CROWDS@URCING

AND SIMUEBATION
WITH MOBILE .

AGENTS AND THE
JAVASCRIPT

AGENT MACH [N EsE

,

) l

Crowdsourcing and
Simulation with Mobile
Agents and the JavaScript
Agent Machine

Riulu

N

Leanpub

Crowdsourcing and Simulation
with Mobile Agents and the
JavaScript Agent Machine

Stefan Bosse

Stefan Bosse

University of Bremen

Department of Mathematics and Computer Science
D-28359 Bremen, Germany

web: www.sblab.de

git: github.com/bslab

orcid: 0000-0002-8774-6141

email: sbosse@uni-bremen.de

Copyright © 2022 by Stefan Bosse
Print: Lulu.com

ISBN: 978-1-4710-7813-2

Preface

Using Mobile Multi-Agent Systems, this book tackles the problem
of unified and distributed computing in robust heterogeneous con-
texts, spanning from Internet Clouds to Sensor Networks. The opera-
tional gap between low-resource data processing units, such as sin-
gle microchips embedded in materials, mobile devices, and generic
computers including servers, should be closed by a unified agent
behaviour model, agent processing platform architecture, and pro-
gramming framework, supporting real-world deployment as well as
simulation. Major features include robustness, scalability, self-
organization, reconfiguration, adaptivity, and learning. This book
provides a straightforward introduction to creating JavaScript agents
using the JavaScript Agent Machine (JAM) requiring only a few
lines of code. In a short amount of time, even beginners may
develop robust multi-agent systems.

There are countless application areas, including sensor data pro-
cessing, structural health monitoring, load monitoring of technical
structures, distributed computing, distributed databases, and search,
automated design, cloud-based manufacturing, mobile crowdsensing
(MCS), and surveys. This book has a strong practical focus on
MCS. MCS is a useful tool for data mining because it views people
as sensors. In addition, agent-based simulation is addressed, finally
coupled to real worlds using MCS and digital twin concepts.

With distinct objectives in mind, intelligence and smartness can
be defined at various operational and processing levels. One com-
ponent is the capacity to adapt and be reliable in the face of sensor,
communication, node, and network failures without letting the accu-
racy and integrity of the information computed suffer.

Crowdsourcing and crowdsensing are elaborated in detail after a
brief introduction to agent-based notions. If you are solely interested
in the agent platform and its programming, you can skip this
chapter. The platform is described in connection to the agent interac-
tion and behaviour model. AgentsJS, a subset of JavaScript that is
described in depth in a separate chapter, is used to program agents.
Pre-compiled libraries and programs are added to the core program-

ming interface, including a simulator. The simulator uses JAM and
has the ability to connect to other JAM nodes, allowing for aug-
mented simulation that incorporates the real world.

Finally, an extended example chapter shows various aspects of
agent programming with Agent]JS and JAM. The software is freely
avaiable from https://github.com/bslab/jam. A lot of exercises pro-
vide a practical elaboration of agent-based methods, crowdsourcing,
and mobile or Web-based surveys.

This book is based on recent scientific work as well as on dif-
ferent lectures I have held at the University of Bremen and the
University of Koblenz-Landau. The lectures address the design and
deployment of multi-agent systems as well as mobile crowdsensing.
Bachelor and master students in computer science, production en-
gineering, and social sciences are the intended audience.

Bremen, August 2022

Stefan Bosse

Contents

1. Introduction 1
Software Paradigimsccoceeieeieriieieieieee ettt 2
ALEIIES .ttt ettt ettt b et eaee 3

AULONOMY vttt ettt ettt ettt sttt et e sbe e s sateebeebeesbee e 3
IMELTICS .ttt sttt sttt 5
MO .o 6
MoOdelling CONCEPLS ..cuveeeeeueeieeiieiieieeie et ie et et te sttt testeeneeseesreeneenes 8
Capabilities Of AGENLSc.ccevvieieiieiicieieee ettt sbeesa b sbeeesens 9
EMEIZENCE ..ooiiiiiiiiieiieieeet ettt 10
JAVASCIIPE oottt sttt aenneas 11

