Introduction to Japanese Natural Language Processing
Sample Chapters

This PDF includes two sample chapters, and is designed as an early preview
of the book. While the chapters included are intended to be complete, they
may be revised somewhat as work on the book continues.

To learn more about the book or reserve your copy, check the homepage at
japanesenlp.com®.

lhttps://vvvvw.japanesenlpcom/

https://www.japanesenlp.com/

Chapter 2: Tokenization, Morphological Analysis, and Dependency Parsing

2.1 An Introduction to fugashi

In this section you’ll learn how to do Japanese tokenization using fugashi, a
MeCab wrapper, and the unidic-lite dictionary.

surface posl pos2 pos3 lemma pron kana
wE e BEsR R OwR Fyf Fyl
I EEFE RFAMN —f I T T

x I i I k k
h7x &H Z@gE M HTz-cafe HTzx h7zx
D BhE & BhE * D J J
BL 2E mERE g &L FHA FHA
[ByEa] * & 7 AN
25 kA R * =25 1HA A4
& BE RmE ¢ ~ k
BRRE kA —R& * R X—=hT XAHY

This table is an example of the output available from fugashi and UniDic.
Note how besides tokenization it includes a variety of information about
each token. This is only some of the fields available in UniDic.

Setup

First you’ll need to install fugashi and the dictionary.

fugashiis a wrapper for MeCab, a classic Japanese morphological analyzer.
fugashi uses Cython to access MeCab’s C interface, and also includes some
convenient tweaks to make it easier to use in Python.

goshu

Chapter 2: Tokenization, Morphological Analysis, and Dependency Parsing

unidic-lite is a slightly modified version of UniDic 2.1.2. That version of Uni-
Dic is somewhat old, but it’s small enough that it’s easy to install, and high
quality enough that it’s sufficient for most applications. The unidic pack-
age on PyPl wraps the latest edition of UniDic, but due to a large increase in
dictionary entries, it’s harder to set up, so we won’t use it for this tutorial.

At time of writing the latest version of fugashi is 1.1.0 and the latest version
of unidic-lite is 1.0.8. unidic-lite will work on any system, and fugashi dis-
tributes ready-to-use "wheels” for OSX, Linux, and 64 bit Windows. (If you
have another operating system you may have to build from source. If you
have trouble please feel free to open an issue’.)

%%capture
!pip install fugashi unidic-lite

Now that fugashiisinstalled, you can confirm it works by runningitin the ter-
minal. Try running fugashi -0 wakati and then typing some Japanese.
If you push Enter, your input text will be printed with spaces separating to-
kens. You can use CTRL+D to terminate the process. Here’s some example
output:

lecho "BERMAHTRADLEODHEMEETA EI" | fugashi -0
wakati

BE R WM T 13 »HL 8D B HE T h 7

Note: wakati comes from %3 h* 5 & & wakachigaki, which refers to the
practice of writing Japanese with spaces included, as used in children’s
books and low resolution displays. In MeCab this refers to the special output
mode that just separates tokens with spaces. Note that real wakachigaki
uses spaces to separate bunsetsu, not tokens or words.

Next let’s use fugashiin code. The main interface to the library is the Tagger
object, which holds a variety of dictionary related state. The primary way
to use the Tagger is to simply apply it to input text, which will return a list
of Node objects. Each Node contains the raw text of the token in a surface

lhttps://github.com/polm/fugashi

https://github.com/polm/fugashi

Chapter 2: Tokenization, Morphological Analysis, and Dependency Parsing

property, and extended dictionary fields are available in the feature prop-
erty.

import fugashi
tagger = fugashi.Tagger()

text = "WRRBINZX > THRE"
words = tagger (text)
print(words)

print("=====")

for word 1in words:
print(word.surface, word.feature.lemma, word.feature.kana
; sep="\t")

[FeR&, =, B, 2, ®o2, T, &,]

WE mE TaxA

ES ES Vi

Rt fRiF ATt F
z = El

o ED Vv

T T T

& R3 =

/= o 4

Note: In Japanese NLP, it’s standard to refer to the raw input text form as the
surface” (/& hyousou), and MeCab uses this in its API. This usage comes
from linguistics, where the surface form of a word in a particular context
(which may be inflected or have unusual orthography) is contrasted with the
lexical form, which would be a normalized or dictionary form.

For basic tokenization, this is all you need to know. In the next section, we’ll
look at a slightly more involved application of morphological analysis, and
later in this chapter we’ll cover advanced tokenization-related topics.

Morphological Analysis Mini Project: Automatic Fuseji

Fuseji (fk& =) is the practice of replacing some characters with placehold-
ers, usually a circle, to conceal the content of words. A similar thing is some-

Chapter 2: Tokenization, Morphological Analysis, and Dependency Parsing

times done in English, particularly to avoid using obscene words (a*xho'le,
"you little @#%(*!”). In Japanese fuseji can be used for obscene words, but
they can also be used to avoid spoilers, be vague about the names of brands
or specific people, or for other reasons.

