JAVA e

REAL WORLD

<’
|

PHILLIP JOHNSON




Java for the Real World

Phillip Johnson

This book is for sale at http://leanpub.com/javafortherealworld

This version was published on 2021-12-22

)

Leanpub

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and

many iterations to get reader feedback, pivot until you have the right book and build traction once
you do.

© 2017 - 2021 Phillip Johnson


http://leanpub.com/javafortherealworld
http://leanpub.com/
http://leanpub.com/manifesto

Contents

ANt



Chapter 3: Build Tools

For anything but the most trivial applications, compiling Java from the command line is an exercise
in masochism. Let’s take a small example to point out why. This also gives me the opportunity to
introduce the ice cream store “I Scream” application that we’ll use as a background for much of the

© 00 N O O b W N =

I = SN
B W N S,

O© 00 I O O b W N =

I = SO =N
B W N s,

sample code in the book. There are two classes:

DailySpecialService.java

package com.letstalkdata.iscream.service;

import com.google.common.base.Splitter;

import java.util.List;

public class DailySpecialService {

public List<String> getSpecials() {

var specialsRawText = "|Salty Caramel|Coconut Chip|Maui Mango";
return Splitter.on('[")
.omitEmptyStrings()
.splitTolList(specialsRawText);
}
}
Application.java

package com.letstalkdata.iscream;

import com.letstalkdata.iscream.service.DailySpecialService;

import java.util.List;

public class Application {

public static void main(String[] args) {

System.out.println("Starting store!\n\n

var dailySpecialService = new DailySpecialService();
var dailySpecials = dailySpecialService.getSpecials();

System.out.println("Today's specials are:");

dailySpecials. forEach(s -> System.out.println(" -



15
16

Chapter 3: Build Tools 2

And although it is contrived, this example relies on the Google Guava code library (guava-26.0- jre. jar).
So before we can compile the code, we have to download the library and include it with the project.

o Tell Me More: On . jar files

A . jar file is just a zip file. Using a tool like 7-zip or unzip, you can explore the contents just
like any other zip file. A typical . jar contains related Java classes, resources, and even other
. jar files for easy distribution. A “thin jar” includes only the classes and resources created
by the author, whereas a “fat jar” also includes any third-party dependencies. Nearly every
code library you use will be a . jar file.

This is the directory structure for the application, which follows common Java folder conventions.

— 1lib

| L— guava-26.0-jre. jar

L— letstalkdata
L— iscream
— Application. java
L— service

L— DailySpecialService. java

Tell Me More: On the Java folder structure

Java classes are organized into packages using the package keyword at the top of a file. The
convention is for package names to start with your domain, e.g com.google and then drill
down to the department, purpose of the code, etc. This can lead to some long package names,
and, since there is an enforced relationship between packages and directories, deeply nested
directory structures.

An additional convention is to take that entire directory structure and put it inside of another
set of folders: src/main/ java for the application or library code or src/test/ java for tests.
This is particularly important as we learn more about build tools.

Now that our code is organized and we found the third-party library code, we can compile the
application. Ready?



Chapter 3: Build Tools 3

$ javac -cp ".:lib/*" src/main/java/com/letstalkdata/iscream/*. java\
> src/main/java/com/letstalkdata/iscream/service/*. java

First we have to tell the Java compiler where to look to find dependencies. Java will look on what
is called the classpath which can be set via environment variable, or more commonly, via runtime
parameter -cp. (Oh, and if you are using Windows, instead of :, you use ; to separate the classpath
locations.) Next we need to tell the compiler all of the files to actually compile. The * wildcard saves
some time, but we still have to specify two directories. (Just imagine a real application with dozens
of directories.)

Unfortunately, when we run that command it creates a bunch of messy .class files right next to
our source code. To keep our sanity, we probably want to do something like this:

$ javac -cp ".:lib/*" src/main/java/com/letstalkdata/iscream/*. java\
> src/main/java/com/letstalkdata/iscream/service/*. java -d ./out

Using -d we store our compiled code somewhere else. And you’d better hope the out folder exists,
otherwise javac won’t run.

If we want to make our code easily runnable, we would want to create a fat jar. I'll spare you the
details, but in short you’d have to extract the classes from the Guava library, create a MANIFEST . MF
file that specifies all of the code you want on the classpath at runtime, and invoke the jar command
to include all of the Guava classes and your classes in the out directory.

