

Introduction to Programming with Go

Learn data structures and algorithms with Go

Youri Ackx

4 Apr. 2023 (preview)

Introduction to Programming with Go Youri Ackx

This book is about computer programming and algorithms, without the formal
academic approach. Learn about recursion, complexity, data structures, and solve
classical computer scienceproblems like the Towers ofHanoi, the EightQueens and
Conway’s Game Of Life.

Contents

1 Introduction 5
1.1 It’s about programming . 5
1.2 Approach . 5
1.3 Exercises . 7
1.4 Vocabulary . 8
1.5 Abstraction . 9
1.6 First program . 10
1.7 A paper and a pen . 12
1.8 About Go . 13

2 Basic data types 14
2.1 Definition . 14
2.2 Bits and bytes . 14
2.3 Numeric . 16
2.4 Strings . 17
2.5 Overflow . 17
2.6 Abstraction vs low level . 19

3 Programming blocks 20
3.1 Variables and constants . 20
3.2 Conditional statements . 22
3.3 Loops . 23
3.4 Functions . 24
3.5 Arithmetic operators . 25
3.6 Expressions . 26

Preview 4 Apr. 2023 3

Introduction to Programming with Go Youri Ackx

4 Lists, Arrays and Slices 29
4.1 Arrays . 29
4.2 Slices . 31
4.3 Filtering . 32
4.4 Min andmax . 33
4.5 Generics . 34

5 Complex data types 35
5.1 Maps . 36
5.2 struct . 37
5.3 Interface . 38
5.4 Sets . 39

6 Go techniques 40
6.1 Pointers . 41
6.2 Concurrency (goroutines) . 42
6.3 Channels . 43
6.4 Producer‑consumer . 44

7 Programming techniques 45
7.1 Recusrsion . 46

8 Classic computer problems 47
8.1 Fibonacci numbers . 48
8.2 Hangman . 49
8.3 Eight Queens . 50
8.4 Conway’s Game Of Life . 51
8.5 Tower of Hanoi . 52
8.6 Blackjack (guided exercise) . 53

9 Credits 54

Preview 4 Apr. 2023 4

Introduction to Programming with Go Youri Ackx

1 Introduction

1.1 It’s about programming

This book is first about programming, algorithms and data structures. Of course, Go will be
our reference language, and for sure, you will learn Go along the way. But the techniques pre‑
sented in this book will also be transferable to a large extent to other programming languages
like Python, Java or C.

We will cover one single programming paradigm: imperative programming. Other paradigms
such as object oriented programming are not in the scope of this book.

We will take the time to understand what is going on under the hood. A tutorial will usually give
you a recipe to solve a specific problem, without necessarily discuss the underlying algorithm.
For instance, you can be given instructions on how to sort a list using a library or a built‑in func‑
tion, but it will probably not discuss how sorting a list actually works.

This book covers the equivalent of one semester or more of first year computer science class.
It is designed for beginners who want to acquire a good grasp on algorithms and data struc‑
tures. Teachers on the other hand can use it as a classroom support and leverage its numerous
exercises, while focusing on teaching the material.

Gomay seem a peculiar choice to learn programming. Wewill discuss the reasons of this choice
and its merits, with background information on the language.

1.2 Approach

We will take a non‑formal, intuitive and practical approach to programming, heavily based
on exercises of increasing complexity, adding the minimum amount of theory necessary as we
progress to solve them.

For beginners, the first part lays the foundation of programming. Variables, loops, conditional
statements and functions found in most languages will be presented. At this stage, you will be
able to solve simple problems, like checking if a paper fits in an enveloppe.

Wewill continuewithmore advanced data structures. Slices andmaps are the bread and butter
of Go programs. Wewill read data from files andmanipulate them. From there, you can already

Preview 4 Apr. 2023 5

Introduction to Programming with Go Youri Ackx

go a long way and write useful programs. At that point, implementing games like Blackjack or
Hangman is in reach.

