

Whenever they fix bugs or make improvements, the maintainers of SQLite run
the full test suite to make sure they didn’t accidentally break anything else!
This is a good idea, and the kind of modular design that OOP forces on you
makes testing like this possible.

 Study Drills

 	In the tester, instead of the computing the maximum error in the range,
compute the total error (the sum of all the errors). What is the sum?
How does it change when the number of iterations is increased to 8?
Answer in a comment.

Exercise 8: Failure to Encapsulate

In the previous exercise, we looked at extreme testing, and how encapsulation
makes that possible. In this one, we’ll see some of the tradeoffs that can be
made with fields and methods.

 SphereCalc.java

 1 public class SphereCalc {
 2 double radius;
 3
 4 public void setRadius(double r) {
 5 radius = r;
 6 }
 7
 8 public double getRadius() {
 9 return radius;
10 }
11
12 public double getSurfaceArea() {
13 return 4*Math.PI*radius*radius;
14 }
15
16 public double getVolume() {
17 return 4*Math.PI*Math.pow(radius,3) / 3.0;
18 }
19 }

This object is very similar to the ones in the last couple of exercises. A
single instance variable this time, one mutator method (setRadius())
and three accessor methods. (The surface area of a sphere is
[image: 4 \pi r^2], and the volume of a sphere is
[image: \frac{4}{3} \pi r^3].)

 SphereCalcTester.java

 1 public class SphereCalcTester {
 2 public static void main(String[] args) {
 3
 4 SphereCalc c = new SphereCalc();
 5
 6 c.setRadius(5);
 7 if (isNear(c.getSurfaceArea(), 314.159265359))
 8 System.out.println("PASS: surfaceArea for " + c.getRadius());
 9 else
10 System.out.println("FAIL: surfaceArea not what was expected!");
11 if (isNear(c.getVolume(), 523.598775598))
12 System.out.println("PASS: volume for " + c.getRadius());
13 else
14 System.out.println("FAIL: volume not what was expected!");
15
16 c.setRadius(0.1);
17 if (isNear(c.getSurfaceArea(), 0.125663706))
18 System.out.println("PASS: surfaceArea for " + c.getRadius());
19 else
20 System.out.println("FAIL: surfaceArea not what was expected!");
21 if (isNear(c.getVolume(), 4.18879E-3))
22 System.out.println("PASS: volume for " + c.getRadius());
23 else
24 System.out.println("FAIL: volume not what was expected!");
25
26
27 }
28
29 public static boolean isNear(double a, double b) {
30 return Math.abs(a-b) < 1E-9;
31 }
32 }

What You Should See

PASS: surfaceArea for 5.0
PASS: volume for 5.0
PASS: surfaceArea for 0.1
PASS: volume for 0.1

This is clearly a tester and not just a simple driver program; I have tests
that are passing or failing. Writing this was pretty annoying, but I wanted to
show you the idea without making it too crazy, so I had to use my calculator
with a couple of test cases to see what they ought to be. In a future exercise
we’ll see a much better way to do a lot of tests like this without repeating
so much code, but it’s too complicated for now.

Line 4 instantiates a SphereCalc object, then line 6 sets its radius to 5.

Starting down on line 29, there’s a little helper function I wrote. It receives
two doubles and returns true if the absolute value of their difference is
very small (smaller than [image: 1.0 \times 10^{-9}]). It’s best to avoid using
just == on two floating-point values since sometimes repeating decimals or
slight differences in rounding will make two values that ought to be the same
slightly different.

(Instead of isNear() I probably could have called the function
isVeryCloseToEqual() but I didn’t feel like typing that more than once.)

So lines 7 through 14 just call the methods from SphereCalc and make sure
they return numbers close enough to the expected values. If so, we print out
“PASS” and if not we print out “FAIL” and a little bit of detail. Normally
you’d want to print out more information with the failure (like which radius
failed and what the expected value was and what you got instead), but I didn’t
want to clutter up the code.

Oh, and in case you’ve never seen it before, an E inside a floating-point
number means “times ten to the”. On line 21, 4.18879E-3 means
[image: 4.18879 \times 10^{-3}]) A.K.A. 0.00418879.