And that leads us to why build tools were created.

Ant

The program make has been used for over forty years to turn source code into applications. As such, it
was the natural choice in Java’s early years. Unfortunately, a lot of the assumptions and conventions
with C programs don’t translate well to the Java ecosystem'. To make (har, har) building the Java
Tomcat application easier, James Duncan Davidson wrote Ant. Soon, other open source projects
started using Ant, and from there it quickly spread throughout the community?.

9 But what is it, really?

Ant is a tool to manage the Java build process. It is very extensible but is commonly used to
compile code, run tests, create build artifacts, deploy files, etc.

Legacy Watch: Ant

Despite early adoption, Ant has now mostly been phased out in favor of newer build tools
(notably Maven and Gradle).

'For some specifics, check out this discussion at Stack Overflow.
*“Frequently Asked Questions” The Apache Ant Project, 6 February 2017, https://ant.apache.org/faq.html#history. Accessed 25 March 2017.


http://stackoverflow.com/questions/2209827/why-is-no-one-using-make-for-java

11
12
13
14
15
16

18
19
20
21

Chapter 3: Build Tools 4

Build files

Ant build files are written in XML and are called build.xml by convention. I know even saying
“XML” makes some people shudder, but in small doses it isn’t too painful. I promise. Ant calls the
different phases of the build process “targets”. Targets that are defined in the build file can then be
invoked using the ant TARGET command where TARGET is the name of the target.

Here’s some common targets:

build.xml

<target name="clean">
<delete dir="build"/»
</target>

The clean target is used to “start from scratch” and remove all build artifacts.

build.xml

<target name="compile">
<mkdir dir="build/classes"/>
<javac srcdir="src/main/java"
destdir="build/classes"
classpathref="classpath"/>
</target>

The compile target, unsurprisingly, compiles the Java source into class files. Notice that we specify
the root source directory as src/main/java.

build.xml

<target name="jar">

<mkdir dir="build/jar"/»

<jar destfile="build/jar/IScream. jar" basedir="build/classes"/>
</target>

The jar target builds a . jar file of our application.



23
24
25
26
27
28
29
30

O 00 N O O & W N =

T S
g b W N~

Chapter 3: Build Tools 5

build.xml

<target name="run" depends="jar">
<java fork="true" classname="com.letstalkdata.iscream.Application">
<classpath>
<path refid="classpath"/>
<path location="build/jar/IScream. jar"/>
</classpath>
</java>
</target>

Finally the run target will actually run the application using the specified main class.

Remember that we also need to include the Google Guava library on the classpath. This is done with
the following snippet:

build.xml

<path id="classpath">
<fileset dir="1ib" includes="**/*_jar"/>
</path>

If you were paying close attention, we actually refer to this path in the compile target (classpathref="classpath").
We also get to see a neat Ant pattern **/* which is sort of like a super wildcard because it can descend
recursively to include all matching files.

Here’s the complete build file:

build.xml

<project>

<path id="classpath">
<fileset dir="1ib" includes="**/*_ jar"/>
</path>

<target name="clean">
<delete dir="build"/»
</target>

<target name="compile">
<mkdir dir="build/classes"/>
<javac srcdir="src/main/java"
destdir="build/classes"

classpathref="classpath"/>



16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

Chapter 3: Build Tools 6

</target>

<target name="jar">

<mkdir dir="build/jar"/>

<jar destfile="build/jar/IScream. jar" basedir="build/classes"/>
</target>

<target name="run" depends="jar">
<java fork="true" classname="com.letstalkdata.iscream.Application">
<classpath>
<path refid="classpath"/>
<path location="build/jar/IScream. jar"/>
</classpath>
</java>
</target>

</project>

With these targets defined, you may runant clean,ant compile,ant jar,ant run to compile, build,
and run the application we built.

Of course, the build file you’re likely to encounter in a real project is going to be much more complex
than this example. Ant has dozens of built-in tasks®, and it’s possible to define custom tasks too. A
typical build might move around files, assemble documentation, run tests, publish build artifacts,
etc. If you are lucky and are working on a well-maintained project, the build file should “just work”.
If not, you may have to make tweaks for your specific computer. Keep an eye out for .properties
files referenced by the build file that may contain configurable filepaths, environments, etc.