Wewill extend these data structures to form lists, linked lists, queues, stack and trees tomention
the most common ones. At this intermediate level, we will talk about recursion, backtracking,
space and time complexity, finite automatons. We will solve both fun and classical academic
problems like the eight queens problem, the towers of Hanoi, or implement the classical Con‑
way’s game of life;, andmore.

Preview 4 Apr. 2023 6

Introduction to Programming with Go Youri Ackx

1.3 Exercises

This content is not available in the sample book. The book can be purchased on Leanpub at
https://leanpub.com/ipgo.

Preview 4 Apr. 2023 7

Introduction to Programming with Go Youri Ackx

1.4 Vocabulary

This content is not available in the sample book. The book can be purchased on Leanpub at
https://leanpub.com/ipgo.

Preview 4 Apr. 2023 8

Introduction to Programming with Go Youri Ackx

1.5 Abstraction

In order to write programs, we need abstractions.

Consider a hard disk drive (HDD). It is an enclosure containing rapidly rotating disks or platters,
each ofwhich is coatedwithmagneticmaterial in order to store data. Armswithmagnetic heads
move above the platters in order to read (andwrite) data that can represent an image, a song or
a poem, or more generally anything we call a file.

Figure 1: A hard drive needs an abstraction

You could read thepoemstoredon theharddrive anddisplay it on screenby sending commands
to move the heads above the right platter on the hard drive, communicating with the CPU di‑
rectly. But the task would be incredibly difficult to achieve. Every program you or someone else
writes would have to repeat the same operations, for every single data you would want to read,
and for every possible disk geometries. This would be at best a tedious task. Above all, it would
be pointless.

Maybe the hard disk drive can be seen as cyclinders and sectors that form some logical organiza‑
tion. Which it does in reality. This is a first level of abstraction. But this is still not the abstraction
we are looking for — unless we are writing specific parts of an operating system, or a HDD con‑
troller.

For sure, we have a more casual purpose. Say we want to read the poem from the disk with as
little knowledge about the underlying hardware as possible. We are interessted in retrieving the
poem, not about the low‑level hardware details.

Now consider the following program fragment:

Preview 4 Apr. 2023 9

Introduction to Programming with Go Youri Ackx

poem, err := ioutil.ReadFile("poem.txt")
defer poem.Close()
if e != nil {

panic(e)
}
fmt.Print(string(poem))

There are several things that require an explanation. What is err or panic for instance. All in
due time. For now, using a high‑level programming language, we have abstracted the process
of retrieving the information on the disk magnetic surface. In fact, the abstraction is layered:
the Go compiler provides you with a first abstraction from the operating system, which in turn
abstracts you for the processor, thememory and the hard disk. This is whatwewere looking for:
a mean to express ideas and concepts while hiding the underlying complexity and details.
It is still nice to know how a hard drive or an operating system work though. But suffice to say
it is muchmore efficient and confortable to rely on the work done by others to access a storage
medium, and focus on our program.

Note: Nowadays hard disk drives (HDD) are getting replaced by solid state drives (SDD) that
havenomechaninalmovingparts. Movingparts or not, you still want tobe abstracted from
the baremedium. By virtue of abstraction, our programabovewill still work, nomatter the
actual underlying physical media, HDD, SSD or other.

1.6 First program

Toget acquaintedwithaprogramming language, it is customary towrite aprogramthatdisplays
a friendly message. For the first chapters, you do not necessarily need to have Go installed on
your computer. You can simply enter an execute your program in the Go Playground:

package main

import "fmt"

func main() {
fmt.Println("Hello, world!")

}

This simple programalready raises several questions. What is a package, why is there an import
with "fmt" in it? One thing at the time. For now, remember that Println prints a line on the

Preview 4 Apr. 2023 10

https://en.wikipedia.org/wiki/%22Hello,_World!%22_program/
https://play.golang.org/

Introduction to Programming with Go Youri Ackx

screen. The term “print” and its variations are found in many programming languages, more
often than “display” and comes from the ancient times where the primary interface with the
computer was a printer rather than a screen. main is the program entry point. It is where the
first instruction will be executed.