Okay, so now let’s look at an slightly different way of splitting up the
work in the SphereCalc object. (You’ll need to type this one in, too,
if you’re going to do the Study Drill.)

 SphereCalc2.java

 1 public class SphereCalc2 {
 2 double radius, area, volume;
 3
 4 public void setRadius(double r) {
 5 radius = r;
 6 area = 4*Math.PI*r*r;
 7 volume = 4*Math.PI*Math.pow(r,3) / 3.0;
 8 }
 9
10 public double getRadius() {
11 return radius;
12 }
13
14 public double getSurfaceArea() {
15 return area;
16 }
17
18 public double getVolume() {
19 return volume;
20 }
21 }

SphereCalc2 has three fields instead of just one. And inside the
setRadius() mutator method, it doesn’t just set the radius, it also goes
ahead and computes the surface area and volume, too.

There’s a trade-off here. Each instance of a SphereCalc2 object would take up
slightly more memory than each SphereCalc object, because of the extra
fields, and creating a instance of a SphereCalc2 object would take slightly
longer than instantiating a SphereCalc object because it does more
calculations up front.

However, if you had a SphereCalc object and you called getVolume()
over and over again in a loop or something, it would have to do that
calculation over and over. Whereas a SphereCalc2 object has already done
the calculation and just gets to return that single value over and over.

Which approach is better? You’d have to run tests and see how your object
is being used to find out.

SphereCalc2 has one serious problem, however. Well, it’s more like a
vulnerability than a problem. When someone is using a SphereCalc2 object
and they want to change the radius, we expect them to use the provided
setRadius() method. We hope that’s what they will do.

But as you might recall from TVActorDriver.java way back in Exercise 4,
a driver class can access instance variables directly. At least, the way
we’ve been writing them up to this point.

What’s to prevent someone from writing code like this?

SphereCalc2 sph = new SphereCalc2();
sph.setRadius(5);
sph.radius = 7; // OH NOES!
System.out.println(sph.getVolume());

Now, it probably wouldn’t look so evil. It might be like on line 16 on the
tester. Instead of writing:

c.setRadius(0.1); // <-- why write this...
c.radius = 0.1; // <-- when it's SO much easier to write this?

It’s more efficient, right? Who wants to call a method when you can just
put a value in a variable?!? Not this guy!

Anyway, hopefully that illustrates the “problem”. For the solution, you’ll have
to come back in the next exercise.

 Study Drills

 	Modify the tester to use SphereCalc2 objects instead of SphereCalc
objects, then add code to change the radius variable directly
instead of calling setRadius(). Confirm the tests now fail even
though the radius is right. (This is bad.)

Exercise 9: Private Fields and Constructors

Assuming you did the last exercise, you have seen that some classes won’t work
properly if you change their fields directly instead of going through their
methods. In this exercise, you’ll learn how to put a stop to that.

You’ll also learn about something that’ll make it easier for others to use
your classes and make it safer, too.

 SphereCalc3.java

 1 public class SphereCalc3 {
 2 private double radius, area, volume;
 3
 4 public void setRadius(double r) {
 5 radius = r;
 6 area = 4*Math.PI*r*r;
 7 volume = 4*Math.PI*Math.pow(r,3) / 3.0;
 8 }
 9
10 public double getRadius() { return radius; }
11 public double getSurfaceArea() { return area; }
12 public double getVolume() { return volume; }
13 }

This is basically SphereCalc2, just shrunk down. When all you’re doing
in a method is returning the value of a single variable, Java programmers
often write the “getter” methods all on one line like I did in lines 10-12.

So the only interesting change is at the beginning of line 2: the keyword
private.

You’ve been making things public since your first Java program ever thanks
to “public static void main”, so maybe you suspected.

Instance variables are typically made private. Almost always, as a matter
of fact. (You can designate methods as private instead of public, too, but
we won’t see an example of that for a while.)

Private means “DON’T TOUCH!” Any private variable can’t be accessed in any
way outside of the class where it is defined.