Let’s pretend that we want to automatically apply fuseji for the purpose of
hiding spoilers about new movies or other media. While the simplest thing
is to replace characters at random from the whole string, it’s better to re-
place certain kinds of words, such as proper nouns. We can use the detailed
part of speech information in UniDic, along with word boundaries, to replace
proper nouns with fuseji versions.

from fugashi import Tagger
from random import sample

tagger = Tagger()

def fuseji_node(text, ratio=1.0):

"""This function will take a node from tokenization and
actually replace parts of it with filler characters.

11 = len(text)

idxs = sample(range(ll), max(1l, int(ratio x 11)))

out = []

for ii, cc in enumerate(text):
out.append("J)' if ii in idxs else cc)

return "".join(out)

def fuseji_text(text, ratio=1.0):
"""Gijven an input string, apply fuseji. """
out = []
for node 1in tagger(text):
Normal Japanese text doesn't use white space, but
this is necessary
if you 1include latin text, for example.
out.append(node.white_space)
if node.feature.pos2 != "E B &HA":
out.append(node.surface)
else:
out.append(fuseji_node(node.surface))
return "".join(out)

Chapter 2: Tokenization, Morphological Analysis, and Dependency Parsing

print(fuseji_text("IEAlEV 2
mART—

||))
print(fuseji_text("® R ¥ DE S E333m"))

1B A RGO
QD27 — D& T 1E333m

This code is already reasonably effective, but there are several ways it could
be tweaked or improved. For example, sometimes the words that should
be concealed aren’t just proper nouns; they could also be ordinary nouns or
verbs.

How can we find what parts of speech we want to filter? The best way is to
use example sentences to find what parts of speech we want, as well as to
get a better understanding of where our program works well and where it
doesn’t.

s FFX Y SD THXYV) FERICEREFE

« TTILTOKROMI TISIFZ Y ZL2ILHSRILS B
TEEIETHDZ ODERISEERA

TEHLZFL (L Arebours) 1F. 75V RDERSaUR=HIIL 2
4RIV RAICELB/NER

We can check the parts of speech of words in fugashi by using the node . pos
attribute. This part of speech information comes from UniDic and uses four
levels. You can access the individual levels as node. feature.pos1, node.
feature.pos2,andsoon. The node.pos attribute is a convenience feature
that joins the four separate values together and replaces empty values with
an asterisk (*).

You can check part of speech tags of words by giving a sentence as input with
fugashi on the command line, without giving the -0 wakati command line
argument.

lecho "BERMATRADLEDHHABEINET" | fugashi

BE <ALy wAh> BE nE-ZasA-E@ATE

0
R EAY EAS R HA-EERA-—K 0,3
B THT THT THT wA-BELA-tE-—®

(0]

Chapter 2: Tokenization, Morphological Analysis, and Dependency Parsing

< F F T HA-KHH

o N id BE-FHE

PAL AAS ANR RHT BF-—K EB-v7F EEF-—
% 0,2

mn TV TV BN LA-BELA-—8 0

®oOH A N BE-HEHEA

B hada hAvA B LR-EELF-VET&

[0]

T ¥ 2L A3 BA-EAUAE HEER RAF-
v 0

n L LIL T3 Bh#hsE BheEgaE-L)L ERF-—K

$7 YX YR 3 BHFH B®HA-YZ KIEF-—8

EOS

Censoring Unknown Words

Another thing that’ll come up as we’re testing is that sometimes words not
in the dictionary will be used, like the names of characters in movies and
books. From the example sentences above, ¥ <)L 7 Majirute, the name of
a fictional place, is an example of such a word. We basically always want to
censor those words to avoid spoilers, so rather than checking part of speech
information, we can also check specifically for words that aren’t in our dic-
tionary. These are called ”unks”, from “unknown words”, or K%1z& michigo
in Japanese. In fugashiyou can determine if a given node is in the dictionary
just by checking the node.is_unk attribute.

Looking at our example sentences, some patterns emerge. We probably
don’t want to filter verbs, since it’s hard to tell when a verb is important.
Proper nouns should definitely be filtered. Common nouns may or may not
be important, so it’s hard to say if we should filter them - for now, let’s leave
them alone.