This program is found by default when you open the the playground, so you don’t even have to
copy‑paste it. Mark this page, as this program will be the skeleton for many exercises we will
solve in the next chapters.

Preview 4 Apr. 2023 11

Introduction to Programming with Go Youri Ackx

1.7 A paper and a pen

This content is not available in the sample book. The book can be purchased on Leanpub at
https://leanpub.com/ipgo.

Preview 4 Apr. 2023 12

Introduction to Programming with Go Youri Ackx

1.8 About Go

This content is not available in the sample book. The book can be purchased on Leanpub at
https://leanpub.com/ipgo.

Preview 4 Apr. 2023 13

Introduction to Programming with Go Youri Ackx

2 Basic data types

2.1 Definition

A data type is a classification that specifies which type of value a data has and what type of
operations can be applied to it.

In our first program, "Hello, world!" data type is a string of characters, or simply a string. 42
is a number.

There are many ways to categorize and group data types. For instance, numbers can be further
subdived in integers (whole numbers like 1, 42) and floating points or floats (like 1.234). But you
may encounter themoremathematical term Real to designate them. It depends on the context
and… the language.

Every programming languages has primitives. They are the data types from which all other
data types are constructed. Tomakemattersmore confusing, someprimitive data typesmay be
considered derived primitive data types.

The Go language specification1 should settle the debate.

In this chapter, we shall have a look at some basic datatypes.

2.2 Bits and bytes

It is a well‑known fact that computers only understand “ones and zeros”. Themost basic unit of
information that the computer in store is called a bit. A bit can hold two possible values: 1 or
0. Actually, one and zero are merely conventions. Instead we could use on and off, or true and
false. We’ll stick to the long standing convention though.

Dealingwith 1 or 0 exclusively would be extermely cumbersome, even for a computer processor.
Bits are usually2 grouped by 8 to form a byte.

1https://go.dev/ref/spec#Types
2It is actually more complex than that. Abate can technically be of any size. But the common definition is to use
eight bits.

Preview 4 Apr. 2023 14

https://go.dev/ref/spec#Types

Introduction to Programming with Go Youri Ackx

1

bit 7

1

bit 6

1

bit 5

0

bit 4

0

bit 3

1

bit 2

0

bit 1

1

bit 0

It gives us 28 or 256 possible combinations.

What does the above byte represents? Typically, an positive number (unsigned integer). To con‑
vert it to a decimal value, multiply each bit by 2𝑘, with 𝑘 equal to the bit position. In our exam‑
ple:

1

27

128

1

26

64

1

25

32

0

24

16

0

23

8

1

22

4

0

21

2

1

20

1

1.27 + 1.26 + 1.25 + 0.24 + 0.23 + 1.22 + 0.21 + 1.20

= 1.128 + 1.64 + 1.32 + 0.16 + 0.8 + 1.4 + 0.2 + 1.1

= 128 + 64 + 32 + 4 + 1

= 229

Preview 4 Apr. 2023 15

Introduction to Programming with Go Youri Ackx

2.3 Numeric

This content is not available in the sample book. The book can be purchased on Leanpub at
https://leanpub.com/ipgo.

Preview 4 Apr. 2023 16

Introduction to Programming with Go Youri Ackx

2.4 Strings

This content is not available in the sample book. The book can be purchased on Leanpub at
https://leanpub.com/ipgo.

2.5 Overflow

If you attempt to create a numeric value that is outside of the range that can be represented
with a given number of digits, an overflow will occur. Typically, the result will “wrap around”
the maximum.

func add(a, b uint8) uint8 {
return a + b

}

func main() {
fmt.Println(add(250, 10))

}

4

(From now on, we shall omit the obvious package main and import "fmt" from our exam‑
ples.)

In this example, we are trying to add 10 to 250. The resulting 260 exceeds the capacity of uint8.
When computing, Go reaches 255 and wraps back to 0, hence a result of 4. This can be shown
with the following binary addition. It works like a the decimal addition you know, with carry,
only with 2 digits. Bits are grouped by 4 for readability. As you can see, the result has a 9th bit
on the left that won’t fit in uint8. It gets dropped, resutling in 00000100 or 4.