Dependency Management with Ivy

One limitation of Ant is that it does not have any built-in support for dependency management. To
build our program, we still had to manually download the third-party Guava library and provide a
path to it in the build file. Ivy is a tool that adds dependency management to Ant.

If your project uses Ivy, you will see an ivy . xm1 file in the root directory alongside the Antbuild.xml
file. Here’s what the file looks like for our tiny application:

*https://ant.apache.org/manual/tasksoverview.html


https://ant.apache.org/manual/tasksoverview.html
https://ant.apache.org/manual/tasksoverview.html

O O B~ W N

Chapter 3: Build Tools 7

ivy.xml

<ivy-module version="2.0">
<info organisation="com.letstalkdata" module="iscream"/>
<dependencies>
<dependency org="com.google.guava" name="guava" rev="26.0-jre"/>
</dependencies>
</ivy-module>

The dependency attributes are, of course, not arbitrary. The two easiest ways to find the attributes
are on the website of the library (usually!) or on the MVNRepository* site. For the Guava library,
you can simply search for “guava” and click your way through to version 26. Then click the “Tvy”
tab to get an easily copyable dependency.

~ C {7} | @ Secure | https://rvirepdsitory.com/artifact/com.geogle.guavalguava/21.0

MYNRerosiTorY

Indoxed Artifacts (7.89M)

Bearch for groups, artifacts, categories

Home = com.google.guava = guava = 21.0

oG - Mota: There is a new wersion for this artifact
~
T4k T New Version 23.1-jre
.(fl‘{-‘
T 2004 0 .
. »#~ Guava: Google Core Libraries For Java » 2!
Popular Categories a Guava is & suite of core and expanded libraries that include ul
i collections, io classes, and much much maore.
Agpect Driented
| Actor Frameworks License m
| Aoplcarion Metrcs categories
Build Tooks
: Date (Jan 12, 2017)
Bytecode Libraries
- Files Download (BUNDLE) (2.4 MB)
Command Line Parsers
Repositories | Central | Sonatype Releases
Cache Implementations
| claca Computing Used By 13,009 artifacts

| Code Analyzers

Collections

| Configuration Libraries

| Core Utilities

| Maven | Gradie || SBT | Ivy | Grape || Leiningen || Buildr |

-~ hitpe:fimvnrepository. com am i st/ om. google. quavaguayve --»
<dependency ofgs"comgooghe. guava™ names"guava® revs"21.0%»

Guava on the MVNRepository site

A few changes are also required for the build file.

1. Change the first line to include the Ivy library:

“https://mvnrepository.com


https://mvnrepository.com/
https://mvnrepository.com/

Chapter 3: Build Tools 8

<project xmlns:ivy="antlib:org.apache.ivy.ant">

2. Add a target to resolve the dependencies:

<target name="resolve">
<ivy:retrieve />
</target>

Now we can run ant resolve to fetch the dependencies and place them into the 1ib folder instead
of doing it by hand.

Summary

While writing a build script takes some time up front, hopefully you can see the benefit of using one
over passing commands manually to Java. Of course, Ant isn’t without its own problems. First, there
are few enforced standards in an Ant script. This provides flexibility, but at the cost of every build
file being entirely different. In the same way that knowing Java doesn’t mean you can jump into
any codebase, knowing Ant doesn’t mean you can jump into any Ant file-you need to take time
to understand it. Second, the imperative nature of Ant means build scripts can get very, very long.
One example I found is over 2000 lines long®! Finally, we learned Ant has no built-in capability for
dependency management, although it can be supplemented with Ivy. These limitations along with
some other build script annoyances led to the creation of Maven in the early 2000s°.

Maven

Maven is really two tools in one: a dependency manager and a build tool. Like Ant, it is XML-
based, but unlike Ant, it outlines fairly rigid standards. Furthermore, Maven is declarative allowing
you to define what your build should do and less about how to do it. These advantages make
Maven appealing; build files are much more standard across projects and developers spend less
time tailoring the files. As such, Maven has become somewhat of a de facto standard in the Java
world. In a 2016 survey, 68% of developers reported using Maven as their primary build tool".

9 But what is it, really?

Maven is a tool that manages the whole build cycle of a Java codebase: fetching dependencies,
compiling code, running tests, creating build artifacts, deploying files, etc. It can also be
extended to run custom tasks using plugins.

*https://github.com/lexspoon/scalagwt-scala/blob/master/build.xml

““History of Maven.” Apache Maven Project, 26 March 2017, https://maven.apache.org/background/history-of-maven.html. Accessed 1
April 2017.

