
Introduction to Japanese Natural Language Processing
Sample Chapters

This PDF includes two sample chapters, and is designed as an early preview
of the book. While the chapters included are intended to be complete, they
may be revised somewhat as work on the book continues.
To learn more about the book or reserve your copy, check the homepage at
japanesenlp.com1.

1https://www.japanesenlp.com/

1

https://www.japanesenlp.com/

Chapter 2: Tokenization, Morphological Analysis, and Dependency Parsing

2.1 An Introduction to fugashi

In this section you’ll learn how to do Japanese tokenization using fugashi, a
MeCab wrapper, and the unidic‑lite dictionary.

surface pos1 pos2 pos3 lemma pron kana goshu

喫茶 名詞 普通名詞 一般 喫茶 キッサ キッサ 漢
店 接尾辞 名詞的 一般 店 テン テン 漢
と 助詞 格助詞 * と ト ト 和
カフェ 名詞 普通名詞 一般 カフェ‑cafe カフェ カフェ 外
の 助詞 格助詞 * の ノ ノ 和
違い 名詞 普通名詞 一般 違い チガイ チガイ 和
は 助詞 係助詞 * は ワ ハ 和
意外 形状詞 一般 * 意外 イガイ イガイ 漢
と 助詞 格助詞 * と ト ト 和
明確 形状詞 一般 * 明確 メーカク メイカク 漢

This table is an example of the output available from fugashi and UniDic.
Note how besides tokenization it includes a variety of information about
each token. This is only some of the fields available in UniDic.

Setup

First you’ll need to install fugashi and the dictionary.
fugashi is awrapper forMeCab, a classic Japanesemorphological analyzer.
fugashi uses Cython to access MeCab’s C interface, and also includes some
convenient tweaks to make it easier to use in Python.

1

Chapter 2: Tokenization, Morphological Analysis, and Dependency Parsing

unidic‑lite is a slightly modified version of UniDic 2.1.2. That version of Uni‑
Dic is somewhat old, but it’s small enough that it’s easy to install, and high
quality enough that it’s sufficient for most applications. The unidic pack‑
age on PyPI wraps the latest edition of UniDic, but due to a large increase in
dictionary entries, it’s harder to set up, so we won’t use it for this tutorial.
At time of writing the latest version of fugashi is 1.1.0 and the latest version
of unidic‑lite is 1.0.8. unidic‑lite will work on any system, and fugashi dis‑
tributes ready‑to‑use ”wheels” for OSX, Linux, and 64 bit Windows. (If you
have another operating system you may have to build from source. If you
have trouble please feel free to open an issue1.)
1 %%capture
2 !pip install fugashi unidic‑lite

Now that fugashi is installed, you can confirm itworks by running it in the ter‑
minal. Try running fugashi ‑O wakati and then typing some Japanese.
If you push Enter, your input text will be printed with spaces separating to‑
kens. You can use CTRL+D to terminate the process. Here’s some example
output:
1 !echo "毎年東麻布ではかかし祭りが開催されます" | fugashi ‑O

wakati

1 毎年 東 麻布 で は かかし 祭り が 開催 さ れ ます

Note: wakati comes from 分かち書き wakachigaki, which refers to the
practice of writing Japanese with spaces included, as used in children’s
books and low resolutiondisplays. InMeCab this refers to the special output
mode that just separates tokens with spaces. Note that real wakachigaki
uses spaces to separate bunsetsu, not tokens or words.
Next let’s use fugashi in code. Themain interface to the library is the Tagger
object, which holds a variety of dictionary related state. The primary way
to use the Tagger is to simply apply it to input text, which will return a list
of Node objects. Each Node contains the raw text of the token in a surface

1https://github.com/polm/fugashi

2

https://github.com/polm/fugashi

Chapter 2: Tokenization, Morphological Analysis, and Dependency Parsing

property, and extended dictionary fields are available in the feature prop‑
erty.
1 import fugashi
2
3 tagger = fugashi.Tagger()
4
5 text = "形態素解析をやってみた"
6 words = tagger(text)
7 print(words)
8 print("=====")
9

10 for word in words:
11 print(word.surface, word.feature.lemma, word.feature.kana

, sep="\t")

1 [形態, 素, 解析, を, やっ, て, み, た]
2 =====
3 形態 形態 ケイタイ
4 素 素 ソ
5 解析 解析 カイセキ
6 を を ヲ
7 やっ 遣る ヤッ
8 て て テ
9 み 見る ミ

10 た た タ

Note: In Japanese NLP, it’s standard to refer to the raw input text form as the
”surface” (表層 hyousou), and MeCab uses this in its API. This usage comes
from linguistics, where the surface form of a word in a particular context
(whichmay be inflected or have unusual orthography) is contrastedwith the
lexical form, which would be a normalized or dictionary form.
For basic tokenization, this is all you need to know. In the next section, we’ll
look at a slightly more involved application of morphological analysis, and
later in this chapter we’ll cover advanced tokenization‑related topics.