2. Crowdsourcing 15
OVETVIBW .ttt ettt sttt ettt ettt ettt sttt a e sa et be st 17
BASICS euttitiieiee ettt ettt 19

User-centred modelccocoviniiiiiiiniiiiiiicictneceeeeeeeeee e 22
Crowdsourcer-centred modelccccecevininciiniinincinnenceeeesene 23
REWATA ..ottt st sbe et nne b 24
Distributed Computing as CrowdSOUIrCingccceeceeeveverereenereneeneennens 25
Mobile CrOWASENSINGcceervereiriieieriiieierieseeeeie st e et sae e eneeneeseeas 26
SENSOTS ..ttt sttt b e et b e sttt sttt ebeeaesaes 29
SUIVEYS ettt ettt ettt ettt sttt et et eat et este s et et enteeaeeneenseeaes 31
STMULALION ..evitiiiieiiiterteee ettt 37
ISSUCS ittt ettt 38

3. Platforms and Agents 41
Programmingcccceveeieierienieiieiesieseetestesteeseaesaeessesesaeessessesseessessenseas 42
Virtual Machinescoecvirinieinininieietneneeetet ettt 43
Mobile and Web Deploymentccccceeeevierieeieienienieieiee e 44
Agent Processing and JavaSCriptc.coecccveerineiinieerneenerereneneneeeenes 44

4. The Agent Model 47
Activity-Transition GTaphSccceeveviereeieriesieeieiiese et eeesee e eee e sseseeensens 49
Dynamic Activity Transition Graphscccoeevevinieneninenniencneeenee 51
Composition of Multi-agent SYStemSccceeveerereeiereneeieie e 52
Interaction Of AZENLScccovveeieieriieieieieee ettt 58

vi

e Contents *

TUPIE SPACES ..eenieneieieeiee ettt ettt neeneas 58
SIENALS .ottt e 60
Software Implementationscccooceveeriereninierereeee e 60
AZENLIS e ettt 61
5. JavaScript Agent Machine 67
Agent Worlds: Virtual and Physical Nodescccccceeieieneninienienienee, 67
Agent COMMUNICALIONeveeeieieitierieiesieetieiesteeeeeaessesseeaessesseessessessesssensens 68
Agent Input-Output System (AIOS) ...ccooiriiiriniiieieeecee e 69
Code and Data Serialization with JSON+ and JSOB Representation .. 71
The AIOS Sandbox Environmentc..coceveeeeereneneeenenenieeeenennens 73
Anonymous Functions and Lambda EXpressionsccccceceevererennee. 77
Agent Scheduling and Check-pointingcccoeceeeveveeiecienenieiesieeee e 79
Scheduling BIOCKScoeiiiiiiiiiiiiiecieeeseeee e 84
AGENE ROIES ..ottt 85
Privilege LEeVEIS ..ccuiiiieieieiieiieieieet ettt 86
Security with Capabilitiesc..ccccevivieieniniiieneeeeeeeeeeeee e 87
NEZOTIALION ..eeuvieieiieieeiieieie ettt e ettt et et et este st eseestesseeneensesseeseensenes 90
Agent Process Mobility and Migrationcccccveeeenecnneccnecneneennes 92
JAM Platform CONNECIVILYc.eoeerieriirieeieniesieenieie ettt eieeee e 93
JAM NEtWOTKING ...ovviiieiieieeiieieie ettt saeeseenseseeas 93
Agent Management Port (AMP)ccccooiiviniiiiiineneeeeen 94
Software Architecture and Workflowccccocnincininincniincncnene, 100
6. AgentJS API 103
COMPULALION .eeutitieiieietieiieieete ettt sttt ettt st et st enee e eas 104
Agent ENVIFONMENToouiiiiiiriiiieiesie ettt ee 105
Agent Managementcccecueiriniinieininineieee e 109
Creation Of AZENLS .o.iecieriieiieieieeie ettt 109
Modification Of AZENtSc.cceverieierieeieieiee et 113
Control Of AZENLS ...couiiuiiiiiiiiieierteteee ettt 118
Agent COMMUNICALIONooueeuiiriieeieieriietieiesteeeeete et eee e seeeee e eseeneenae e 121
Generative Tuple-space CommuNICAtIONcevvereeeievierieeierienreeennns 122
SIZNALS .ottt 125
AGENt MODIIILY ..oooviieieiiiicieec et 127
Machine Learningcccccoecccereinireinieerinieineetneeesieeseeseeseseeenenens 130