"“Java Tools and Technologies Landscape 2016”. Rebel Labs, 14 July 2016, https://zeroturnaround.com/rebellabs/java-tools-and-technolo-
gies-landscape-2016. Accessed 15 March 2017.


https://github.com/lexspoon/scalagwt-scala/blob/master/build.xml
https://github.com/lexspoon/scalagwt-scala/blob/master/build.xml

Chapter 3: Build Tools 9

Maven Phases

The most common tasks you want to accomplish with a build script are included in Maven. These
are called “phases” and can be executed by running mvn PHASE (where PHASE is the phase name).
These are the phases you are most likely to use:

« compile: Compiles your source code

« test: Runs the unit tests in the project

« package: Creates a distributable package of code, e.g. a . jar file

« verify: Runs integration tests in the project

« install: Makes the distributable package available locally to be used as a dependency in other
Maven projects

« deploy: Makes the distributable package available to others to be used as a dependency in
other Maven projects (“Others” is often just your team, company, etc. not necessarily the whole
world.)

These phases are additive, so running package also runs compile and test, for example. To see the
complete list of Maven phases, see the Lifecycle Reference®. The first time you run a Maven build,
you’ll likely use the install phase because it will fully build and test the project, create a build
artifact, and “install” it to your local Maven repository.

Although it isn’t actually a phase, the command mvn clean deserves a mention. Running that
command will “clean” your local build directory (i.e. /target), and remove compiled classes,
resources, packages, etc. In theory, you should just be able to run mvn install and your build
directory will be updated automatically. However, it seems that enough developers (including
myself) have been burned by this not working that we habitually run mvn clean install to force
the project to build from scratch.

Project Object Model (POM) Files

Maven’s build files are called Project Object Model files, usually just abbreviated to POM, and are
saved as pom.xml in the root directory of a project. In order for Maven to work out of the box, it’s
important to follow this directory structure:

*https://maven.apache.org/guides/introduction/introduction- to- the- lifecycle.html#Lifecycle_Reference


https://maven.apache.org/guides/introduction/introduction-to-the-lifecycle.html#Lifecycle_Reference
https://maven.apache.org/guides/introduction/introduction-to-the-lifecycle.html#Lifecycle_Reference

=4 0o O s

Chapter 3: Build Tools 10

F— pom.xml

| | <-- Your Java code goes here
| — resources
|

| <-- Non-code files that your app/library needs
L— test

— java
| <-- Java tests

— resources

| <-- Non-code files that your tests need

At the top of a POM you will usually see the following tags:

pom.xml

<groupId>com.letstalkdata</groupId>
<artifactId>iscream</artifactId>
<version>@.0.1-SNAPSHOT</version>
<packaging> jar</packaging>

« groupld: Identifies your company, team, or organizational unit
« artifactlId: The name of artifact that the POM builds
« version: The version of the artifact. The -SNAPSHOT suffix means that mvn install and mvn

deploy will automatically replace the artifact when the build succeeds. You should remove the
suffix from release versions.

« packaging: The type of artifact to build.

The next section is the dependencies. As mentioned previously, Maven has dependency management
built in. Here’s our (very small) dependency section:



13
14
15
16
17
18
19

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

Chapter 3: Build Tools 11

pom.xml

<dependencies>
<dependency>
<groupId>com.google.guava</groupld>
<artifactId>guava</artifactId>
<version>26.0- jre</version>
</dependency>
</dependencies>

As with Ivy, the easiest way to find the correct values are from the project’s website or the
MVNRepository” site.

The last piece of our POM is the build section which includes the configurations to build an
executable . jar file.

Plugins

A major factor in Maven’s prolonged success is its extensibility via plugins. As technology changes,
Maven is still viable because it can be augmented with third-party plugins. For example, today you

can find plugins for everything from web frameworks to documentation generators to Android to
Docker.