Morphological Analysis Mini Project: Automatic Fuseji

Fuseji (伏せ字) is the practice of replacing some characters with placehold‑
ers, usually a circle, to conceal the content of words. A similar thing is some‑

3

Chapter 2: Tokenization, Morphological Analysis, and Dependency Parsing

times done in English, particularly to avoid using obscene words (a**hole,
”you little @#%(*!”). In Japanese fuseji can be used for obscene words, but
they can also be used to avoid spoilers, be vague about the names of brands
or specific people, or for other reasons.
Let’s pretend that we want to automatically apply fuseji for the purpose of
hiding spoilers about new movies or other media. While the simplest thing
is to replace characters at random from the whole string, it’s better to re‑
place certain kinds of words, such as proper nouns. We can use the detailed
part of speech information inUniDic, alongwithwordboundaries, to replace
proper nouns with fuseji versions.
1 from fugashi import Tagger
2 from random import sample
3
4 tagger = Tagger()
5
6
7 def fuseji_node(text, ratio=1.0):
8 """This function will take a node from tokenization and

actually replace parts of it with filler characters.
"""

9 ll = len(text)
10 idxs = sample(range(ll), max(1, int(ratio * ll)))
11 out = []
12 for ii, cc in enumerate(text):
13 out.append("◯" if ii in idxs else cc)
14 return "".join(out)
15
16
17 def fuseji_text(text, ratio=1.0):
18 """Given an input string, apply fuseji. """
19 out = []
20 for node in tagger(text):
21 # Normal Japanese text doesn't use white space, but

this is necessary
22 # if you include latin text, for example.
23 out.append(node.white_space)
24 if node.feature.pos2 != "固有名詞":
25 out.append(node.surface)
26 else:
27 out.append(fuseji_node(node.surface))
28 return "".join(out)
29
30

4

Chapter 2: Tokenization, Morphological Analysis, and Dependency Parsing

31 print(fuseji_text("犯人はヤス"))
32 print(fuseji_text("東京タワーの高さは333m"))

1 犯人は◯◯
2 ◯◯タワーの高さは333m

This code is already reasonably effective, but there are several ways it could
be tweaked or improved. For example, sometimes the words that should
be concealed aren’t just proper nouns; they could also be ordinary nouns or
verbs.
How can we find what parts of speech we want to filter? The best way is to
use example sentences to find what parts of speech we want, as well as to
get a better understanding of where our program works well and where it
doesn’t.

• 新キャラの「カズヤ」は年内に配信予定
• マジルテの水晶の畑エリアにはクリスタルが沢山ある
•「吾輩は猫である」の作家は夏目漱石
•『さかしま』（仏: À rebours）は、フランスの作家ジョリス＝カルル・ユ
イスマンスによる小説

We can check the parts of speech of words in fugashi by using the node.pos
attribute. This part of speech information comes from UniDic and uses four
levels. You can access the individual levels as node.feature.pos1, node.
feature.pos2, and so on. The node.pos attribute is a convenience feature
that joins the four separate values together and replaces empty values with
an asterisk (*).
You can checkpart of speech tags ofwords by giving a sentence as inputwith
fugashi on the command line, without giving the ‑O wakati command line
argument.
1 !echo "毎年東麻布ではかかし祭りが開催されます" | fugashi

1 毎年 マイトシ マイトシ 毎年 名詞‑普通名詞‑副詞可能
0

2 東 ヒガシ ヒガシ 東 名詞‑普通名詞‑一般 0,3
3 麻布 アザブ アザブ アザブ 名詞‑固有名詞‑地名‑一般

0

5

Chapter 2: Tokenization, Morphological Analysis, and Dependency Parsing

4 で デ デ で 助詞‑格助詞
5 は ワ ハ は 助詞‑係助詞
6 かかし カカシ カカス 欠かす 動詞‑一般 五段‑サ行 連用形‑一

般 0,2
7 祭り マツリ マツリ 祭り 名詞‑普通名詞‑一般 0
8 が ガ ガ が 助詞‑格助詞
9 開催 カイサイ カイサイ 開催 名詞‑普通名詞‑サ変可能

0
10 さ サ スル 為る 動詞‑非自立可能 サ行変格 未然形‑

サ 0
11 れ レ レル れる 助動詞 助動詞‑レル 連用形‑一般
12 ます マス マス ます 助動詞 助動詞‑マス 終止形‑一般
13 EOS

Censoring Unknown Words

Another thing that’ll come up as we’re testing is that sometimes words not
in the dictionary will be used, like the names of characters in movies and
books. From the example sentences above, マジルテ Majirute, the name of
a fictional place, is an example of such a word. We basically always want to
censor thosewords to avoid spoilers, so rather than checking part of speech
information, we can also check specifically for words that aren’t in our dic‑
tionary. These are called ”unks”, from ”unknown words”, or 未知語 michigo
in Japanese. In fugashi you can determine if a given node is in the dictionary
just by checking the node.is_unk attribute.
Looking at our example sentences, some patterns emerge. We probably
don’t want to filter verbs, since it’s hard to tell when a verb is important.
Proper nouns should definitely be filtered. Common nouns may or may not
be important, so it’s hard to say if we should filter them ‑ for now, let’s leave
them alone.
Since our conditions for censoring words are getting kind of complicated,
let’s factor them into a function.
1 def should_hide(node):
2 """Check if this node should be hidden or not. """
3 if node.is_unk:
4 return True
5 ff = node.feature