Inside the class, private variables work just like the fields we have been
using; any method inside the class is free to change or access private
variables just the same.

 “Public” and “private” are called “access level modifiers” in Java. When you
leave them out (like we’ve been doing with our fields since exercise 4) the
default access is called “package-private”, which means that they’re
accessible to anything inside the same “package”. All the classes we’ve
written so far are all inside the same package, but we won’t do anything
about that until close to the end of the book.

 So for our purposes, “public” variables and variables with no package
modifier are equivalent: they can be accessed or changed from outside their
class. And that’s a bad thing.

Java programmers are typically pretty strict about making fields private. In
fact, on the Advanced Placement Computer Science exam, failing to mark an
instance variable as private is so serious that it can cost you more than 10%
of your score on a question, even if every other part of your solution is
perfect!

Anyway, back to the main point. Now that the fields are private, code that uses
the SphereCalc3 class has no choice; they can only change the radius
through the setRadius() method. Attempts to do it directly won’t even
compile.

SphereCalc3 sph = new SphereCalc3();
sph.radius = 7; // <-- This won't even compile.
sph.setRadius(7); // This works just fine, of course.
System.out.println(sph.radius); // still won't compile

As you can see, this applies even if you’re not trying to change the instance
variable. private doesn’t just prevent modifying the field, it prevents
accessing it, too. That’s why you have to write public “getter” methods for
every variable you want accessible.

Some programming languages (like C#) have a slightly different way of
dealing with this problem; you can mark variables as read-only so they
can’t be changed from outside the class (only through methods) but they
can still be read. Other languages have a way of making it look like
you’re accessing a variable directly, but they’re really secretly running
a method to set or read the variable.

In Java, however, private fields with setters and getters are the only good
solution.

Now, one more potential problem before we move on. It is a little bit annoying
to have to always remember to call the setter method before doing anything
else. Look at some examples from the past several exercises:

SphereCalc sph = new SphereCalc();
sph.setRadius(5);
// now it's safe to use the other methods in SphereCalc
//
SquareRootFinder srf = new SquareRootFinder();
srf.setNumber(n);
// now it's safe to use the other methods in SquareRootFinder
//
PhraseRepeater pr = new PhraseRepeater();
pr.setValues(msg, n);
// now it's safe to use the other methods in PhraseRepeater
//
StringFunObject sfo = new StringFunObject();
sfo.setMessage(msg);
// now it's safe to use the other methods in StringFunObject

Not only is this annoying, it’s not safe. I won’t make you do it in
the Study Drills, but if you accidentally forgot to call setNumber()
or setValues() the driver would still compile, but it wouldn’t work
properly. And as much as I hate compile-time errors, I hate it a lot
more when I have code that compiles but doesn’t work.

Fortunately, there’s a solution! A special sort-of setter method called
a “constructor”. Here’s an example.

 SphereCalc4.java

 1 public class SphereCalc4 {
 2 private double radius, area, volume;
 3
 4 public SphereCalc4(double r) {
 5 radius = r;
 6 area = 4*Math.PI*r*r;
 7 volume = 4*Math.PI*Math.pow(r,3) / 3.0;
 8 }
 9
10 public void setRadius(double r) {
11 radius = r;
12 area = 4*Math.PI*r*r;
13 volume = 4*Math.PI*Math.pow(r,3) / 3.0;
14 }
15
16 public double getRadius() { return radius; }
17 public double getSurfaceArea() { return area; }
18 public double getVolume() { return volume; }
19 }

Lines 4 through 8 are the implementation of the constructor. Notice on line
4 that unlike the setRadius() setter/mutator method, the constructor
is not void. Constructors have no return type specifier at all;
it’s just missing.

Also notice that the constructor has the same name as the class itself. This
is required. If you do those two things, then instead of having to
remember to call some special method to pass in initial values for the
instance variables, you get to pass them in while you’re instantiating
the object. Which you would have to do anyway! Like so:

SphereCalc4 sc = new SphereCalc4(5);
// it's safe right away to use the other methods in SphereCalc
SquareRootFinder srf = new SquareRootFinder(n);
// ditto
PhraseRepeater pr = new PhraseRepeater(msg, n);
StringFunObject sfo = new StringFunObject(msg);

This makes a little more work when implementing a class, because you usually
have to write a constructor and also write your setter methods. But it
makes it easier to work with your object and safer, too.