— Vil —

e Contents *

DECiSION TTEE ..cuveveviiriiieiirierieiete ettt
Multi-layer Perceptronc.coecccreerinieoinecrinieeneieeneeneeieeneeneenne
Support Vector Machingccocceeeeienenieienieneeeeseeeeee e
Reinforcement LEarnerccccceeveveirinineneinineetecseeeeeeeeen

7. JAM for Users and Programmers
JAM LIDTATY .ottt sttt ettt e eesneene
JAM SREIL ..ottt
Shell COMMANASeeveiiiiiiiieieeeeeteeee e s
Ports and Linksccccooviiiniiiiininincinee e

AGENE CLASSESviniieiiieiiieieienteiete ettt ettt sttt
PhySical CIUSLEISeeieriiriiriieieieeiceie ettt
Virtual WOTIAS ..oovovveiiiiiieieee e
ATOS EXtENSION ...eovviiiniiiieiiiiieieiiiteeeteie ettt
JAM WeDb LabOratoryccecveeiiieieniiieeienie st
JAM MODILE APP cvveieiieiieieeie ettt ettt ettt sbebe s beesa b saeas

8. Performance
JaVaSCIIPt VML Lottt

Agent class compilation and agent Creationc....ccoeceevvecerececnnenens

IMIGLALION ..ttt ettt ettt ettt et e e b eseeneesaeene
COMMUNICALION ...vieiienietieeieieeieeeieie et ete e sseeeesesseesaesessessaessenseessensenseenes

9. Simulation with SEJAM
Concept and ATChItECTUIEceevieriiriieieie e
Simulation Model and APIccooeeieieiiieieieeceeee e
Simulation World ..c..oocioiiiiiieiee e
NetLogo API ..o
SOFEWATE ..vieiieiieiieieieee ettt ettt ettt et b et eessebeereesbensesreessesesaeas

EXAMPIE oo
10. Introduction to Augmented Simulation

Simulation of Socio-Technical SyStemsc.ccocevveevenerierenenennenennen.
Augmented VIrtualityccoccoooeieeriniiieiee e
ChAllENEES ...cvvevieeieiieieeiieieiee ettt ettt et e et eaa b e ebe b enseseees

— Viii —

e Contents *

11. Mobile Crowdsensing with JAM

SUIVEYS ottt ettt sttt sttt st sae bt et et sbe s entesie s

GEOLOCALION ...euvnviiiiiiiictctrteee ettt
MCS-DASEA SUIVEYS ..ovveeieiieiieiieieieeieeteie ettt se e esaesesae e
WED Crawlingccooueiiiiiiiiiiiiiiiieee ettt
Augmented SIMUlAtioNcccoociiiriieriiieere e
MAS for Augmented SImulationccoccevveevieniiieciene e

12. Conclusion

13. Examples

SEJAM?2 Simulation Modelcoovviiiiiiiiiiiieieeee e

Simulation World AZentccccceeeeieiinieiieneeieeeseeee e
Physical Random Walker AZentcccocevireecienienieieieeeeeeie e
Computational EXplorer AZentc..cecevereriieneneniienienienieienieseeeeniene
Computational Micro-survey AZENtccceveerereerierieneeiereeseeeeseenieens
Universal SUrVEY AZENEccocveviirieeiieiierieeiieieieeteeeeae e e e e seeseaesseseeeas
Chat Moderator AZENtcccceeevierereeiieniesieeiee ettt eee e

Web Page With JAM ..ot

14. References

15. Index

ix

1. INTRODUCTION

Agents are well known as human beings that operate on commis-
sion for another human being or company to fulfil an order mostly
autonomously. Agents are characterized by their social interaction
capabilities and social structuring. Autonomy is usually based on
planning, cognition, and knowledge.

Agents can be artificial entities, too. They can be used for model-
ling and simulating natural systems as well as for implementing
modern software with superior features. Therefore, agent-based
modelling addresses social and natural science on the one hand, and
computer science on the other hand.

Agent technology, in contrast, evolved over the past decades and
is used to implement or support intelligent systems in unreliable and
sometimes unknown environments.