6

Chapter 2: Tokenization, Morphological Analysis, and Dependency Parsing

6 if ff.pos1 == "名詞" and ff.pos2 == "固有名詞":
7 return True
8 return False
9

10
11 def fuseji_text(text, ratio=1.0):
12 """Given an input string, apply fuseji. """
13 out = []
14 for node in tagger(text):
15 out.append(node.white_space)
16 word = fuseji_node(node.surface) if should_hide(node)

else node.surface
17 out.append(word)
18 return "".join(out)
19
20
21 texts = [
22 "犯人はヤス",
23 "魔法の言葉はヒラケゴマ",
24 "『さ かし ま』（仏: À rebours） は、 フランスの作家ジョリス

＝カル ル・ ユイスマンスによる小説",
25 "鈴木爆発で最初に解体する爆弾はみかんの形をしている",
26]
27
28 for text in texts:
29 print(fuseji_text(text))

1 犯人は◯◯
2 魔法の言葉は◯◯◯◯◯
3 『さ かし ま』（仏: ◯◯◯◯◯◯◯◯） は、◯◯◯◯の作家◯◯◯◯＝◯◯◯・◯◯◯◯◯◯

による小説
4 ◯◯爆発で最初に解体する爆弾はみかんの形をしている

Use Readings to Censor only Part of Words

At this point our program is pretty effective at applying fuseji to any text we
throw at it. That said, censoring the entire text is a little boring. It would be
more interesting if we could reveal some letters so that readers can guess
the rest of the word, but not quite be certain about it.
There is one potential issue though ‑ if we use kanji, even one charac‑
ter might give the word away in away that’s not interesting. What if we
could convert words to phonetic versions and then censor part of them?

7

Chapter 2: Tokenization, Morphological Analysis, and Dependency Parsing

That would allow us to show part of the word while giving away less
information.
Thankfully, UniDic includesafieldwecanuse for this conversion. Everyword
in the UniDic dictionary has a kana field we can use to get the conventional
reading for the word in katakana form. (UniDic also has a pron field, which
uses non‑standard orthography to differentiate long vowels.)
One thing to keep in mind is that the kana reading will only be available for
words in UniDic, and it won’t always be perfect. There are two cases where
the reading will be wrong:

1. The word is not in the dictionary.
2. The reading of the word is ambiguous.

If the word is not in the dictionary, it’s possible to train a machine learning
model or use othermethods topredict the reading, but that’s pretty difficult.
So this time, if a word is an unk we’ll just skip converting it and use the raw
surface form.
Ambiguous words are more difficult. Some examples of ambiguous
words:

• 東: higashi or azuma (or tou)
• 中田: nakada or nakata
• 仮名: kana or kamei
• 網代: amishiro or ajiro
• 最中: saichuu or monaka
• 私: watashi or watakushi
• 日本: nihon or nippon

Usually a readingwill be clear from context, butmany ambiguouswords are
proper nouns like the names of people and places, and without knowing
which specific entity it’s referring to there’s no way to be sure of the correct
reading. Even worse, there’s no way to be sure if the word you’re looking at
is ambiguous or not just using the tokenizer output.

8

Chapter 2: Tokenization, Morphological Analysis, and Dependency Parsing

(Note: Words written the same way but pronounced differently are referred
to as 同形異音語 doukei iongo or ”heteronyms”. They are also common in
English, though less so for proper nouns.)
Note: For ambiguous words, deciding their reading could be considered a
formofword sense disambiguation for common nouns, or entity linking
for proper nouns. Both are NLP problems with a long history.
So how canwe handle ambiguous words if we can’t even identify themwith
certainty? It turnsout that theirdifficultyactuallyhasa silver lining ‑because
evenpeoplemakemistakes, we can get awaywith just using the kanaUniDic
gives us and hope that it’s right most of the time. For serious applications
replacing the original textwith amistakewould be unacceptable, but for our
fuseji application, it’s not the end of theworld if we’rewrong occasionally.
Sometimes when you learn about a problem confronting your NLP system,
theremay not be a solution you’re able to implement. In this case, writing a
program to disambiguate words would be muchmore work than the rest of
our entireprogram. Butbybeingawareof theproblem,wecanconsiderhow
failuresaffect theoutputof our system, andevaluatewhetherweshould con‑
tinuewith its development, or start over with a design that canwork around
the problem.
Now that we’ve settled that, let’s change our code to use the kana instead of
the surface when censoring words.
1 def fuseji_text(text, ratio=1.0):
2 """Given an input string, apply fuseji. """
3 out = []
4 for node in tagger(text):
5 out.append(node.white_space)
6 node_text = node.surface if node.is_unk else node.