--uint8--
1111 1010 (250)

+ 0000 1010 (5)
= 1 0000 0100 (260)

0000 0100 (4)

It is up to theprogramauthor tomakeprovisions toavoid sucherrors. For instance, bymodifying
the return type so that it can always hold the result.

Preview 4 Apr. 2023 17

Introduction to Programming with Go Youri Ackx

Exercise: modify the program to return a larger integer, and test it.

That condition will be most likely unanticipated, leading to an incorrect or undefined behavior
of your program. This can have dire consequences.

On June 4th, 1996, an Ariane 5 rocket bursted into flames 39 seconds after liftoff3. The explo‑
sion was caused by a buffer overflow when a program tried to stuff a 64‑bit number into a 16‑
bit space. Sounds familiar? It is estimated that the explosion resulted in a loss of US$ 370m.
Fortunatelly there was no crew on board.

Figure 2: Ariane explosion was caused by buffer overflow

Sometimes, the result is less harmful. In 2014, a popular video clip caused the Youtube view
counter to overflow4, forcing Google to switch from 32 to 64 bits integer. A number of views
greater than 2 billions had not been anticipated.

The consequences were far greater in the former case than in the latter. Depending on your
context, youmay need to be extremelly wary, or you can afford to remain relatively casual while
designing and testing your program.
3https://en.wikipedia.org/wiki/Cluster_(spacecraft)#Launch_failure
4https://arstechnica.com/information‑technology/2014/12/gangnam‑style‑overflows‑int_max‑forces‑youtube‑to‑
go‑64‑bit/

Preview 4 Apr. 2023 18

https://en.wikipedia.org/wiki/Cluster_(spacecraft)#Launch_failure
https://arstechnica.com/information-technology/2014/12/gangnam-style-overflows-int_max-forces-youtube-to-go-64-bit/
https://arstechnica.com/information-technology/2014/12/gangnam-style-overflows-int_max-forces-youtube-to-go-64-bit/

Introduction to Programming with Go Youri Ackx

We can reason about a the safety of a datatype (or of a data structure) based on its purpose.

An application dealing with “small” amountsmay be confortable with int32. The numbers sup‑
ported by uint64 seem to go even beyond a banker’s wildest dreams, although today sky‑high
numbers in the financial world cast a doubt on the safest assumptions. Imagine you manipu‑
late cents rather than units in order to avoid dealing with decimal numbers. Youwouldmultiply
every number by 100. Or even by 10000 to safely manipulate 4 decimals. And suppose you do
computations on a currency like japanese yen currently at 1 JPY for 0,008 EUR, leading to further
multiply values by about 1000. Say you have to deal with consolidated results in the billions of
euros, converted to yens, counting in cents.

How safe is your initial assumption now?

To safelhy manipulate large numbers, as Go has dedicated implementations for big numbers5.
But they come at the cost of convenience, readability and performance. That is why they are not
your go‑to solution in all contexts.

2.6 Abstraction vs low level

Why not simply manipulate “integers”? Why “floating point arithmetic” and different integers?
After all, we mentionned the importance to abstract ourselves from the underlyting platform.
Some languages only expose “integers” and “decimals”, but it comes with a substantial perfor‑
mance cost. Go integers types are closer to the hardware architecture. That is a trade‑off the
languages authors decided to do, based on the intent and purpose of the language, where high
performance is key.

From a teaching perspective, this design choice gets a bit into our way as it clutters the expla‑
nations, at least at the begining. On the bright side, as far as learning goes, you are exposed
to technical underlying details that would otherwise remain hidden, and you can already get a
grasp at them.

5https://golang.org/pkg/math/big/

Preview 4 Apr. 2023 19

https://golang.org/pkg/math/big/

Introduction to Programming with Go Youri Ackx

3 Programming blocks

3.1 Variables and constants

A variable is a storage place in the computer memory used by a program. It has a name that
identifies it. For instance, we could perform the following sequence of instructions in pseudo‑
code:

h <- 'hello'
a <- 1
b <- 2
score <- a + b + 4

Which would result in:

• The variable h contains the string of characters 'hello'
• The variable a contains the value 1
• The variable b contains the value 2
• The variable score is the sum of a, b and 4, that is 7.