Okay, that’s enough for now. We’ll see plenty more constructors in the
chapters to come.

 Study Drills

 	In SphereCalc4, edit the code inside the constructor so that it calls
setRadius() instead of duplicating its code.

 	Save a copy of SphereCalcTester.java as SphereCalcTester4.java and change
the objects from SphereCalc2 objects to SphereCalc4 objects. (You’ll have
to pass in the first radius in the instantiation.) Add several
lines of code to confirm that since SphereCalc4 has private fields,
you can’t access them directly at all.

Exercise 10: Automated Testing with Arrays

Two exercises ago, SphereCalcTester did a decent job testing our object, but
it took a lot of code for each test, and there was a lot of repeated code.
It is important to make testing code as easy as possible to write and to
automatically run. Otherwise, you might be tempted to not test your code,
and that doesn’t lead anywhere good.

So here is an example of a tester for SphereCalc4 that makes it much easier
to add additional tests without adding any extra code!

This code uses arrays of doubles to hold the expected inputs and outputs, and
they are in the same order in each array so that areas[0] holds the expected
area output for radius inputs[0] and volumes[0] holds the corresponding
expected volume. Arrays used like this are called “parallel” arrays.

This isn’t the absolute best way to do this, but it’s good enough for now.
We’ll see an even better testing technique later in the book.

 BetterTesting.java

 1 public class BetterTesting {
 2 public static void main(String[] args) {
 3
 4 double[] inputs = {
 5 5,
 6 0.1,
 7 3.3,
 8 20000,
 9 8
10 };
11 double[] areas = {
12 314.159265359,
13 0.125663706,
14 136.84777599,
15 5026548245.743669104,
16 804.247719319
17 };
18 double[] volumes = {
19 523.598775598,
20 4.18879E-3,
21 150.532553589,
22 3.3510321638291125E13,
23 2144.660584851
24 };
25 int passed = 0;
26 double r, a, v, A, V;
27
28 SphereCalc4 c = new SphereCalc4(0);
29 for (int i=0; i<inputs.length; i++) {
30 r = inputs[i];
31 a = areas[i];
32 v = volumes[i];
33
34 c.setRadius(r);
35 A = c.getSurfaceArea();
36 V = c.getVolume();
37 if (isNear(A, a))
38 passed++;
39 else {
40 System.out.print("FAIL: surfaceArea for radius " + r);
41 System.out.println("-- Expected " + a + ", got " + A);
42 }
43 if (isNear(V, v))
44 passed++;
45 else {
46 System.out.print("FAIL: volume for radius " + r);
47 System.out.println("-- Expected " + v + ", got " + V);
48 }
49 }
50
51 if (passed == 2*inputs.length)
52 System.out.println("PASS: All tests passed.");
53 }
54
55 public static boolean isNear(double a, double b) {
56 return Math.abs(a-b) < 1E-9;
57 }
58 }

What You Should See

PASS: All tests passed.

Lines 4 through 24 just contain the values for inputs and outputs. I like to
list them one per line like this, but Java doesn’t care if you put them all
on one line. If you do put them all on one line, it’d probably be good for
your sanity if you add extra spaces so that the corresponding entries line up,
like so:

double[] inputs = { 5, 0.1, 3.3, // etc
double[] areas = { 314.159265359, 0.125663706, 136.84777599, // etc
double[] volumes = { 523.598775598, 4.18879E-3, 150.532553589, // etc

On line 28 we just create a single SphereCalc4 object, which will be reused
each time. Then there’s a loop through each value in the arrays. NOTE: If you
accidentally make the arrays different lengths, then this code might blow up.
That’s one of the problems with parallel arrays.

On lines 30 through 36 we pull out the expected radius, area and volume and
put them into nicely-named but easy-to-type variables, and then tell the
object to use that radius and get the computed area and volume from our
object. So a is the expected area, and A is the actual area according to
our object.