feature.kana
7 word = fuseji_node(node_text, ratio=0.5) if

should_hide(node) else node.surface
8 out.append(word)
9 return "".join(out)

10
11
12 texts = [
13 "黒幕の正体はガーランド",
14]

9

Chapter 2: Tokenization, Morphological Analysis, and Dependency Parsing

15
16 for text in texts:
17 print(fuseji_text(text))

1 黒幕の正体は◯ーラ◯ド

And thatmakes our automatic fuseji programcomplete. It’s not a lot of code,
but in building this you learned how to:

1. iterate over the tokens in a text
2. identify parts of speech of interest with example sentences
3. use multiple levels of part of speech tags
4. check if a token is in the dictionary or an unk
5. convert words to their phonetic representation

These are all basic building blocks you can use to build a wide variety of ap‑
plications.
While ourmotivation for this programwas a simple andplayful one, the tech‑
niques used here are simple versions of those used in personally identi‑
fying information (PII) removal, which removes identifying details from
documents like medical and legal records so they can be used in audits or
analysis without risk to the people they describe.
To learn more about the tokenizer API, consider some ways youmight want
to extend this application and how you’d make the necessary changes.

• what if you wanted to remove all numbers from a contract, to hide
dates or prices?

• what if youwanted to hide a specific list of words, perhaps obscenities,
rather than certain parts of speech?

• how would you change the program to replace hard‑to‑read words
with their phonetic versions?

10

Chapter 5: Natural Language Generation and Conversion with Transformer

Natural Language Generation and Conversion with
Transformer

5.1 Transformer and Text Generation

What is the Transformer?

TheTransformer is aneural networkarchitecturepublishedbyDevlin et al. in
20171. The core of the architecture is a mechanism called self‑attention,
which transforms a sequence of input tokens into output representations by
focusing on important tokens and taking the weighted sum of the input rep‑
resentations. The technical details of the Transformer are out of the scope
of this book—interested readers are referred the wonderful blog post, The
Illustrated Transformer2 by Jay Alammar. For now, you can think of it as a
powerful, high‑capacity neural network architecture that transforms a set of
inputs (token embeddings) into a sequence of representations of the same
length, which you can use to solve various NLP tasks such as translation,
classification, and languagemodeling.
The Transformer architecture has taken the NLP field by storm and quickly
became the ”de‑facto” model of choice for a wide range of tasks. In the re‑
mainder of this chapter we’ll make heavy use of the Transformer to achieve
language generation and conversion.

1https://arxiv.org/abs/1706.03762
2https://jalammar.github.io/illustrated‑transformer/

1

https://arxiv.org/abs/1706.03762
https://jalammar.github.io/illustrated-transformer/

Chapter 5: Natural Language Generation and Conversion with Transformer

Figure 1: The Transformer architecture—it predicts next tokens in an
autoregressive manner.

In this section, we’ll use language models to generate Japanese text and
solve a QA (question answering) task. A language model is a statistical
model that assigns some information (probability) to a given text. Because
languagemodels are usually trained on large datasets of naturally occurring
text, they can give high probability to sentences that are natural in that
language, or ”make more sense”, and give low probability to unnatural
sentences.
One type of widely used languagemodel is the autoregressive or causal lan‑
guagemodel (CLM). CLMsmodel the probability of a particular input by first
decomposing it into a sequence of individual tokens, and then by taking the

2

Chapter 5: Natural Language Generation and Conversion with Transformer

product of the individual token probability given the preceeding context.
The figure above shows an illustration of a Transformer‑based CLM. When
given a context (むかしむかし mukashimukashi ”Once upon a time”), it
gives you a probability distribution over the set of tokens that could appear
next, which may include tokens such as ”、” (Japanese comma) and ある
aru ”some”. The model is trained such that it gives high probabilities to
sequences of tokens that appear in the training data.
In NLP, language models are traditionally implemented as a statistical
model of word n‑grams or based on RNNs (recurrent neural networks) such
as LSTM (long short‑term memory). However, as of this writing (in 2021),
most of state‑of‑the‑art language models are implemented based on the
Transformer architecture.