Since our conditions for censoring words are getting kind of complicated,
let’s factor them into a function.

def should_hide(node):
"""Check if this node should be hidden or not. """
if node.is_unk:
return True
ff = node.feature

Chapter 2: Tokenization, Morphological Analysis, and Dependency Parsing

def

if ff.posl == "% 3" and ff.pos2 == "EH%H":
return True
return False

fuseji_text(text, ratio=1.0):
"""Gijven an input string, apply fuseji. """
out = []
for node 1in tagger(text):
out.append(node.white_space)
word = fuseji_node(node.surface) if should_hide(node)
else node.surface
out.append(word)

return "".join(out)
texts = [
"BAEY R,

]

for

"EEOEEEES SO,

"TEHALFEI (Mh: A rebours) IE. 75V RDERS I UR
=ANI - A14RAI >V RICKBNE",

"BARARBR TRVICEERITIZIBEHITANAODEELTWVWS",

text in texts:
print(fuseji_text(text))

B AICD
& % 0§ ¥ (3C000D
Fep L& (h: OOQIED & AB00om 1R FO00=C00- QoD

IC & 2/t

CORETHRNICEAETIZIBBRIADADEZLTWVS

Use Readings to Censor only Part of Words

At this point our program is pretty effective at applying fuseji to any text we
throw at it. That said, censoring the entire text is a little boring. It would be
more interesting if we could reveal some letters so that readers can guess
the rest of the word, but not quite be certain about it.

There is one potential issue though - if we use kanji, even one charac-
ter might give the word away in away that’s not interesting. What if we
could convert words to phonetic versions and then censor part of them?

Chapter 2: Tokenization, Morphological Analysis, and Dependency Parsing

That would allow us to show part of the word while giving away less
information.

Thankfully, UniDicincludes a field we can use for this conversion. Every word
in the UniDic dictionary has a kana field we can use to get the conventional
reading for the word in katakana form. (UniDic also has a pron field, which
uses non-standard orthography to differentiate long vowels.)

One thing to keep in mind is that the kana reading will only be available for
words in UniDic, and it won’t always be perfect. There are two cases where
the reading will be wrong:

1. The word is not in the dictionary.

2. Thereading of the word is ambiguous.

If the word is not in the dictionary, it’s possible to train a machine learning
model or use other methods to predict the reading, but that’s pretty difficult.
So this time, if a word is an unk we’ll just skip converting it and use the raw
surface form.

Ambiguous words are more difficult. Some examples of ambiguous
words:

« . higashi or azuma (or tou)
- FIM: nakada or nakata

« 1%a: kana or kamei

« #8%: amishiro or ajiro

« &M saichuu or monaka

- #h: watashi or watakushi

« B nihon or nippon

Usually a reading will be clear from context, but many ambiguous words are
proper nouns like the names of people and places, and without knowing
which specific entity it’s referring to there’s no way to be sure of the correct
reading. Even worse, there’s no way to be sure if the word you’re looking at
is ambiguous or not just using the tokenizer output.

Chapter 2: Tokenization, Morphological Analysis, and Dependency Parsing

(Note: Words written the same way but pronounced differently are referred
to as A, E & & doukei iongo or "heteronyms”. They are also common in
English, though less so for proper nouns.)

Note: For ambiguous words, deciding their reading could be considered a
form of word sense disambiguation for common nouns, or entity linking
for proper nouns. Both are NLP problems with a long history.

So how can we handle ambiguous words if we can’t even identify them with
certainty? Itturns out that their difficulty actually has asilver lining - because
even people make mistakes, we can get away with just using the kana UniDic
gives us and hope that it’s right most of the time. For serious applications
replacing the original text with a mistake would be unacceptable, but for our
fuseji application, it’s not the end of the world if we’re wrong occasionally.

Sometimes when you learn about a problem confronting your NLP system,
there may not be a solution you’re able to implement. In this case, writing a
program to disambiguate words would be much more work than the rest of
our entire program. But by being aware of the problem, we can consider how
failures affect the output of our system, and evaluate whether we should con-
tinue with its development, or start over with a design that can work around
the problem.

Now that we’ve settled that, let’s change our code to use the kana instead of
the surface when censoring words.

def fuseji_text(text, ratio=1.0):
"""Given an input string, apply fuseji. """
out = []
for node 1in tagger(text):
out.append(node.white_space)
node_text = node.surface if node.is_unk else node.
feature.kana
word = fuseji_node(node_text, ratio=0.5) if
should_hide(node) else node.surface
out.append(word)
return "".join(out)

texts = [
"EREOEMKIEH—-—F VR,
]

Chapter 2: Tokenization, Morphological Analysis, and Dependency Parsing

for text in texts:
print(fuseji_text(text))

ERB 0O EMRKIZO— 30K

And that makes our automatic fuseji program complete. It’s not a lot of code,
but in building this you learned how to:

. iterate over the tokens in a text

. identify parts of speech of interest with example sentences
. use multiple levels of part of speech tags

. check if a token isin the dictionary or an unk

. convert words to their phonetic representation

a b~ wWN =

These are all basic building blocks you can use to build a wide variety of ap-
plications.