Agent technology is mainly driven by:

« Symbolic Artificial Intelligence,

+ Machine Learning,

« Control Theory, and

« Distributed Computing paradigms.

Agent technology is used to master complex dynamic problems in
a wide range of fields. Intelligent behaviour is a fundamental feature
of agents [1], although the term intelligence is not defined precisely,
leading to misconceptions and misunderstanding.

Agents can be used to model and implement complex systems by
decomposing the system in simple interacting units, i.e., micro-level
modelling, in contrast to macro-level modelling, which uses one big
formula to describe the system behaviour. An agent can be a model

]

* Introduction *

or a computation paradigm.

This book addresses agent-based computation and agent-based
simulation with the JavaScript-based open source software frame-
work JAM, available for download on https://github.com/bsLab/jam.
Only basic programming skills (in JavaScript) and a Web browser or
a command terminal with node.js are required to start exploring the
world of mobile agents. Crowdsourcing is a primary application us-
ing mobile agents, discussed in detail and with working examples.

1.1 Software Paradigms

There are five major software paradigms reflecting historical
changes:

1. Machine programming;

2. Procedural programming;

3. Functional programming;

4. Object-oriented programming;

5. Agent-based goal- and role-oriented programming.

The historical development of programming paradigms is shown
in Fig. 1. There are various challenges in the development of
modern IT systems:

+ Ubiquity — 1. Unbound to a location 2. Environmental comput-
ing

« Pervasiveness — Penetration of computer science into things and
devices

« Networking of devices and programs

« Distribution and parallelization of programs

- Intelligence and learning

« Autonomy — Without central authorities and control

« Robustness — 1. The world changes 2. The world behaves in-
secure

* Introduction - Software Paradigms ¢

« Adaptivity — The world has changed
« Delegation of tasks and hierarchies

« Human-machine interface

Abstraction
[}

| role/goal-oriented | Agents, BDI
/

| object-oriented | C++, Java
/
| functional | ML, Haskell

/

procedural C, Pascal

/

command-or. Assembler

Time
Figure 1. Historical development of programming paradigms

1.2 Agents

1.2.1 Autonomy

Agents are autonomous systems interacting in a specific environ-
ment (the world). The environment can consist of data and physical
entities that can be manipulated by agents. An agent can observe the
world through sensors, creating some degree of knowledge about the
world. This knowledge can be used to plan decisions and perform
actions. Agents communicate with their environment and effect
changes in the environment. An agent is always part of the environ-
ment, too. Agents are basically characterized by their capabilities
and features, discussed in the Section 6.5. There are different under-
standings and models of agents, basically coupled to diverse

3

* Introduction - Agents *

scientific communities using agents for different purposes. The sci-
ence disciplines range from social science to computer science, with
an impact from economy, business, and production.

In computer science, the agent concept is used to establish a para-
digm shift from the traditional and still widely used client-server ar-
chitecture towards distributed agent systems performing data pro-
cessing and communication, as illustrated in Fig. 2.

Client Client Client Client

Agent

Server Server Server Server

Agent

(a) (b)

Figure 2. From the client-server communication architecture (a) to-
wards distributed agent-based and agent-controlled communication

(b)

In addition to the general agent concept, mobile agents are
defined by two concepts: Mobility and agency [2]. Mobile agents
can reduce communication costs and can increase robustness
through adaptivity and replication.

* Introduction - Agents *

1.2.2 Metrics
Agents can be classified by the following metrics:
1. Physical Agents
i. Hardware Agents
ii. Software Agents
iii. Social Agents
2. Computational Agents

i. Interface Agents (Human-Machine and
Machine)

ii. Data Processing Agents
3. Mobile Agents
i. Physical Agents

ii. Computational Agents

Machine-

In this book, two different agent classes are used in conjunction:

Physical Behavioural Agents

represent physical entities, i.e., individual artificial humans, an-
imals, vehicles, or more general machines. This agent category is
divided into hardware agents, i.e., being robots or machines, and
software agents, representing physical entities. A sub-set of
software agents are social agents, which model the behaviour and
interaction of social systems. Agents in simulation are considered
as physical agents, too, since they represent physical entities.