For our simple build, we only need to use one of Apache’s official plugins—the Shade plugin. This
plugin is used to build fat . jar files.

pom.xml

<build>
<plugins>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-shade-plugin</artifactId>
<version»>2.3</version>
<executions>
<execution>
<phase>package</phase>
<goals>
<goal>shade</goal>
</goals>
<configuration>
<transformers>

<transformer implementation=

*https://mvnrepository.com


https://mvnrepository.com/
https://mvnrepository.com/

35
36
37
38
39
40
41
42
43

Chapter 3: Build Tools 12

"org.apache.maven.plugins.shade.resource.ManifestResourceTransformer">
<mainClass>
com. letstalkdata.iscream.Application
</mainClass>
</transformer>
</transformers>
</configuration>
</execution>

</executions>

There’s a lot going on here, but you can mostly focus on the phase (package) and the goal (shade).
That means that when you run mvn package (or any “higher” phase), the shade goal of the plugin
will run. That is the goal that builds the fat . jar file.

One complaint of plugins is that they must hook into the Maven lifecycle. In the example above,
the Shade plugin hooks into package. It’s not really possible to have stand-alone goals, and creating
your own custom phases requires even more XML boilerplate*®.

Another challenge of working with plugins is that it’s not immediately obvious what they can do.
Furthermore, figuring out the correct configuration is difficult without good documentation. For
example, we have to go down six levels in the POM just to tell the plugin what our main class is.
And since the configuration is done through XML, it’s possible to have a valid XML file that the
plugin can read but doesn’t know how to interpret, leading to often cryptic error messages. My best
advice is to check the documentation, find a working example in one of the existing projects you’re
working on, or consult the perennial Stack Overflow! Configuring a plugin from scratch is often a
sisyphean effort.

At this point you can run mvn package and you will see the iscream-0.0.1-SNAPSHOT. jar file inside
of the target folder. If you run java -jar iscream-@.0.1-SNAPSHOT.jar you should see the now
familiar output of the application.

Repositories and Distribution

Although we didn’t need the repositories and distributionManagement sections for our build, they
are worth mentioning as they are fairly common in company-internal projects.

A repository in the Maven world is a place where artifacts are stored that Maven can access. By
default, Maven knows about and uses the Maven Central'’ repository. When building an application
for the first time, artifacts are downloaded into your local repository. Jokingly, people sometimes
call this “downloading the entire internet” because of the seemingly endless dependency tree Maven
walks through. However, the artifacts are stored locally on your computer, which makes future build
faster. If your project needs to use artifacts stored an internal repository (or public artifacts not in
Maven Central), you can include additional repositories like this:

*°https://developer.jboss.org/wiki/Creating ACustomLifecyclelnMaven?_sscc=t
https://repol.maven.org/maven2


https://developer.jboss.org/wiki/CreatingACustomLifecycleInMaven?_sscc=t
https://repo1.maven.org/maven2
https://developer.jboss.org/wiki/CreatingACustomLifecycleInMaven?_sscc=t
https://repo1.maven.org/maven2

Chapter 3: Build Tools 13

<repositories>
<repository>
<id>xyzRepo</id>
<name>Company XYZ Repo</name>
<url>http://some-server/repo</url>
</repository>

</repositories>

If multiple repositories are specified, they are checked in order.

The distributionManagement section is used if you need to deploy your artifact. This is most
common if you are working on an internal library that needs to be made available to other developers.
Here’s an example:

<distributionManagement>
<repository>
<uniqueVersion>false</uniqueVersion>
<id>xyzRepo</id>
<name>Company XYZ Repo</name>
<url>http://some-server/repo</url>
</repository>
<snapshotRepository>
<uniqueVersion>true</uniqueVersion>
<id>xyzSnapRepo</id>
<name>Company XYZ Snapshot Repo</name>
<url>http://some-server/repo-snapshots</url>
<layout>legacy</layout>
</snapshotRepository>
</distributionManagement>

Tell Me More: Repositories

Regardless of the size of your team, if you use internally-developed libraries in your projects,
setting up an internal repository is a good idea. Without one, you’re forced to store the
libraries in source control. The most popular repository is Sonatype Nexus'?, although
Artifactory™ is gaining traction.

Of course, with your own Maven repository you can store any build artifact, not just internal
libraries. I've found it useful to store third-party artifacts that are not available in Maven
Central, such as Microsoft’s SQL Server database driver. You can also store artifacts that
are in Maven central which you might do to make downloads faster or to reduce version
fragmentation among your projects. Indeed, some companies allow developers to use only
the artifacts in the corporate repository.