While our motivation for this program was a simple and playful one, the tech-
niques used here are simple versions of those used in personally identi-
fying information (PII) removal, which removes identifying details from
documents like medical and legal records so they can be used in audits or
analysis without risk to the people they describe.

To learn more about the tokenizer API, consider some ways you might want
to extend this application and how you’d make the necessary changes.

« what if you wanted to remove all numbers from a contract, to hide
dates or prices?

« what if you wanted to hide a specific list of words, perhaps obscenities,
rather than certain parts of speech?

» how would you change the program to replace hard-to-read words
with their phonetic versions?

10

Chapter 5: Natural Language Generation and Conversion with Transformer

Natural Language Generation and Conversion with
Transformer

5.1 Transformer and Text Generation
What is the Transformer?

The Transformer is a neural network architecture published by Devlinetal.in
2017, The core of the architecture is a mechanism called self-attention,
which transforms a sequence of input tokens into output representations by
focusing on important tokens and taking the weighted sum of the input rep-
resentations. The technical details of the Transformer are out of the scope
of this book—interested readers are referred the wonderful blog post, The
lllustrated Transformer? by Jay Alammar. For now, you can think of it as a
powerful, high-capacity neural network architecture that transforms a set of
inputs (token embeddings) into a sequence of representations of the same
length, which you can use to solve various NLP tasks such as translation,
classification, and language modeling.

The Transformer architecture has taken the NLP field by storm and quickly
became the ”de-facto” model of choice for a wide range of tasks. In the re-
mainder of this chapter we’ll make heavy use of the Transformer to achieve
language generation and conversion.

1 https://arxiv.org/abs/1706.03762
2 https://jalammar.github.io/illustrated-transformer/

https://arxiv.org/abs/1706.03762
https://jalammar.github.io/illustrated-transformer/

Chapter 5: Natural Language Generation and Conversion with Transformer

B3 . xisx <
Output [| | [| ¢ LI 1] ¢ LT[¢« LLIT]
(I I | I A
- ‘ Feed Forward ’
]
E 5
gg| 1 f f f
n O
c C
ouw
F Self-Attention
___ 4 A T A)
wmput [[[[: LTI T]: LITTT] : LT T]
ohLohL H3 £EZAs Iz
mukashimukashi aru tokoro ni

“Once upon a fime” “some” “‘place” Loc

Figure 1: The Transformer architecture—it predicts next tokens in an
autoregressive manner.

In this section, we’ll use language models to generate Japanese text and
solve a QA (question answering) task. A language model is a statistical
model that assigns some information (probability) to a given text. Because
language models are usually trained on large datasets of naturally occurring
text, they can give high probability to sentences that are natural in that
language, or "make more sense”, and give low probability to unnatural
sentences.

One type of widely used language model is the autoregressive or causal lan-
guage model (CLM). CLMs model the probability of a particular input by first
decomposing it into a sequence of individual tokens, and then by taking the

Chapter 5: Natural Language Generation and Conversion with Transformer

product of the individual token probability given the preceeding context.

The figure above shows an illustration of a Transformer-based CLM. When
given a context (£ L © H* L mukashimukashi ”Once upon a time”), it
gives you a probability distribution over the set of tokens that could appear
next, which may include tokens such as ”. ” (Japanese comma) and & %
aru "some”. The model is trained such that it gives high probabilities to
sequences of tokens that appear in the training data.

In NLP, language models are traditionally implemented as a statistical
model of word n-grams or based on RNNs (recurrent neural networks) such
as LSTM (long short-term memory). However, as of this writing (in 2021),
most of state-of-the-art language models are implemented based on the
Transformer architecture.

Text generation

As discussed in the last section, CLMs are trained to give a probability distri-
bution over the tokens given a context. This also means that you can use a
language model to generate new text by producing tokens one at a time.

Because training language models usually require a large amount of training
dataand compute (dozens or even hundreds of GPUs), for many tasks we just
download and use pretrained language models. Popular English language
models include GPT-2*® and GPT-3*, both developed by OpenAl.

In the remainder of this section, we’ll make heavy use of the popular Hug-
gingFace Transformers® library, which supports a wide range of Transformer-
based pretrained language modelsincluding BERT® (Chapter 6) and GPT-2.

We’ll start by installing and importing libraries and modules necessary
for language generation and QA, including Transformers, HuggingFace

3 https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervi
sed_multitask_learners.pdf

4https://a rxiv.org/abs/2005.14165
5 https://github.com/huggingface/transformers
6 https://arxiv.org/abs/1810.04805

https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://arxiv.org/abs/2005.14165
https://github.com/huggingface/transformers
https://arxiv.org/abs/1810.04805

Chapter 5: Natural Language Generation and Conversion with Transformer

datasets’, as well as SentencePiece® (for tokenizing Japanese text) and
PyTorch.