Or visually:

ℎ ’hello’

𝑎 1

𝑏 2

𝑏 7

The equivalent in Go is to declare the variables, and to assign them a value.

func main() {
h := "hello"
a := 1
b := 2
score := a + b + 4

}

Notice the := operator to assign a value to a variable.

Assigning variables does not do much. If you were to enter this code snippet in the program
mainmethod, the programwould execute but nothing would be displayed. Go ahead and try it
in the Go Playground.

Preview 4 Apr. 2023 20

https://play.golang.org/

Introduction to Programming with Go Youri Ackx

Playwith this small programand try to add "hello" and 2. Youwill get an errormessage, as one
can of course only perform additions on numbers.

Of course, we can print the results. We can modify our program so that it displays the sum of
three numbers.

fmt.Println(sum)

Our modified programwould unsurprisingly produce the following output:

7.5

As its name implies, a variable can vary. Or more precisely, the value it holds can vary.

a := 7
a = a + 2

What is going on?

• After the first instruction, a holds the value 7
• After the second instruction, a holds the value a+2, that is 7+2, which evaluates to 9.

As opposed to variables, we can define constants whose values cannot change once they are
set.

const a := 5
a = 6 // won't compile, already set

Preview 4 Apr. 2023 21

Introduction to Programming with Go Youri Ackx

3.2 Conditional statements

This content is not available in the sample book. The book can be purchased on Leanpub at
https://leanpub.com/ipgo.

Preview 4 Apr. 2023 22

Introduction to Programming with Go Youri Ackx

3.3 Loops

This content is not available in the sample book. The book can be purchased on Leanpub at
https://leanpub.com/ipgo.

Preview 4 Apr. 2023 23

Introduction to Programming with Go Youri Ackx

3.4 Functions

This content is not available in the sample book. The book can be purchased on Leanpub at
https://leanpub.com/ipgo.

Preview 4 Apr. 2023 24

Introduction to Programming with Go Youri Ackx

3.5 Arithmetic operators

This content is not available in the sample book. The book can be purchased on Leanpub at
https://leanpub.com/ipgo.

Preview 4 Apr. 2023 25

Introduction to Programming with Go Youri Ackx

3.6 Expressions

3.6.1 Examples

An intuitive way to start programming is to have a look at expressions. "Hello, world!" we
used in our first program is an expression. 42 is another one. 3+4 a third. The basic arithmetic
operations can be performed with +, -, * and /. You can perform complex operations, with
parenthesis if you need. The * and / operators take precedence over + and -.

We can go further. All of the following are expressions:

sumOfSquare(2, 3)
sumOfSquare(2 * 4, 3 * 2)
sumOfSquare(sumOfSquare(2, 3), 3 * 2)

7 + 2
42

3.6.2 Definitions

Expressions in Go are formally defined in the language specification. In the expression 7+2, + is
the operand. 7 and 2 are its operators. The operator’s arity is 2.

Expression:

An expression specifies the computation of a value by applying operators and functions to
operands.

Operand:

Operands denote the elementary values in an expression.

Arity:

The number of arguments or operands that a function takes.

Binary operator:

Preview 4 Apr. 2023 26

https://golang.org/ref/spec#Expressions

Introduction to Programming with Go Youri Ackx

An operator that applies to two operands. Its artity is 2.

Unary operator:

An operator that applies to one operand. The expression -7has an operator - (negate)with
one operand 7. Its arity is 1. In this case, the operator - (of arity 1) is not to be confused
with the minus mathematical operator (of arity 2).

3.6.3 Evaluation

Let’s take a non trivial yet simple case and evaluate 3+4. The expression is evaluated to 7 after
the following steps:

3 + 4
7

Our sumOfSquarewith two integers will be evaluated as follows:

sumOfSquare(2, 3)
(2 * 2) + (3 * 3)
4 + (3 * 3)
4 + 9
13

NOTE: Notice the use of parenthesis. Although mathematically not mandatory in this case, as
multiplation takes precendence over addition, they denote a group to be evaluated regardless
of arithmetic precedence considerations.