Text generation

As discussed in the last section, CLMs are trained to give a probability distri‑
bution over the tokens given a context. This also means that you can use a
languagemodel to generate new text by producing tokens one at a time.
Because training languagemodels usually require a large amount of training
dataandcompute (dozensorevenhundredsofGPUs), formany taskswe just
download and use pretrained language models. Popular English language
models include GPT‑23 and GPT‑34, both developed by OpenAI.
In the remainder of this section, we’ll make heavy use of the popular Hug‑
gingFace Transformers5 library, which supports awide range of Transformer‑
basedpretrained languagemodels includingBERT6 (Chapter 6) andGPT‑2.
We’ll start by installing and importing libraries and modules necessary
for language generation and QA, including Transformers, HuggingFace
3https://d4mucfpksywv.cloudfront.net/better‑language‑models/language_models_are_unsupervi

sed_multitask_learners.pdf
4https://arxiv.org/abs/2005.14165
5https://github.com/huggingface/transformers
6https://arxiv.org/abs/1810.04805

3

https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://arxiv.org/abs/2005.14165
https://github.com/huggingface/transformers
https://arxiv.org/abs/1810.04805

Chapter 5: Natural Language Generation and Conversion with Transformer

datasets7, as well as SentencePiece8 (for tokenizing Japanese text) and
PyTorch.
1 %%capture
2 !apt‑get install jq
3 !pip install datasets==1.11.0
4 !pip install transformers==4.9.0
5 !pip install sentencepiece==0.1.96
6 !pip install torch==1.9.0

1 from collections import Counter
2 import json
3 import logging
4
5 from datasets import load_dataset
6 import torch
7 from transformers import T5Tokenizer, AutoModelForCausalLM,

Trainer, TrainingArguments
8
9 # supress logging from transformers

10 logging.getLogger("transformers").setLevel(logging.ERROR)
11 logging.getLogger("transformers.trainer").setLevel(logging.

ERROR)
12 logging.getLogger("datasets").setLevel(logging.ERROR)
13
14 _ = torch.manual_seed(42)

For our Japanese autoregressive languagemodel, we’ll use Rinna9, an open‑
source Japanese GPT‑2 model developed by rinna Co., Ltd.
The model can be referred to by an identifier rinna/japanese‑gpt2‑
medium on HuggingFace Hub (https://huggingface.co/rinna/japanese‑
gpt2‑medium). To use it, you just need to load the pretrained model
via the from_pretrained() method as below. Remember to initialize
a corresponding tokenizer—you need to it to process the input for the
model.
1 device = torch.device("cuda" if torch.cuda.is_available()

else "cpu")
2
3 # Load Rinna — a Japanese GPT‑2 model

7https://github.com/huggingface/datasets
8https://github.com/google/sentencepiece
9https://github.com/rinnakk/japanese‑pretrained‑models

4

https://huggingface.co/rinna/japanese-gpt2-medium
https://huggingface.co/rinna/japanese-gpt2-medium
https://github.com/huggingface/datasets
https://github.com/google/sentencepiece
https://github.com/rinnakk/japanese-pretrained-models

Chapter 5: Natural Language Generation and Conversion with Transformer

4
5 tokenizer = T5Tokenizer.from_pretrained("rinna/japanese‑gpt2‑

medium")
6 tokenizer.do_lower_case = True # due to some bug of

tokenizer config loading
7
8 model = AutoModelForCausalLM.from_pretrained("rinna/japanese‑

gpt2‑medium").to(device)

First, let’s try generating Japanese text with the pretrained languagemodel.
You can either generate text from scratch, or tell themodel to generate a con‑
tinuation to another piece of text (called a prompt). For now we’ll generate
text that follows theprompt ”むかしむかし、あるところに”mukashimukashi,
arutokoroni (”Once upon a time, there was/were”).
After tokenizing the input (prompt) with the tokenizer, you can invoke the
model.generate() method to generate the continuation. The method
takes a number of parameters that control the generation process, but the
details are not important here. You can decode the results and convert
them back into text with tokenizer.decode() as below
1 inputs = tokenizer("むかしむか し、 あるところ に、",

return_tensors="pt", add_special_tokens=False).to(device
)

1 result = model.generate(
2 **inputs,
3 do_sample=True,
4 top_p=0.9,
5 temperature=0.8,
6 max_length=100,
7 pad_token_id=2,
8 repetition_penalty=1.2
9)

1 tokenizer.decode(result[0])

1 'むかしむか し、 あるところ に、 ふしぎなキツネの村がありまし た。
ある 時、 キツネがひとりきりで野山をさまよい歩いている

と、 その先には白い小さな森が見えてきまし た。 「あ なたの
お母さん も、 この白い森から生まれてきたんだ よ」 と教えられ
た男の 子。 「そ んな風に育てられたんだねぇ... すごく幸せ
だ よ」 と声をかける と、 キツネはその言葉を返してくれまし

5

Chapter 5: Natural Language Generation and Conversion with Transformer

た。</s>'

You can see that Rinna was able to make up a plausible sounding story that
starts with むかしむかし、あるところに、ふしぎなキツネの村がありました。
”Once upon a time, there was a mysterious village of foxes.”

5.2 Question answering

Generating Japanese text with a language model is interesting and fun, but
you can use languagemodels to solve a much wider range of problems.
One such problem is question answering. Here, we’ll use a language model
to answer open‑domain trivia questions such as ”Which city is called ’the
navel of Hokkaido’ due to its location and is also famous for its lavender
fields?” (Can you answer this?)
Here we assume that for each question (e.g., Where’s the prefectual capital
of Aichi?) there’s a list of answer candidates (e.g., Sapporo, Sendai, Tokyo,
Nagoya, Kyoto, etc.) among which the model needs to choose the correct
answer. This means that the format is a multiple‑choice question where the
model needs to rank the candidates in the order of confidence instead of
generating the answer from scratch.