Then we can just use the same isNear() function from earlier together with
if statements to see if what we got matches what was expected. We increment
a variable for each “PASS” but don’t bother printing anything. If there’s a
failure, we print an error message.

Once the loop is over, there should be twice as many “passes” as inputs, so
we check that and print a summary message if everything is good.

Not too bad, huh? Adding more tests is as easy as just adding more numbers
to the arrays, but none of the other code has to change. And it’s easy to
tell when everything turned out as expected and easy to see specifically what
went wrong when something isn’t right.

 Study Drills

 	Change one of the digits in one of the input or output values and see
how the program shows different output.

 	Break one of the formulas in SphereCalc4 and see how the tester shows
something different. How could your tester distinguish between bad test
cases (like Study Drill #1) and a wrong formula? Answer in a comment
in the tester program.

Exercise 11: Public vs Private vs Unspecified

We looked at making fields private a couple of exercises back, but there were
a lot of other things going on, too. So this exercise focuses on just that.

 FieldAccess.java

 1 public class FieldAccess {
 2
 3 public String first;
 4 private String last;
 5 String nick;
 6
 7 public FieldAccess() {
 8 first = last = nick = "";
 9 }
10
11 public FieldAccess(String f, String l, String n) {
12 first = f;
13 last = l;
14 nick = n;
15 }
16
17 public void setFirst(String s) {
18 first = s;
19 }
20
21 public void setLast(String s) {
22 last = s;
23 }
24
25 public void setNick(String s) {
26 nick = s;
27 }
28
29 public String getFirst() { return first; }
30 public String getLast() { return last; }
31 public String getNick() { return nick; }
32
33 public String getFullName() {
34 return first + " \"" + nick + "\" " + last;
35 }
36 }

There are three instance variables (A.K.A. “fields”) in this object. One is
public, one is private, and one has an unspecified access level, which means
it defaults to something called “package-private”.

You’ll notice that this object also has two constructors. The first
constructor (lines 7-9) has no parameters, so it’s called the “default”
constructor or sometimes the “zero-argument” constructor. The second
constructor runs from line 11 through 14 and has three String parameters.

That means whenever the driver instantiates a FieldAccess object, it can
either do it with no arguments like new FieldAccess(), or it must pass
in three Strings.

You’ll also see the usual getters and setters for the fields.

 FieldAccessDriver.java

 1 public class FieldAccessDriver {
 2 public static void main(String[] args) {
 3 FieldAccess j = new FieldAccess("Robert", "Parker", "Butch");
 4 System.out.println(j.getFullName());
 5
 6 j.setLast("Elliott");
 7 j.setFirst("Samuel");
 8 j.setNick("Sam");
 9 System.out.println(j.getFullName());
10
11 j.first = "Avery";
12 // j.last = "Markham";
13 System.out.println(j.nick);
14 }
15 }

What You Should See

Robert "Butch" Parker
Samuel "Sam" Elliott
Sam

On line 3 of the driver we instantiate a FieldAccess object in the expected
way: call the constructor and pass in three strings. Line 4 shows that it
has been constructed correctly.

Lines 6 through 8 change the fields “properly”: by using the setter (mutator)
methods.

On lines 11 through 13 we access all three fields “incorrectly”: directly.
The field first actually works; it is public, after all. Accessing last
directly wouldn’t even compile, which is why it’s commented out.

And printing out the nick field also works. Remember that a field without
an access-level modifier defaults to package-private, which means that any code
defined in the same package can touch that variable. We haven’t learned about
packages yet (and won’t for a while yet), so all the programs you have written
so far are all in the same (unnamed) package.

Hopefully that was a pretty simple exercise, and there weren’t any surprises.

 Study Drills

 	Modify lines 11 through 13 in the driver so that they change/access the
values using the proper methods.

Exercise 12: Reviewing Constructors

There’s nothing really new in this exercise, so if you’re totally comfortable
with constructors and private instance variables, then feel free to skip this
one.

But constructors are very important, so I want to cover them one more time
before moving on to a new topic.