?http://www.sonatype.org/nexus/
Phttps://www.jfrog.com/artifactory/


http://www.sonatype.org/nexus/
https://www.jfrog.com/artifactory/
http://www.sonatype.org/nexus/
https://www.jfrog.com/artifactory/

Chapter 3: Build Tools 14

Ssummary

Although Maven has made considerable strides in making builds easier, all Maven users have found
themselves banging their head against the wall with a tricky Maven problem at one time or another.
I've already mentioned some usability problems with plugins, but there’s also the problem of “The
Maven Way”. Anytime a build deviates from what Maven expects, it can be difficult to put in a
work-around. Many projects are “normal...except for that one weird thing we have to do”. And the
more “weird things” in the build, the harder it can be to bend Maven to your will. Although I don’t
quite agree with one blogger who writes, “Maven builds are an infinite cycle of despair that will
slowly drag you into the deepest, darkest pits of hell...”**, I can relate!

Wouldn't it be great if we could combine the flexibility of Ant with the features of Maven? That’s
exactly what Gradle is trying to do.

Gradle

The first thing you will notice about a Gradle build script is that it is not XML! In fact, Gradle uses
a domain specific language (DSL) based on Groovy, which is another programming language that
can run on the JVM.

Tell Me More: Groovy

Because the specification for the JVM is freely available, it is possible to write other
programming languages that compile to Java byte code. Groovy is one such language.
Although it’s sometimes considered a “scripting” language (largely because you don’t need
the overhead of a class to get going), it can be used to write full applications. Give it a try*!

def name = 'World'
println("Hello, $name!™")

The DSL defines both the core parts of the build file and specific build steps called “tasks”. It is also
extensible making it very easy to define your own tasks. And of course, Gradle has a rich third-party
plugin library. Let’s dive in.

m Hipster Watch: Gradle

Although it’s gaining popularity, Gradle is still relatively new. Since the Java ecosystem as
a whole tends to move slowly, don’t be surprised if you only encounter it in open-source
projects.

“Spillner, Kent. “Java Build Tools: Ant vs. Maven”. 14 November 2009, http://kent.spillner.org/blog/work/2009/11/14/java-build-tools.html.
Accessed 10 March 2017.
Phttp://groovy-lang.org


http://groovy-lang.org/
http://groovy-lang.org/

o N O O b W N =

10
11

Chapter 3: Build Tools 15

Build files

Gradle build files are appropriately named build.gradle and start out by configuring the build. For
our project we need to take advantage of a fat jar plugin, so we will add the Shadow plugin to the
build script configuration.

build.gradle
buildscript {

repositories {
jeenter()
}
dependencies {
classpath 'com.github. jengelman.gradle.plugins:shadow:1.2.4"

In order for Gradle to download the plugin, it has to look in a repository, which is an index for
artifacts. Some repositories are known to Gradle and can be referred to simply as mavenCentral()
or jecenter(). The Gradle team decided to not reinvent the wheel when it comes to repositories and
instead relies on the existing Maven and Ivy dependency ecosystems.

Tasks

Finally after Ant’s obscure “target” and Maven’s confusing “phase”, Gradle gave a reasonable name
to their build steps: “task”. We use Gradle’s apply to give access to certain tasks. (The java plugin is
built in to Gradle which is why we did not need to declare it in the build’s dependencies.)

build.gradle
apply 'java'
apply "com.github. johnrengelman.shadow'

The java plugin will give you common tasks such as clean, compiledava, test, etc. The shadow
plugin will give you the shadowJar task which builds a fat jar. To see a complete list of the available
tasks, you can run gradle -q tasks. Here’s an abridged list of the most common:

« assemble: Assembles the outputs of this project.

« build: Assembles and tests this project.

« clean: Deletes the build directory.

« jar: Assembles a jar archive containing the main classes.

« javadoc: Generates Javadoc API documentation for the main source code.
« test: Runs the unit tests.

Tasks can be configured in the build script by creating a block with the name of the task followed
by braces. For example, this is how the shadowJar task is configured:



26
27
28
29
30
31

18
19
20
21
22
23
24

Chapter 3: Build Tools 16

build.gradle
shadowJar {
baseName = 'iscream'
manifest {
attributes 'Main-Class': 'com.letstalkdata.iscream.Application'
}
}

It’s also possible to define your own tasks in a build. Because the Gradle DSL is based on the Groovy
programming language, the possibilities are nearly endless. As a simple example that shows off some
Groovy, this task will print the files used for compilation. It is invoked by gradle printClasspath.