Computational Agents

represent software and processes performing computational tasks,
i.e., used for distributed data processing and digital communica-
tion, or implementing chatbots. Computational agents require an

Agent Processing Platform (APP) for their execution.

* Introduction - Agents *

Mobile Agents
can be considered as a super-set of physical and computational
agents. Mobility of physical agents means the capability of spatial
movement of the hardware or software agents (or the migration of
social entities). Mobility of computational agents, represented by
computational processes, means the transfer of a process snapshot
between agent processing platforms.

Among the basic agent classifications from above, dividing the
agents by their impact on and interaction with the environment,
agent-based methods can be classified by their deployment and
usage with five domains:

1. Agent-based Modelling (ABM)
Agent-based Simulation (ABS)
Agent-based Modelling and Simulation (ABMS)
Agent-based Computing (ABC)

A I

Agent-based Simulation and Computing (ABX)

This book discusses the different modelling and deployment fields
of agents and finally presents a fusion of all four levels (ABX) using
the JavaScript Agent Machine.

1.2.3 Model

An agent, independent of its classification, interacts with an en-
vironment by basically two mechanisms:

1. Perception: performing environmental sensing and interpreting
sensor values;

2. Action: performing modification of the environment.

The simplest agent behaviour model and architecture is shown in
Fig. 3 and consists of a cyclic data flow between the agent and the

—6—

* Introduction - Agents *

environment.

An agent poses a set of sensors S=(s; s, ..,s,) used for percep-
tion, and a set of actuators 4=(a,..,a,,) used for the modification
of the environment.

The basic black box model of the agent’s behaviour is a function
Ag that maps the sensor input vector S to the actuator output vector
A:

Ag <§) 5 A 1)
Action
Agent
Sensors Actors
Environment
World
Perception

Figure 3. Simple reactive agent behaviour model and architecture

Sensors can be classified in:

1. Physical Sensors - intrinsic and extrinsic measuring different
physical properties:

« Temperature (ambient, body, remote, device, component)
« Motion (Acceleration, rotation, translation)
+ Position (Global, local, absolute, relative)

+ Light (Intensity, colour, wavelength, spectrum)

* Introduction - Agents *

- Radiation (electromagnetic, nuclear)
+ Pressure (Air, loading)
+ Humidity, Moisture
2. Data-driven logical sensors delivering data from:
- WEB Content
« Data bases
« Networks
« Social Media
« Text and Graphics
3. Virtual Sensors (Aggregated from physical and logical sensors)

Actuators can be classified in:
1. Actuators that change the physical world
2. Logical Actuators (Data) modify the digital world

1.3 Modelling Concepts

There are basically two different modelling approaches for sys-
tems:

1. Top-down Modelling;
2. Bottom-up Modelling.

Top-down models start with the specification of the global system
level and divide the system model into smaller modules directly
derived from and coupled to the system level specification. The
behaviour of the system level is known in advance and can be
verified. The behaviour of the modules is directly derived from the
system level. In contrast to top-down modelling, bottom-up models
start with a set of simple interacting cells, eventually composing a
system from these cells. The system level is a result of the interac-
tion of cells and their behaviour, not known and specified in ad-

8

* Introduction - Modelling Concepts

vance. Agent-based modelling belongs to the bottom-up class.

1.4 Capabilities of Agents

An agent provides a set of features and capabilities that distin-
guish agents from traditional software:

+ Autonomy
« Self-* capabilities:
+ Self-organization

Self-coordination

Self-adaptivity

Self-optimisation

Self-learning

Self-awareness

Divide-and-Conquer enables the composition of complex systems
with simple entities similar to cellular automata

« Resilience and robustness
« Learning and adaptivity of behaviour
« Planning and Cognition
« Knowledge Representation, Induction, and Deduction
« Symbolic Reasoning
« Social capabilities like
+ Coordination
+ Cooperation

« Negotiation

* Introduction - Capabilities of Agents *

« Emergence behaviour in multi-agent systems, i.e., only the aggre-
gate behaviour of the system is relevant, not individual behaviour
of agents (and failure)

 Loosely coupling between agents and agents and the execution
platform (API)

Agents are similar to cellular automata, which are used to model
complex systems by connecting simple basic cells. The main differ-
ence between cellular automata (usually only implementing simple
input-output functions) and agents is their interaction distance,
which is short range (limited to the neighbourhood) in cellular auto-
mata and arbitrary in agent-based systems.