 Rectangle.java

 1 public class Rectangle {
 2 private int length, width;
 3
 4 public Rectangle() {
 5 length = width = 0;
 6 }
 7
 8 public Rectangle(int l, int w) {
 9 length = l;
10 width = w;
11 }
12
13 public int getArea() {
14 return length*width;
15 }
16 }

This (boring) Rectangle class has two private fields. (In the future, I
probably won’t bother to write “private fields”; calling them “fields” pretty
much implies that they will be private. That’s just how Java programmers do
things. I probably should have written getters and setters for them, but this
exercise is just focused on constructors so I left them out.)

There are two constructors. There are three things you should remember about
constructors.

 	They have the same name as the class (Rectangle in this case).

 	They do not have a return type – not even “void”.

 	Their “job” is to make sure all necessary setup has been done. This means
initializing all the instance variables, but sometimes other stuff happens,
too.

I was going to add “Constructors must be public,” but that’s not true. They
are usually public but sometimes you want a constructor but don’t want
people to be able to call it, so you make one of the constructors private or
something.

 RectangleDriver.java

 1 public class RectangleDriver {
 2 public static void main(String[] args) {
 3 // Rectangle r = new Rectangle();
 4 // r.length = 10;
 5 // r.width = 5;
 6
 7 Rectangle r = new Rectangle(10, 5);
 8 System.out.println("The area is " + r.getArea());
 9 }
10 }

Lines 3-5 in the driver are commented out, but they show what you would have
done to instantiate the object several exercises ago. You must construct the
object itself (line 3), and then put values into all the fields.

Now that our fields are private, and now that we have constructors, we can
accomplish all this in just a single line in the driver. This is shown on line
7.

The first thing that happens on line 7 is the left-hand side of the equal sign.
The compiler creates a Rectangle object and names it r. At first, it
doesn’t have an object in it.

Then the right-hand side of the equal sign is done: it calls the parameter
constructor, passing in 10 and 5 as parameters. Because the 10 is first,
a copy gets put into the first parameter (the int l). Then a copy of the
5 gets passed into the second parameter (the int named w).

Secretly behind the scenes just before line 9 our Rectangle object is
actually instantiated in memory. Then on lines 9 and 10 the constructor
copies the values from the parameters into the instance variables.

Once the constructor ends on line 11 one other thing happens behind
the scenes that *doesn’t happen in regular methods: a reference to the
Rectangle object is returned back to the driver. (We’ll learn more about
this in a later exercise.)

This sends us back to line 7 of the driver, where the right-hand side has just
completed. So finally the “equal sign” part of the line happens; (a reference
to) the object returned from the constructor gets stored into the variable on
the left hand side (r).

So at this point line 7 is completely done, and the object has been
instantiated and the fields have values.

That’s a lot of doing for one line of code, eh? That’s why constructors
are nice, actually. It’s a little more complicated than doing all those
things manually, but it’s nicer for the person using our class and it’s
safer since it makes certain all that setup has been completed before
the object gets used.

What You Should See

The area is 50

Cool?

 Study Drills

 	In the driver, add code to instantiate two more Rectangle objects,
and print out their areas.

Buy the Full Book!

If you really made it this far, you have what it takes to finish the book.

So buy it! One semester of a college course would cost you hundreds of dollars,
and hiring a personal tutor would cost even more.

Aren’t you worth it?

– Graham Mitchell

OEBPS/images/leanpub_pencil.png

OEBPS/images/leanpub_question-circle.png

OEBPS/images/leanpub_bug.png

OEBPS/images/leanpub_warning.png

OEBPS/images/leanpub_key.png

OEBPS/images/leanpub_keyboard-o.png

OEBPS/images/leanpub-logo.png
[

Leanpub

OEBPS/images/title_page.png
Learn
Object-Oriented Java

the Hard Way

e

Graham Mitchell

OEBPS/images/leanpub_equation_3.png
10 % 1077

OEBPS/images/leanpub_equation_2.png

OEBPS/images/leanpub_equation_1.png

OEBPS/images/leanpub_equation_0.png

OEBPS/images/leanpub_equation_4.png