In order to evaluate sumOfSquare(2 * 4, 3 * 2), 2*4 and 3*2 must be evaluated first. Then
we fall back on the case of sumOfSquarewith two integers as parameters we already know.

sumOfSquare(2 * 4, 3 * 2)
sumOfSquare(8, 3 * 2)
sumOfSquare(8, 6)
(8 * 8) + (6 * 6)
64 + 36
100

Expression evaluation will come in handy at a later stage, when we examine the complexity of
an algorithm.

Preview 4 Apr. 2023 27

Introduction to Programming with Go Youri Ackx

3.6.4 Boolean expressions

A Boolean expression is a logical statement that is either true or false.

The expression 3 < 5 is evaluated as true while 2 < 0 is evaluated as false. You can assign
a boolean expression to a variable, for instance a = 3 < 5. In that case, a will be evaluated to
true.

You can test two values for equality with == as in 3 == 3 which of course is true. The double
equal is used toavoid confusionwith a variable assignment, as in a = 3. Which canbe confusing
in itself. Actually,most languages use == to performequality comparisons, for historical reasons.
If you want to check that two expressions are different, as in “≠”, you would use !=, like so: 3 !=
5which evaluates to true as 3 is not equal to 5.

Math Go Meaning

> > Greater than

≥ >= Greater or equal

< < Less than

≤ <= Less than or equal

= == Equal

≠ != Not equal

Although it would be pretty useless, for illustration purpose, we can write a function
isGreaterThan that checks if its first argument is greater than its second.

func isGreaterThan(a int, b int) bool {
return a > b

}

a := 3

With for instance the following evaluation steps:

isGreaterThan(5, 3)
5 > 3
true

Preview 4 Apr. 2023 28

Introduction to Programming with Go Youri Ackx

4 Lists, Arrays and Slices

4.1 Arrays

Suppose you want to manipulate several strings of characters. For instance, a shopping list,
where each string is an item. So far we have used variables to contain numeric (integer or float‑
ing point) and string values. They were single values. You can declare several variables to hold
several values, but this will quickly become cumbersome if the number of items on our list is not
known in advance, or if there are a large amount of items to purchase.

All high‑level languages offer some data structure to that effect. In many instances, the basic
building block is called an array, defined as a collection of elements (values or variables), each
identified by an index (plurals indices).

The following expression declares a variable fruits as an array of 3 strings:

var fruits [3]string

There are no fruits in the array yet, or more precisely, each fruit is the empty string.

0 1 2

fruits

You can assign actual values to an index:

fruits[0] = "apple"
fruits[2] = "banana"
fruits[1] = "orange"

Which can be represented as:

apple orange banana

0 1 2

fruits

The first element is at position 0. Using 0 rather than 1 as the index of the first element is awidely
spread convention in computer programming. There is no obligation to fill all the slots, nor to
fill them in any particular order, as shown in the example above. You can also declare the array
with its elements:

Preview 4 Apr. 2023 29

Introduction to Programming with Go Youri Ackx

fruits := [3]string{"apple", "banana", "orange"}

The compiler can count the elements for you, eliminating the need to explicitly declare how
many of them are present by using ..., like so:

fruits := [...]string{"apple", "banana", "organge"}

The array has a length, accessible with len

fmt.Println(len(fruits))

3

An array cannot be resized. Not to worry, in Go there is a more potent data structure at our
disposal called slice.

Preview 4 Apr. 2023 30

Introduction to Programming with Go Youri Ackx

4.2 Slices

This content is not available in the sample book. The book can be purchased on Leanpub at
https://leanpub.com/ipgo.