1.4.1 Emergence

The observation of emergent properties is the global or collective
behaviour of a system composed of a collection of loosely coupled
simple entities or agents.Emergence is a result of self-organization,
self-adaptivity, and self-coordination. On one hand, the emergent
behaviour vanishes if the system is broken down into individual
parts (operating in isolation) or if a relevant fraction of individual
parts of the system is removed. On the other hand, the removal or
malfunction of a small fraction of individual parts does not affect
the emergent properties of the global system significantly [3].

The emergent behaviour of the system can neither be modelled at
an individual entity level directly, nor at a system level by a global
function. This emergent behaviour is usually observed. Although, the
emergent behaviour is determined by the individual behaviour of the
agents. But multi-agent systems aim to reverse engineer emergent
phenomena. Typical examples are ant colonies, the economy and
trading, and the immune system.

An example of emergent behaviour is segregation, i.e., long-term
movements of individuals forming spatial clusters, e.g., in town
areas. The Shilling model is a well-known clustering model based
on very simple behaviour and interaction. The Sakoda model is less
known, but can be parametrized at an individual level. Some simula-

— 10 —

e Introduction - Capabilities of Agents *

tion results of globally visible segregation effects are shown in Fig.
4. The Sakoda model is based on an individual local utility (satisfac-
tion) function that calculates a utility to stay at the current or at
another place under specific environmental conditions (other agents
in the neighbourhood) [4].

(a) (b)

Figure 4. (a) Simulation world with 200/200 randomly distributed
artificial Sakoda behaviour agents of class a/b (blue/red squares) (b)
Simulation world with social organisation based on mobility, form-
ing strong isolated homogeneous clusters after 200 simulation steps

[4]
1.5 JavaScript

The agent processing platform as well as the programming of
agents is done with pure JavaScript. JavaScript, originally named
ECMAScript, is a partially functional and object-oriented imperative
programming language with one control flow (strict single-threaded
without pre-emption) and automatic memory management.
JavaScript programs consist of polymorphic variables and functions.
JavaScript is dynamically typed, i.e., data types and function inter-
faces are evaluated at run-time. There are basically only six defined
core data types:

1. Number (commonly double precision float)

— 11 —

* Introduction - JavaScript ¢

2. String (immutable)
3. Boolean

4. Object

5. Function

6. Undefined

Arrays and structures are both objects. Arrays are poly-sorted, i.e.,
different elements of an array can be of different data types. Arrays
are commonly created incrementally by the push operation. Array
elements are accessed by the bracket operator. Structure elements
(object properties) are accessed by the dot operator by providing the
property name as an identified. Alternatively, the property can be
selected by the bracket operator, too, by providing the name as a
string. Pure data objects (records) and arrays can be created on the

;1<10;i++) a.push(i);

var absimg=Math.pow(img.x,2)+Math.pow(img.y,2)
var structl = { x:1, y:2 }
structl.x=structl.y

struct ["y"]++;

var arrayl = [1,2,3,'A’,'B’]
arrayl[0]=array[1l]+1
function foo () { .. }

var foo2 = foo

var foo3 = function () { .. }
var food = () => { }

Object classes were originally supported by adding prototype
functions to object constructor functions:

_ 12—

* Introduction - JavaScript ¢

function cls() { this.data = g; .. }
cls.prototype.method = function () { this.data= ¢ }
var obj = new cls()

obj.method(..)

Each prototype function can access the instatiated object by using
the this variable. All objects instantiated from the same construc-
tor function share the same set of prototype functions.

A variable can hold any value, but initially the value unde-
fined.

Any value can be assigned at anytime to a variable,
including named and anonymous functions. Functions
can be serialized anytime to text again, an important
feature for object (agent) snapshots and check-
pointing. All non-cyclic and objects without prototype
bindings can be serialized to text in the JSON format.