task printClasspath {
sourceSets.each { source ->
println(source)
def tree = source.compileClasspath.getAsFileTree()
tree.files.each { f -> println(f.name) }

Dependency Management

We’ve already seen how a build script can rely on a plugin dependency, so extrapolating to code
dependencies will be straight-forward. Again we create arepositories section and a dependencies
section. At first it might seem like this is a duplication, but there is a key difference. Repositories and
dependencies inside of buildscript are used to run the build itself; repositories and dependencies
outside of buildscript are used to compile your application code.

build.gradle

repositories {
mavenCentral()

dependencies {
compile group: 'com.google.guava', name: 'guava', version: '26.0-jre'’

Here’s the complete build script:



© 00 N O O & W N =

W W NN NDNDDNDIDNDDNDDNDN DN A Rl
~ O © 0 N 0 U B WN P, O O N0 U WD,

Chapter 3: Build Tools 17

build.gradle

buildscript {
repositories {
jeenter()
}
dependencies {
classpath 'com.github. jengelman.gradle.plugins:shadow:1.2.4"

apply plugin: 'java'
apply plugin: 'com.github. johnrengelman.shadow'

group = 'com.letstalkdata’
version = '0.0.1-SNAPSHOT'
sourceCompatibility = 11
targetCompatibility = 11

repositories {
mavenCentral()

dependencies {

compile group: 'com.google.guava', name: 'guava', version: '26.0-jre'’

shadowdJar
baseName = 'iscream'
manifest {
attributes 'Main-Class': 'com.letstalkdata.iscream.Application'

Now that the build knows how to find the project’s dependencies, we can run gradle shawdowJar
to create a fat jar that includes the Guava dependency. After it completes, you should see
/build/lib/iscream-0.0.1-SNAPSHOT-all. jar, which can be ran in the usual way (java -jar ...).

If your project needs to use artifacts stored an internal repository, you can include additional
repositories in one of two ways, depending on the type of repository.

Maven



Chapter 3: Build Tools 18

repositories {
maven {

url "http://repo.mycompany.com/maven2"

Ivy

repositories {
ivy {
url "http://repo.mycompany.com/repo"

Gradle Daemon

You may have noticed this note when running Gradle:
Starting a Gradle Daemon (subsequent builds will be faster)

The Gradle Daemon is a feature of Gradle designed to make builds faster. The JVM is notorious for
being slow to start up (although this gets better with each new version). And since Gradle requires a
JVM to run, the JVM startup can slow down builds. To mitigate this, Gradle creates a long-running
background process. Thus future invocations of gradle don’t require a complete JVM startup.

On my machine, running gradle clean build on the IScream app for the first time took 5.35 seconds.
The second time it took only 1.898 seconds.

If you ever find yourself with a slow build, you can use --profile to help determine where the time
is going. This will produce a nice HTML report with breakdowns of the time spent on each task.

Ssummary

Gradle brings a lot of flexibility and power to the Java build ecosystem. Of course, there is always
some danger with highly customizable tools-suddenly you have to be aware of code quality in
your build file. This is not necessarily bad, but worth considering when evaluating how your team
will use the tool. Furthermore, much of Gradle’s power comes from third-party plugins. And since
Gradle is relatively new, it still sometimes feels like you are using a bunch of plugins developed
by SomeRandomPerson. You may find yourself comparing three plugins that ostensibly do the
same thing, each having a few dozen GitHub stars and little documentation to boot. Despite these
downsides, Gradle is gaining popularity and is particularly appealing to developers who like to have
more control over their builds.



Chapter 3: Build Tools

Suggested Resources

Ant

Loughran, Steve and Erik Hatcher. Ant in Action. Manning, 2007.
https://www.manning.com/books/ant-in-action

Maven

Bharathan, Raghuram. Apache Maven Cookbook. Packt, 2015.
https://www.packtpub.com/application-development/apache-maven-cookbook

O’Brien, Tim, John Casey et. al. Maven by Example Sonatype, 2011.
http://books.sonatype.com/mvnex-book/reference/index.html

Gradle

Mitra, Mainak. Mastering Gradle. Packt, 2015.
https://www.packtpub.com/web-development/mastering-gradle

Muschko, Benjamin. Gradle in Action. Manning, 2014.
https://www.manning.com/books/gradle-in-action

19



	Table of Contents
	Chapter 3: Build Tools
	Ant
	Maven
	Gradle
	Suggested Resources