%%capture

lapt-get install jq

!pip install datasets==1.11.0

!'pip install transformers==4.9.0

!pip install sentencepiece==0.1.96
!'pip install torch==1.9.0

from collections +import Counter
import json
import logging

from datasets import load_dataset

import torch
from transformers {import T5Tokenizer, AutoModelForCausallLM,
Trainer, TrainingArguments

supress logging from transformers

logging.getlLogger("transformers").setLevel(logging.ERROR)

logging.getlogger ("transformers.trainer").setLevel(logging.
ERROR

)
logging.getlLogger("datasets") .setLevel(logging.ERROR)

_ = torch.manual_seed(42)

For our Japanese autoregressive language model, we’ll use Rinna®, an open-
source Japanese GPT-2 model developed by rinna Co., Ltd.

The model can be referred to by an identifier rinna/japanese-gpt2-
medium on HuggingFace Hub (https://huggingface.co/rinna/japanese-
gpt2-medium). To use it, you just need to load the pretrained model
via the from_pretrained() method as below. Remember to initialize
a corresponding tokenizer—you need to it to process the input for the
model.

device = torch.device("cuda" if torch.cuda.is_available()
else "cpu")

Load Rinna — a Japanese GPT-2 model

7 https://github.com/huggingface/datasets
8 https://github.com/google/sentencepiece
9 https://github.com/rinnakk/japanese-pretrained-models

https://huggingface.co/rinna/japanese-gpt2-medium
https://huggingface.co/rinna/japanese-gpt2-medium
https://github.com/huggingface/datasets
https://github.com/google/sentencepiece
https://github.com/rinnakk/japanese-pretrained-models

Chapter 5: Natural Language Generation and Conversion with Transformer

tokenizer = T5Tokenizer.from_pretrained("rinna/japanese-gpt2-
medium')

tokenizer.do_lower_case = True # due to some bug of
tokenizer config loading

model = AutoModelForCausallLM.from_pretrained("rinna/japanese-
gpt2-medium") .to(device)

First, let’s try generating Japanese text with the pretrained language model.
You can either generate text from scratch, or tell the model to generate a con-
tinuation to another piece of text (called a prompt). For now we’ll generate
textthat follows the prompt” &EH L LA L. H B & C 3 1Z” mukashimukashi,
arutokoroni (Once upon a time, there was/were”).

After tokenizing the input (prompt) with the tokenizer, you can invoke the
model.generate() method to generate the continuation. The method
takes a number of parameters that control the generation process, but the
details are not important here. You can decode the results and convert
them back into text with tokenizer.decode() as below

inputs = tokenizer("THALENML. HB2& 31",
return_tensors="pt", add_special_tokens=False).to(device

)

result = model.generate(
**inputs,
do_sample=True,
top_p=0.9,
temperature=0.8,
max_length=100,
pad_token_id=2,
repetition_penalty=1.2

)

tokenizer.decode(result[0])

TRFVYRONDDHD FL o

'CHLTH L. BB BIC VL
AOEHEIOTHLESEFIVSLTWS

. ZDOERICEAWVWNESARENRZITEHL 7o Id% % e d
BHBTAD. COBLVHEDLSEENTEALL] LHZON
1B D Fo rZABRICETONTEATRZ... TTLEE
&l tEEDNITR L. FYRIBEOEEZERBLTCNEL

Chapter 5: Natural Language Generation and Conversion with Transformer

oo </s>!

You can see that Rinna was able to make up a plausible sounding story that
startswith THALEL DML, HBETB3IC. LT BFYRONDHD F LT
”Once upon a time, there was a mysterious village of foxes.”

5.2 Question answering

Generating Japanese text with a language model is interesting and fun, but
you can use language models to solve a much wider range of problems.

One such problem is question answering. Here, we’ll use a language model
to answer open-domain trivia questions such as "Which city is called 'the
navel of Hokkaido’ due to its location and is also famous for its lavender
fields?” (Can you answer this?)

Here we assume that for each question (e.g., Where’s the prefectual capital
of Aichi?) there’s a list of answer candidates (e.g., Sapporo, Sendai, Tokyo,
Nagoya, Kyoto, etc.) among which the model needs to choose the correct
answer. This means that the format is a multiple-choice question where the
model needs to rank the candidates in the order of confidence instead of
generating the answer from scratch.