Preview 4 Apr. 2023 31

Introduction to Programming with Go Youri Ackx

4.3 Filtering

A common operation on lists is to filter values from a slice that match a certain criteria. For
instance, wehave a list of scores, ranging from0 to 20. Wewant to keep all scores equal or above
12. Putting together what we already know about loops, slices, and conditional statements, we
can write the following program:

scores := []int{12, 14, 20, 3, 10, 16}
success := make([]int, 0)
for _, score := range scores {

if score >= 12 {
success = append(success, score)

}
}
fmt.Println(success)

[12 14 20 16]

Back to the kitchen. Let’s say we want to skip every other fruits, and store the result in another
slice called skimmed. To skip fruits in our iteration, instead of incrementing with i++, we will
increase i by 2. For the sake of simplicity, wewill do something inefficient by declaring skimmed
with a length of 0 and relying only on append to expand the slice.

fruits := []string{"apple", "banana", "orange", "grapefruit"}
skimmed := make([]string, 0)
for i := 0; i < len(fruits); i = i + 2 {

skimmed = append(skimmed, fruits[i])
}
fmt.Printf("%d fruits in %v\n", len(skimmed), skimmed)

A more efficient technique would be to declare skimmed with the proper length, that is, half of
fruits length. On top of that, we would need a second index to remember where we stand
in skimmed, and that index would be different than the index in fruits. We could also have
leveraged the slice capacity, but we have left out that characterstic of slices in order to focus on
algorithms. Hopefully our naive and simple approach does the trick.

2 fruits in [apple orange]

Preview 4 Apr. 2023 32

Introduction to Programming with Go Youri Ackx

4.4 Min andmax

This content is not available in the sample book. The book can be purchased on Leanpub at
https://leanpub.com/ipgo.

Preview 4 Apr. 2023 33

Introduction to Programming with Go Youri Ackx

4.5 Generics

This content is not available in the sample book. The book can be purchased on Leanpub at
https://leanpub.com/ipgo. ## Exercises

This content is not available in the sample book. The book can be purchased on Leanpub at
https://leanpub.com/ipgo.

Preview 4 Apr. 2023 34

Introduction to Programming with Go Youri Ackx

5 Complex data types

Preview 4 Apr. 2023 35

Introduction to Programming with Go Youri Ackx

5.1 Maps

This content is not available in the sample book. The book can be purchased on Leanpub at
https://leanpub.com/ipgo.

Preview 4 Apr. 2023 36

Introduction to Programming with Go Youri Ackx

5.2 struct

This content is not available in the sample book. The book can be purchased on Leanpub at
https://leanpub.com/ipgo.

Preview 4 Apr. 2023 37

Introduction to Programming with Go Youri Ackx

5.3 Interface

This content is not available in the sample book. The book can be purchased on Leanpub at
https://leanpub.com/ipgo.

Preview 4 Apr. 2023 38

Introduction to Programming with Go Youri Ackx

5.4 Sets

This content is not available in the sample book. The book can be purchased on Leanpub at
https://leanpub.com/ipgo.

Preview 4 Apr. 2023 39

Introduction to Programming with Go Youri Ackx

6 Go techniques

This content is not available in the sample book. The book can be purchased on Leanpub at
https://leanpub.com/ipgo.

Preview 4 Apr. 2023 40

Introduction to Programming with Go Youri Ackx

6.1 Pointers

This content is not available in the sample book. The book can be purchased on Leanpub at
https://leanpub.com/ipgo.

Preview 4 Apr. 2023 41

Introduction to Programming with Go Youri Ackx

6.2 Concurrency (goroutines)

This content is not available in the sample book. The book can be purchased on Leanpub at
https://leanpub.com/ipgo.

Preview 4 Apr. 2023 42

Introduction to Programming with Go Youri Ackx

6.3 Channels

This content is not available in the sample book. The book can be purchased on Leanpub at
https://leanpub.com/ipgo.

Preview 4 Apr. 2023 43

Introduction to Programming with Go Youri Ackx

6.4 Producer‑consumer

This content is not available in the sample book. The book can be purchased on Leanpub at
https://leanpub.com/ipgo.

Preview 4 Apr. 2023 44

Introduction to Programming with Go Youri Ackx

7 Programming techniques

Preview 4 Apr. 2023 45

Introduction to Programming with Go Youri Ackx

7.1 Recusrsion

This content is not available in the sample book. The book can be purchased on Leanpub at
https://leanpub.com/ipgo.