Figure 2: Answering a question using a languagemodel

How can you solve such questions with language model (LMs)? Remember
that LMs trained on a large corpus give higher probabilities (or equivalently,

6

Chapter 5: Natural Language Generation and Conversion with Transformer

lower losses) to more ”natural” input. As shown in the figure, you can
rerank the list of candidates by feeding a sequence like [question_text]
[answer_text] to the model for a given candidate and by measuring its

loss, which roughly corresponds to how ”unexpected” the language model
thinks that particular input is. If the continuation of the question and the
candidate ”makes sense,” the model will return a smaller loss. You can do
this for every choice and pick the choice that has the lowest loss value. The
following method rank_answers reranks the list of candidates based on
the question and the model (the details of the method is not important
here).
1 def rank_answers(question, candidates, model, tokenizer,

top_n=10):
2 """Given a question and a list of answer candidates, rank

them based on the language model score
3 (negative log likelihood) and return the ranked top N

candidates."""
4 losses = Counter()
5 inputs_question = tokenizer(
6 question, return_tensors="pt", add_special_tokens=

False
7).to(model.device)
8 labels_question = ‑100 * torch.ones_like(
9 inputs_question["input_ids"], device=model.device

10)
11 results = model(**inputs_question, use_cache=True)
12 past = results.past_key_values
13 for candidate in candidates:
14 inputs_candidate = tokenizer(
15 candidate, return_tensors="pt",

add_special_tokens=True
16).to(model.device)
17 attention_mask = torch.cat(
18 (inputs_question["attention_mask"],

inputs_candidate["attention_mask"]),
19 dim=1,
20)
21 results = model(
22 input_ids=inputs_candidate["input_ids"],
23 attention_mask=attention_mask,
24 labels=inputs_candidate["input_ids"],
25 past_key_values=past,
26)
27 loss = results.loss.detach().item()
28 losses[candidate] = ‑loss

7

Chapter 5: Natural Language Generation and Conversion with Transformer

29 return [a for a, v in losses.most_common(top_n)]

Let’s try a simple question: Where’s the prefectual capital of Aichi? We’ll use
a list of some prefectual capital cities in Japan as candidates.
1 question = "愛知県の県庁所在地 は？"

1 answers = ["札幌市", "秋田市", "宇都宮市", "東京", "金沢市",
"岐阜市", "名古屋市", "大津市", "奈良市", "岡山市", "高
松市", "佐賀市", "宮崎市"]

1 rank_answers(question, answers, model, tokenizer)

1 ['岐阜市', '名古屋市', '金沢市', '奈良市', '宇都宮市', '秋田
市', '岡山市', '高松市', '宮崎市', '佐賀市']

As you see, the language model ranks 岐阜市 Gifu‑shi ”Gifu city” as the top
candidate, and 名古屋 Nagoya comes second. This suggests that the model
encodes some common sense information, but it’s not perfect, at leastwhen
it comes to Japanese prefectural capitals. But how good is Rinna for answer‑
ing common sense questions, really? Let’s try to evaluate its accuracy more
thoroughly below.

Evaluate on the JAQKET dataset

Here we are going to use the JAQKET dataset10, which is an open‑domain
question answering dataset developed and distribted by Tohoku University.
The dataset includes common sense questions and their answers, where an‑
swers and candidates are always drawn from Wikipedia article titles, such
as:

• Question: Which city is called ”the navel of Hokkaido” due to its loca‑
tion, and is also famous for its lavender fields?

• Answer: Furano
• Candidates: Furano, Nayoro, Mikasa, Makubetsu, Kitami, ...

10https://www.nlp.ecei.tohoku.ac.jp/projects/jaqket/

8

https://www.nlp.ecei.tohoku.ac.jp/projects/jaqket/

Chapter 5: Natural Language Generation and Conversion with Transformer

First, let’s download, format, and read the datasets (both the train and dev1
portions) so that we can evaluate the language model’s quiz answering pe‑
formance on them.
1 !curl "https://jaqket.s3‑ap‑northeast‑1.amazonaws.com/data/

train_questions.json" ‑s ‑‑output train_questions.json

1 # delete the "original_answer" keys, which cause some
discrepancies between train and dev splits

2 !jq 'del(.original_answer)' ‑c train_questions.json >
train_questions.nooa.json

1 !curl "https://jaqket.s3‑ap‑northeast‑1.amazonaws.com/data/
dev1_questions.json" ‑s ‑‑output dev1_questions.json

The evaluate() method takes a list of questions and answers, evaluates
the questions with the model and the tokenizer, and return the number of
answers the model got correct.
1 qas = []
2 with open("dev1_questions.json") as f:
3 for line in f:
4 qas.append(json.loads(line))