There are only two scopes of identifiers (i.e., variables and func-
tions): The global scope and the function body scope. All variable
definitions in the same scope are merged, function definitions are
overridden in the order they appear:

var top=1

function foo (localparam) {
var local=2

}

var top=2 // overrides line 1

Function are objects, too. Each function provides at least the pro-
totype property referencing the set of dynamic functions, and can be
extended with user defined properties, e.g., static functions or data
values:

— 13—

* Introduction - JavaScript ¢

function foo () {}
foo.name = 'foo’
foo.info = function () { return foo.name }

Text serialization and deserialization of data and functions are
major features of JavaScript important for the support of mobile
agents via process snapshots.

_ 4 -

2. CROWDSOURCING

At the beginning of this chapter, a short terminology should be
introduced that will be used throughout the book:

Sensor
Physical converters that convert one physical quantity into another
physical quantity (usually analogue, electrical or digital). Exam-
ples of physical quantities are temperature, light intensity, acoustic
waves, and mechanical strain.

Virtual Sensor
Functions with an input and output interface for further process-
ing and fusion of sensor signals. Aggregate variables (e.g., aver-
age) can be computed by virtual sensors.

Sourcing
Creation of added value: Source of information with the provision
of data but also the provision of work performance; Collection of
goods;

Sensing
Process of acquisition and collection of sensor data X={x1,..,x;},
typically periodically or event-based along the longitudinal time
axis, i.e., x=x(z).

Perception
Perception and interpretation of sensory information

_J5—

	Crowdsourcing and Simulation with Mobile Agents and the JavaScript Agent Machine
	Document
	Introduction
	Software Paradigms
	Agents
	Autonomy
	Metrics
	Model

	Modelling Concepts
	Capabilities of Agents
	Emergence

	JavaScript

	Crowdsourcing
	Overview
	Basics
	User-centred model
	Crowdsourcer-centred model
	Reward

	Distributed Computing as Crowdsourcing
	Mobile Crowdsensing
	Sensors
	Surveys
	Simulation
	Issues

	Platforms and Agents
	Programming
	Virtual Machines
	Mobile and Web Deployment
	Agent Processing and JavaScript

	The Agent Model
	Activity-Transition Graphs
	Dynamic Activity Transition Graphs
	Composition of Multi-agent Systems
	Interaction of Agents
	Tuple Spaces
	Signals

	Software Implementations
	AgentJS

	JavaScript Agent Machine
	Agent Worlds: Virtual and Physical Nodes
	Agent Communication
	Agent Input-Output System (AIOS)
	Code and Data Serialization with JSON+ and JSOB Representation
	The AIOS Sandbox Environment
	Anonymous Functions and Lambda Expressions

	Agent Scheduling and Check-pointing
	Scheduling Blocks
	Agent Roles
	Privilege Levels
	Security with Capabilities
	Negotiation

	Agent Process Mobility and Migration
	JAM Platform Connectivity
	JAM Networking
	Agent Management Port (AMP)

	Software Architecture and Workflow

	AgentJS API
	Computation
	Agent Environment
	Agent Management
	Creation of Agents
	Modification of Agents
	Control of Agents

	Agent Communication
	Generative Tuple-space Communication
	Signals

	Agent Mobility
	Machine Learning
	Decision Tree
	Multi-layer Perceptron
	Support Vector Machine
	Reinforcement Learner

	JAM for Users and Programmers
	JAM Library
	JAM Shell
	Shell Commands
	Ports and Links
	Agent Classes
	Physical Clusters
	Virtual Worlds
	AIOS Extension

	JAM Web Laboratory
	JAM Mobile App

	Performance
	JavaScript VM
	Agent class compilation and agent creation
	Migration
	Communication

	Simulation with SEJAM
	Concept and Architecture
	Simulation Model and API
	Simulation World
	NetLogo API

	Software
	Example

	Introduction to Augmented Simulation
	Simulation of Socio-Technical Systems
	Augmented Virtuality
	Challenges
	Time
	Space
	Surveys and Human-in-the-Loop

	Mobile Crowdsensing with JAM
	Surveys
	Geolocation
	MCS-based Surveys
	Web Crawling
	Augmented Simulation
	MAS for Augmented Simulation

	Conclusion
	Examples
	SEJAM2 Simulation Model
	Simulation World Agent
	Physical Random Walker Agent
	Computational Explorer Agent
	Computational Micro-survey Agent
	Universal Survey Agent
	Chat Moderator Agent
	Web Page with JAM

	References
	Index