Preview 4 Apr. 2023 46

Introduction to Programming with Go Youri Ackx

8 Classic computer problems

Preview 4 Apr. 2023 47

Introduction to Programming with Go Youri Ackx

8.1 Fibonacci numbers

This content is not available in the sample book. The book can be purchased on Leanpub at
https://leanpub.com/ipgo.

Preview 4 Apr. 2023 48

Introduction to Programming with Go Youri Ackx

8.2 Hangman

This content is not available in the sample book. The book can be purchased on Leanpub at
https://leanpub.com/ipgo.

Preview 4 Apr. 2023 49

Introduction to Programming with Go Youri Ackx

8.3 Eight Queens

This content is not available in the sample book. The book can be purchased on Leanpub at
https://leanpub.com/ipgo.

Preview 4 Apr. 2023 50

Introduction to Programming with Go Youri Ackx

8.4 Conway’s Game Of Life

This content is not available in the sample book. The book can be purchased on Leanpub at
https://leanpub.com/ipgo.

Preview 4 Apr. 2023 51

Introduction to Programming with Go Youri Ackx

8.5 Tower of Hanoi

This content is not available in the sample book. The book can be purchased on Leanpub at
https://leanpub.com/ipgo.

Preview 4 Apr. 2023 52

Introduction to Programming with Go Youri Ackx

8.6 Blackjack (guided exercise)

This content is not available in the sample book. The book can be purchased on Leanpub at
https://leanpub.com/ipgo.

Preview 4 Apr. 2023 53

Introduction to Programming with Go Youri Ackx

9 Credits

• Hard drive, Wikipedia, licensed under CC BY‑SA 3.0.

• Gopher mascot by Takuya Ueda, licensed under the Creative Commons 3.0 Attributions
license.

• Ariane 501, Copyright ESA

• Thinking monkey, photo by Juan Rumimpunu, licensed under Unsplah license.
https://unsplash.com/photos/nLXOatvTaLo

• Chessboard, Lichess.

• Tower of Hanoi, Wikipedia, licensed under CC BY‑SA 3.0.

• Fibonnaci tiles, Wikipedia, licensed under Creative Commons Attribution‑Share Alike 4.0
International

• Blackjack table, Wikipedia, licensed under Creative Commons CC0 1.0 Universal Public
Domain Dedication

• Pointer meme, u/tuunraq, Reddit, all rights reserved.

Preview 4 Apr. 2023 54

https://github.com/golang-samples/gopher-vector
https://twitter.com/tenntenn
https://www.esa.int/ESA_Multimedia/Images/1998/01/Ariane_501_explosion
https://lichess.org/
https://en.wikipedia.org/wiki/Tower_of_Hanoi#/media/File:Tower_of_Hanoi.jpeg
https://en.wikipedia.org/wiki/File:34*21-FibonacciBlocks.png
https://commons.wikimedia.org/wiki/File:Blackjack_game_1.JPG
https://www.reddit.com/r/ProgrammerHumor/comments/pyl63q/pointer_pointer_new_pointer/?rdt=40822

	Introduction
	It's about programming
	Approach
	Exercises
	Vocabulary
	Abstraction
	First program
	A paper and a pen
	About Go

	Basic data types
	Definition
	Bits and bytes
	Numeric
	Strings
	Overflow
	Abstraction vs low level

	Programming blocks
	Variables and constants
	Conditional statements
	Loops
	Functions
	Arithmetic operators
	Expressions

	Lists, Arrays and Slices
	Arrays
	Slices
	Filtering
	Min and max
	Generics

	Complex data types
	Maps
	struct
	Interface
	Sets

	Go techniques
	Pointers
	Concurrency (goroutines)
	Channels
	Producer-consumer

	Programming techniques
	Recusrsion

	Classic computer problems
	Fibonacci numbers
	Hangman
	Eight Queens
	Conway's Game Of Life
	Tower of Hanoi
	Blackjack (guided exercise)

	Credits