1 def evaluate(qas, model, tokenizer, stop_at=None,
show_preview=False):

2 num_correct = 0
3 num_questions = 0
4 for qa in qas:
5 question = qa["question"]
6 candidates = qa["answer_candidates"]
7 gold = qa["answer_entity"]
8 preds = rank_answers(question, candidates, model,

tokenizer)
9 is_correct = preds[0] == gold

10 if is_correct:
11 num_correct += 1
12 if show_preview and num_questions < 5:
13 print(
14 f"Q: {question}, pred: {preds[:5]}, gold: {

gold}, is_correct: {is_correct}"
15)
16 num_questions += 1
17
18 if stop_at is not None and num_questions == stop_at:

9

Chapter 5: Natural Language Generation and Conversion with Transformer

19 break
20 print(
21 f"Success rate = {100 * num_correct / num_questions}%

({num_correct} / {num_questions})"
22)

1 evaluate(qas, model, tokenizer, stop_at=100, show_preview=
True)

1 Q: 明治時代に西洋から伝わった 「テ ーブ ル・ ターニン グ」 に起源を
持つ占いの一種 で、50音表などを記入した紙を置 き、 参加者全
員の人差し指をコインに置いて行うのは何でしょう?, pred: [
'テケテケ', '赤い 紙、 青い紙', 'コックリさん', '小玉鼠 (
妖怪)', 'ヨジババ'], gold: コックリさん, is_correct:
False

2 Q: 『non・no』『週 刊プレイボー イ』『週 刊少年ジャン プ』 といえ
ば、 発行している出版社はどこでしょう?, pred: ['実業之日
本社', '白泉社', '宝島社', '日本文芸社', '幻冬舎'], gold
: 集英社, is_correct: False

3 Q: 「パ イプスライダ ー」 や 「そ り立つ 壁」 などの関門があ る、TBS
系列で不定期に放送されている視聴者参加型のTV番組は何でし
ょう?, pred: ['最強の男は誰だ!壮絶筋肉バトル!!スポーツマ
ンNo.1決定戦', '究極の男は誰だ!?最強スポーツ男子頂上決戦
', 'SASUKE', '島田紳助がオールスターの皆様に芸能界の厳し
さ教えますスペシャル!', 'クイズ王最強決定 戦～THE OPEN～'
], gold: SASUKE, is_correct: False

4 Q: 東京都内では最も古い歴史を持つ寺院でもあ る、 入口にある 「雷
門」 で有名な観光名所は何でしょう?, pred: ['天龍寺 (新宿
区)', '大龍寺 (東京都北区)', '大円寺 (目黒区)', '源覚寺
(文京区)', '浅草寺'], gold: 浅草寺, is_correct: False

5 Q: 「鍋 についたおこ げ」 という意味の言葉が語源であるとされ る、
日本ではマカロニを使ったものが一般的な西洋料理は何でしょ
う?, pred: ['オムレツ', 'ポテトサラダ', 'ロールキャベツ'
, 'フレンチトースト', 'スパゲッティ'], gold: グラタン,
is_correct: False

6 Success rate = 13.0% (13 / 100)

As you can see from the result above, the untuned Rinna model achieves
an accuracy of 13% for the first 100 questions in the development set. Each
question has 20 candidates, so this accuracy is higher than random chance
(which is 1/20 = 5%), although not very impressive. Can we do better?

10

Chapter 5: Natural Language Generation and Conversion with Transformer

How to Fine-tune the Language Model for Solving QA

One way to improve Rinna (and any pretrained models for that matter) is
to show it a number of examples and optimize its parameters so that it can
give higher probability for the correct question‑answer pairs. This process is
called fine‑tuning and is themost commonway to adapt a pretrainedmodel
to another task.
Below, we’ll first load the JAQKET dataset in the JSONL formatwith the Hug‑
gingFace dataset library. Note that we are loading both the training and the
dev splits of the dataset for training.
1 dataset = load_dataset('json',
2 data_files={'train': 'train_questions.nooa.json',
3 'valid': 'dev1_questions.json'})

1 Downloading and preparing dataset json/default (download:
Unknown size, generated: Unknown size, post‑processed:
Unknown size, total: Unknown size) to /home/mhagiwara/.
cache/huggingface/datasets/json/default‑2f5c57ceca4651d1
/0.0.0/45636811569
ec4a6630521c18235dfbbab83b7ab572e3393c5ba68ccabe98264...

1 {"version_major":2,"version_minor":0,"model_id":""}

1 {"version_major":2,"version_minor":0,"model_id":""}

1 Dataset json downloaded and prepared to /home/mhagiwara/.
cache/huggingface/datasets/json/default‑2f5c57ceca4651d1
/0.0.0/45636811569
ec4a6630521c18235dfbbab83b7ab572e3393c5ba68ccabe98264.
Subsequent calls will reuse this data.