Question Candidates
LR
BHRORFAE L ? Spporoshi e e
Aichi-ken no kenchd shozaichi wa? + Gyl —> guag
“Where is the prefectual capital of Aichi?z” Tokyo
gEEm —>
Nagoya-shi

Figure 2: Answering a question using a language model

How can you solve such questions with language model (LMs)? Remember
that LMs trained on a large corpus give higher probabilities (or equivalently,

Chapter 5: Natural Language Generation and Conversion with Transformer

lower losses) to more ”natural” input. As shown in the figure, you can
rerank the list of candidates by feeding a sequence like [question_text]

[answer_text] to the model for a given candidate and by measuring its
loss, which roughly corresponds to how "unexpected” the language model
thinks that particular input is. If the continuation of the question and the
candidate "makes sense,” the model will return a smaller loss. You can do
this for every choice and pick the choice that has the lowest loss value. The
following method rank_answers reranks the list of candidates based on
the question and the model (the details of the method is not important
here).

def rank_answers(question, candidates, model, tokenizer,
top_n=10):
"""Gijven a question and a list of answer candidates, rank
them based on the language model score

(negative log likelihood) and return the ranked top N
candidates."""

losses = Counter()

inputs_question = tokenizer(
question, return_tensors="pt", add_special_tokens=

False

) .to(model.device)

labels_question = -100 * torch.ones_like(
inputs_question["input_ids"], device=model.device

results = model(**inputs_question, use_cache=True)
past = results.past_key_values
for candidate 1in candidates:
inputs_candidate = tokenizer(
candidate, return_tensors="pt",
add_special_tokens=True
) .to(model.device)
attention_mask = torch.cat(
(inputs_question["attention_mask"],
inputs_candidate["attention_mask"]),
dim=1,
)
results = model(
input_ids=inputs_candidate["input_ids"],
attention_mask=attention_mask,
labels=inputs_candidate["input_ids"],
past_key_values=past,

loss = results.loss.detach().item()
losses[candidate] = -loss

Chapter 5: Natural Language Generation and Conversion with Transformer

return [a for a, v in losses.most_common(top_n)]

Let’s try a simple question: Where’s the prefectual capital of Aichi? We’ll use
a list of some prefectual capital cities in Japan as candidates.

question = "EME OB TAAEMIE?"

answers = ["ALIRT", "KED", "FHEH", "RR", "@RD",
l|m§$$|l’ ll%EEFﬁ”, |lj(\;¥ﬁi|l’ l|3%§$|l’ lllau_ll_.ﬁﬂ, |lr%_
M, “EED", "EiEH"]

rank_answers(question, answers, model, tokenizer)

['Eg®m', 'ZHEW', '€RS', 'REH', 'FHEH', 'KH
m, 'R, ‘el 'EEWH, EES']

As you see, the language model ranks Iz B Gifu-shi "Gifu city” as the top
candidate, and & E Nagoya comes second. This suggests that the model
encodes some common sense information, but it’s not perfect, at least when
it comes to Japanese prefectural capitals. But how good is Rinna for answer-
ing common sense questions, really? Let’s try to evaluate its accuracy more
thoroughly below.

Evaluate on the JAQKET dataset

Here we are going to use the JAQKET dataset'®, which is an open-domain
question answering dataset developed and distribted by Tohoku University.
The dataset includes common sense questions and their answers, where an-
swers and candidates are always drawn from Wikipedia article titles, such
as:

« Question: Which city is called "the navel of Hokkaido” due to its loca-
tion, and is also famous for its lavender fields?

« Answer: Furano

« Candidates: Furano, Nayoro, Mikasa, Makubetsu, Kitami, ...

10 https://www.nlp.ecei.tohoku.ac.jp/projects/jagket/

https://www.nlp.ecei.tohoku.ac.jp/projects/jaqket/

Chapter 5: Natural Language Generation and Conversion with Transformer

First, let’s download, format, and read the datasets (both the train and dev1
portions) so that we can evaluate the language model’s quiz answering pe-
formance on them.

tcurl "https://jagket.s3-ap-northeast-1.amazonaws.com/data/
train_questions.json" -s --output train_questions.json

delete the "original_answer" keys, which cause some
discrepancies between train and dev splits

!jq 'del(.original_answer)' -c train_questions.json >
train_questions.nooa.json

!curl "https://jagket.s3-ap-northeast-1.amazonaws.com/data/
devl_questions.json" -s --output devl_questions.json

The evaluate () method takes a list of questions and answers, evaluates
the questions with the model and the tokenizer, and return the number of
answers the model got correct.

gas = []
with open('"devl_questions.json") as f:
for line in f:
gas.append(json.loads(line))

def evaluate(qas, model, tokenizer, stop_at=None,
show_preview=False) :
num_correct = 0
num_questions = 0
for ga 1in gas:
question = ga["question"]
candidates = ga["answer_candidates'"]
gold = ga["answer_entity"]
preds = rank_answers(question, candidates, model,
tokenizer)
is_correct = preds[0] == gold
if is_correct:
num_correct += 1
if show_preview and num_questions < 5:
print(
"Q: {question}, pred: {preds[:5]}, gold: {
gold}, is_correct: {is_correct}"
)

num_questions += 1

if stop_at is not None and num_questions == stop_at:

Chapter 5: Natural Language Generation and Conversion with Transformer

break
print(
f"Success rate = {100 * num_correct / num_questions}%
({num_correct} / {num_questions})"

evaluate(gas, model, tokenizer, stop_at=100, show_preview=
True)

T

Q: BHAERMRKICAENSGDhL i IF—TIIL - 2—=ZVJ) ICRE%E
FO2HALWO—FT. 50BRABLEEZRBALLEEZES. 2MEL
BOAZELEZIAVICEVWTITIS>DIFMTL & 57, pred: [
'FUTY RV VWK, 'aAv I UTAY, "INER (
i)', 'AaTNN'], gold: Iwv U U TA, is_correct:
False

Q: Tnon-noy TEFIFLAR—ay THEFDPESy> Ty VWX
E. BTLTVWAHRAIFEZITLELS?, pred: ['EE2H
X', '"HRH', 'REHM', 'BAXEH', 'ILE'], gold
: &%, is_correct: False

Q: ™A TRZA4K—1 ®» TZDILDEE) BREDEMNH . TBS
R TARAEHICHEIATLWSEEESMEOTVEMRIEATL
£52, pred: ['RROBIEHELIHBHAN LI K-V
YNo.IREH', '"RBOBRELI?ERIR—VYBFELRE
', 'SASUKE', 'EEMMA A — LA Z—DERICEEROEL
THXFTARI VI, "VA4A X EREBRTEE~THE OPEN~"'
], gold: SASUKE, is_correct: False

%

Q: REHAATREEHITVWELZR O>FR THH D, AOICHZ TH
M) TERABNAGAIFATL &S?, pred: ['XBEF (F18
X)', '"KEF (REHILX)', 'AAF (BEX)', "BEF
(XEX)', "HEF'], gold: XEF, is_correct: False

Q: TMICDOWVWEBIIWTI CLWSEKROEENBRTHB TN D,

HATEIYAOZZFE b0 — MW AFEFEREIIATL &£
57, pred: ['"FLLY', "RFrHSH, 'O—LF v RY'
,ILYFR—ZR', "ZRF Yy F '], gold: TS5,
is_correct: False

Success rate = 13.0% (13 / 100)

As you can see from the result above, the untuned Rinna model achieves
an accuracy of 13% for the first 100 questions in the development set. Each
question has 20 candidates, so this accuracy is higher than random chance
(which is 1/20 = 5%), although not very impressive. Can we do better?

10

Chapter 5: Natural Language Generation and Conversion with Transformer

How to Fine-tune the Language Model for Solving QA

One way to improve Rinna (and any pretrained models for that matter) is
to show it a number of examples and optimize its parameters so that it can
give higher probability for the correct question-answer pairs. This process is
called fine-tuning and is the most common way to adapt a pretrained model
to another task.

Below, we’ll first load the JAQKET dataset in the JSONL format with the Hug-
gingFace dataset library. Note that we are loading both the training and the
dev splits of the dataset for training.

dataset = load_dataset('json',
data_files={'train': 'train_questions.nooa.json',
'valid': 'devl_questions.json'})

Downloading and preparing dataset json/default (download:
Unknown size, generated: Unknown size, post-processed:
Unknown size, total: Unknown size) to /home/mhagiwara/.
cache/huggingface/datasets/json/default-2f5c57cecad4651d1
/0.0.0/45636811569
ec4a6630521c18235dfbbab83b7ab572e3393c5ba68ccabe98264. . .

{"version_major":2,"version_minor":0,"model_id":""}
{"version_major":2,"version_minor":0,"model_id":""}

Dataset json downloaded and prepared to /home/mhagiwara/.
cache/huggingface/datasets/json/default-2f5c57cecad4651d1l
/0.0.0/45636811569
ec4a6630521c18235dfbbab83b7ab572e3393c5bat8ccabe98264.
Subsequent calls will reuse this data.

You can visually inspect the instances in the dataset as follows:

dataset['train'][0]

{'qid': 'ABC0O1-01-0003',
'question': 'BERAT - Hy TOHFERBECITLLS?,
'answer_entity': '7 XU AERE",
'answer_candidates': ['7 XU hERE",
IRV AN,
TR UFM,

11

Chapter 5: Natural Language Generation and Conversion with Transformer

TRV ARZTMY,

AL dYM,
'Za-—3-—-IUM',
'3 R,

-2 kSUT,
A=Yy —=I=M',
BFa—tv UM,
FH,

FH M,
SHYM,
SYRYMY,
e DA A
"ENA AN,

AU T FILZ T,
"X =F RN,
UM,

AE YR,
'original_question': 'BEARAT - v TOHFEIFE I TL &£

57?'}

IS A1

We will fine-tune the model by presenting the [question_text] [
answer_text] pairs to the language model, so we use the .map () method
of the dataset to add a new field to each instance with a concatenation of
the question and the answer.