You can visually inspect the instances in the dataset as follows:
1 dataset['train'][0]

1 {'qid': 'ABC01‑01‑0003',
2 'question': '格闘家ボ ブ・ サップの出身国はどこでしょう?',
3 'answer_entity': 'アメリカ合衆国',
4 'answer_candidates': ['アメリカ合衆国',
5 'ミネソタ州',
6 'オンタリオ州',

11

Chapter 5: Natural Language Generation and Conversion with Transformer

7 'ペンシルベニア州',
8 'オレゴン州',
9 'ニューヨーク州',

10 'コロラド州',
11 'オーストラリア',
12 'ニュージャージー州',
13 'マサチューセッツ州',
14 'カナダ',
15 'テキサス州',
16 'ミシガン州',
17 'ワシントン州',
18 'ニュージーランド',
19 'オハイオ州',
20 'カリフォルニア州',
21 'メリーランド州',
22 'イリノイ州',
23 'イギリス'],
24 'original_question': '格闘家ボ ブ・ サップの出身国はどこでしょ

う？'}

We will fine‑tune the model by presenting the [question_text] [
answer_text] pairs to the language model, so we use the .map()method
of the dataset to add a new field to each instance with a concatenation of
the question and the answer.
1 dataset = dataset.map(
2 lambda example: {"text": example["question"] + example["

answer_entity"]}
3)

1 {"version_major":2,"version_minor":0,"model_id":"389
f6bc2b792482787b1bde5bf14737f"}

1 {"version_major":2,"version_minor":0,"model_id":"5025
e0fc274f414abdb2a89581514b31"}

Now let’s tokenize the concatenated text field. You can use the .map()
method again to batch process the dataset. Remember to return the label
field aswell (which is basically a copy of the input_ids field)—the language
model is trained by scoring it based on its ability to reproduce the label (in
this case the input sequence) token by token.
1 max_length = 256
2

12

Chapter 5: Natural Language Generation and Conversion with Transformer

3 def tokenize_function(examples):
4 inputs = tokenizer(
5 examples["text"],
6 max_length=max_length,
7 padding="max_length",
8 truncation=True,
9 return_tensors="np",

10)
11 labels = inputs.input_ids.copy()
12 labels[labels == tokenizer.pad_token_id] = ‑100
13 return {
14 "input_ids": inputs["input_ids"],
15 "attention_mask": inputs["attention_mask"],
16 "labels": labels,
17 }
18
19 tokenized_dataset = dataset.map(
20 tokenize_function, batched=True, batch_size=8, num_proc=4
21)

The processed input looks like this. Notice that each input is padded with
padding tokens (id: 3). This is because the neural network requires every
instance in a single batch to have the same length.
1 print(tokenized_dataset['train'][0]['input_ids'])

1 [9, 8355, 149, 9255, 13, 209, 2872, 10, 550, 115, 11, 5964,
16744, 3017, 886, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3]

Nowweare ready to fine‑tune themodel. Youneed to specify somehyperpa‑
rameters with TrainingArguments, create a Trainer instance, and invoke
the .train()method. Note that this takes a while (about an hour) even on

13

Chapter 5: Natural Language Generation and Conversion with Transformer

a fast GPU, and will probably be impossible to train on a CPU.
1 training_args = TrainingArguments(
2 output_dir = 'rinna‑japanese‑gpt2‑medium‑finetuned',
3 num_train_epochs = 3,
4 evaluation_strategy = "steps",
5 learning_rate=5e‑5,
6 warmup_steps=1000,
7 per_device_train_batch_size = 6,
8 eval_steps = 200,
9 logging_steps = 200,

10 save_strategy = "no",
11)

1 trainer = Trainer(
2 model=model,
3 args=training_args,
4 train_dataset=tokenized_dataset['train'],
5 eval_dataset=tokenized_dataset['valid'],
6)
7 trainer.train()

Now let’s evaluate the model again. This time we get an accuracy of 51%.
Since there’snoquestionoverlapbetween the trainingand thedevelopment
datasets, this means that the model didn’t get better simply by memorizing
the questions it was presented with, but it appears that it rewired the pa‑
rameters in such a way that it now got better at answering a wide range of
common sense questions about Japan.
1 evaluate(qas, model, tokenizer, stop_at=100, show_preview=

True)

Next Steps

Youcansolveamuchwider rangeofNLP taskswith languagemodels, and it’s
fun to think how you’dmake them solve certain tasks by designing prompts
or even fine‑tuning if necessary. How would do go about solving the follow‑
ing tasks, for example?

• Translation. Can Rinna translate between, say, Japanese and English?
• Arithmetic. Can Rinna answer simple math questions such as 6+7=?

14

Chapter 5: Natural Language Generation and Conversion with Transformer

• Word analogy. Can Rinna answer analogy questions such as Japan is
to Yen as USA is to...?

If you need some inspration, the GPT‑3 paper11 has many examples.

11https://arxiv.org/abs/2005.14165

15

https://arxiv.org/abs/2005.14165