dataset = dataset.map(
lambda example: {"text": example["question"] + example["
answer_entity"]}

)

{"version_major":2,"version_minor":0,"model_id":"389
f6bc2b792482787b1lbdesbf14737f"}

{"version_major":2,"version_minor":0,"model_id":"5025
e0fc274f414abdb22a89581514b31"}

Now let’s tokenize the concatenated text field. You can use the .map()
method again to batch process the dataset. Remember to return the label
field as well (which is basically a copy of the input_ids field)—the language
model is trained by scoring it based on its ability to reproduce the label (in
this case the input sequence) token by token.

max_length = 256

12

Chapter 5: Natural Language Generation and Conversion with Transformer

def tokenize_function(examples):

inputs = tokenizer(
examples["text"],
max_length=max_length,
padding="max_length",
truncation=True,
return_tensors="np",

)

labels = dnputs.input_ids.copy()

labels[labels == tokenizer.pad_token_id] = -100

return {
"input_ids": dnputs["input_ids"],
"attention_mask": inputs["attention_mask"],
"labels": labels,

}

tokenized_dataset = dataset.map(
tokenize_function, batched=True, batch_size=8, num_proc=4
)

The processed input looks like this. Notice that each input is padded with
padding tokens (id: 3). This is because the neural network requires every
instance in a single batch to have the same length.

print(tokenized_dataset['train'][0]['input_ids'])

[9, 8355, 149, 9255, 13, 209, 2872, 10, 550, 115, 11, 5964,
16744, 3017, 886, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3,33,3,3,3,3,3,3,3, 3,3, 3, 3,3, 3, 3, 3,
3,33,3,33,3,3,3,3,3,3,3, 3,3, 3, 3, 3, 3,
3,3,3,3,3,3,3,3,3,3, 3,3, 3, 3, 3, 3, 3, 3,
3,3,3,3,3,3,3,3,3,3,3,3, 3,3, 3, 3, 3, 3, 3,
3,3,3,3,3,3,3,3,3,3, 3,3, 3, 3,3, 3, 3, 3,
3,33,3,33,3,3,3,3,3,3, 3, 3,3, 3, 3, 3, 3,
3,3,3,3,3,3,3,3,3,3, 33, 3, 3,3, 3, 3, 3,
3,3,3,3,3,3,3,3,3,3,3,3, 3, 33, 3, 33, 3,
3,3,3,3,3,3,3,3,3,3, 3,3, 3, 3, 3, 3, 3, 3,
3,333,3,3,3,3,3,3,3,3, 3, 3,3, 3, 3, 3, 3,
3,33,3,33,3,3,3,3, 3,3, 3, 33, 33,3,
3,33,3,3,3,3,3,3, 3, 3,3, 3, 3,3, 3, 3, 3, 3,

3, 3,3, 3,3, 3]

Now we are ready to fine-tune the model. You need to specify some hyperpa-
rameters with TrainingArguments, create a Trainer instance, and invoke
the . train() method. Note that this takes a while (about an hour) even on

13

Chapter 5: Natural Language Generation and Conversion with Transformer

a fast GPU, and will probably be impossible to train on a CPU.

training_args = TrainingArguments(

output_dir = 'rinna-japanese-gpt2-medium-finetuned',
num_train_epochs = 3,
evaluation_strategy = "steps",

learning_rate=5e-5,
warmup_steps=1000,
per_device_train_batch_size = 6,
eval_steps = 200,

logging_steps = 200,
save_strategy = "no",

)

trainer = Trainer(
model=model,
args=training_args,
train_dataset=tokenized_dataset['train'],
eval_dataset=tokenized_dataset['valid'],

)

trainer.train()

Now let’s evaluate the model again. This time we get an accuracy of 51%.
Sincethere’s no question overlap between the training and the development
datasets, this means that the model didn’t get better simply by memorizing
the questions it was presented with, but it appears that it rewired the pa-
rameters in such a way that it now got better at answering a wide range of
common sense questions about Japan.

evaluate(qas, model, tokenizer, stop_at=100, show_preview=
True)

Next Steps

You can solve amuch wider range of NLP tasks with language models, and it’s
fun to think how you’d make them solve certain tasks by designing prompts
or even fine-tuning if necessary. How would do go about solving the follow-
ing tasks, for example?

« Translation. Can Rinna translate between, say, Japanese and English?
« Arithmetic. Can Rinna answer simple math questions such as 6+7=?

14

Chapter 5: Natural Language Generation and Conversion with Transformer

« Word analogy. Can Rinna answer analogy questions such as Japan is
to Yen as USAis to...?

If you need some inspration, the GPT-3 paper!! has many examples.

11 https://arxiv.org/abs/2005.14165

15

https://arxiv.org/abs/2005.14165

