
7

Mastering Ionic
Working with the MEAN stack

Express

7

James Griffiths

Mastering Ionic - Working with the MEAN stack
Saints at Play Limited

Copyright © 2017 by Saints at Play Limited

Notice of rights
All rights reserved. No part of this book may be reproduced or transmitted in any form by any means
(electronic, mechanical, photocopying, recording or otherwise) without the prior written permission of the
author.

If you have a copy of this e-book and did not pay for it you are depriving the author and publisher of their
rightful royalties. Please pay for your copy by purchasing it at Leanpub.

For all enquiries regarding obtaining permission for book reprints and excerpts please contact the author
at Leanpub.

Notice of liability
The information contained within this book is distributed on an “As Is” basis without warranty.

While every precaution has been taken in the preparation of the book and its supplied computer code,
neither the author, Saints at Play Limited (including its agents, associates and any third parties) nor the
publisher shall be held liable to any person or entity for any loss or damage howsoever caused, or alleged
to be caused, whether directly or indirectly, by the content and instructions contained within this book and/or
the supplied computer code or by the computer hardware and software products described within its pages.

Trademarks
This e-book identifies product names and services known to be trademarks, registered trademarks, or
service marks of their respective holders which are used purely in an editorial fashion throughout this
e-book.

In addition, terms suspected of being trademarks, registered trademarks, or service marks have been
appropriately capitalised, although neither the author, Saints at Play Limited (including its agents,
associates and any third parties) nor the publisher cannot attest to the accuracy of this information.

Use of a term in this book should not be regarded as affecting the validity of any trademark, registered
trademark, or service mark. Neither the author, Saints at Play Limited (including its agents, associates and
any third parties) nor the publisher are associated with any product or vendor mentioned in this book.

Thanks to...

The teams at Ionic and Angular for creating such phenomenal products that allow
millions of developers worldwide to realise their ideas quickly and easily.

The awesome developers and communities behind PHP, MySQL, SQLite, Firebase,
PouchDB, CouchDB, Docker, NodeJS, ExpressJS, MongoDB, Mongoose,
ElectronJS and rxJS.

The developers, contributors and drivers behind all of the JavaScript/TypeScript
packages and libraries used within the projects covered in this ebook - you guys are
awesome!

Every developer who ever helped answer a question that I had or a software bug that
I was trying to fix - I may have forgotten many of your names but I will always
appreciate the assistance you have provided.

Those who believed in me and gave me a chance to shine when many others didn’t
or just wouldn’t - you are not forgotten!

God above all others - without whom nothing would be possible.

Table of Contents

Introduction 5

Glossary 13

Databases - A short summary 17

MEAN - Building a YouTube playlist 30

Application development 162

Case Study - A MEAN Spotify player 178

In closing 460

Author biography 462

Project downloads 463

7

Introduction

Thank you for purchasing this digital copy of Mastering Ionic: Working with the
MEAN stack.

My goal with this ebook is to guide you through working with the MEAN stack
(MongoDB database, Express middleware routing, Angular and NodeJS) to
seamlessly integrate data into an Ionic application.

We start with exploring database concepts and terminology - for both SQL and
NoSQL databases before progressing onto developing/publishing a MEAN
powered Ionic/electron desktop application.

We’ll cover working with the MongoDB database and Mongoose API to provide
CRUD (Create, Read, Update and Delete) functionality for our Ionic applications.

Along the way we’ll work with a range of technologies and services including:

• CapacitorJS
• MongoDB/Mongoose
• NodeJS
• Express Middleware routing
• rxJS library methods

We’ll cover tips for best practice, discuss known limitations and/or potential
challenges with the services/tools that we are using and I’ll provide you with further
resources to reinforce what you’ve learnt within the pages of this e-book.

No matter what your level of experience working with the technologies that we’ll be
covering, I hope you find this e-book both useful and enjoyable and I look forward to
receiving your feedback.

What this book isn’t
If you’re looking for an in-depth technical guide into all the functionality and features
available within MongoDB, Express and NodeJS then this simply is NOT the book for
you.

Mastering Ionic: Working with the MEAN Stack

6

What is covered
This book provides detailed information on the core essentials of MongoDB,
Express and NodeJS, creating API endpoints, performing CRUD related operations
and how to integrate data from MongoDB into an Ionic frontend.

I promise you there will be plenty of useful real-world information that you can take
and use within your own projects/applications but a deep-dive into the MEAN stack
(and all of its core features) is simply not possible (as the book would have to be at
least twice as large…and even then it would only be scratching the surface).

Prerequisites
I am assuming (hopefully not wrongly!) that you already have, at the very least, a
basic understanding and level of familiarity with developing projects for web, iOS &
Android using the Ionic CLI.

You will also need to be familiar with understanding and being able to use HTML5,
Sass/CSS and Angular/TypeScript which are core languages/frameworks used
within Ionic.

I won’t be covering those languages/frameworks in depth (other than demonstrating
how they can be used throughout the projects we’ll be developing) so, if you do
require any background information/further instruction on their usage, a good place
to start would be with the following resources:

• Angular
• TypeScript
• HTML5
• Sass
• CSS

You will also need to have some familiarity/experience with command line usage as
we’ll be creating projects, page components & Angular services, installing the
required plugins and software libraries with the Ionic CLI.

Last, but not least, you’ll also need to have a basic understanding (as well as some

Introduction

7

https://angular.io
https://typescriptlang.org
https://html.com/html5/
https://sass-lang.com/
https://developer.mozilla.org/en-US/docs/Learn/CSS/First_steps/What_is_CSS

experience) with object oriented programming (otherwise referred to by its acronym
of OOP) as TypeScript is a class based OOP language (actually a superset of
JavaScript if you want to get technical).

If you’re not all that familiar with Object Oriented Programming (in the context of
TypeScript/JavaScript) then I would recommend starting with the following online
resource which should help get you up to speed.

So who am I and why should you listen to me?
I’ll answer the last part of that heading first....only if you feel you want to!

Joking aside my background in web/mobile development stretches back to 2002
when developing online projects, almost exclusively in the form of websites (as the
iPhone was still 5 years away and mobile development was, to put it mildly, an
extremely small niche due to limited possibilities with the available technologies,
tools and device/browser support - anyone reading this remember WAP?), was in a
relatively nascent stage.

Even though largely forgotten and, in many developer circles (for those of us who are
old enough to remember) widely derided and scorned, Macromedia Flash MX was
my introduction to developing websites and applications (albeit only browser and CD/
DVD-ROM based at the time).

I’m probably going to invite ridicule and exasperation with the following statement but
I loved working with that software and the possibilities it opened up for creative
experimentation, programming and designing/developing applications.
As the first decade of the twenty-first century progressed, and browser support for
language standards and features improved, it became more and more apparent that
Flash had certain limitations that working with HTML/CSS (and the re-emergence
of JavaScript as a scripting language - helped with frameworks like jQuery and
MooTools as well as a trend towards consistent browser support) didn’t.

This gradually led to more frontend focussed development as well as incorporating
PHP/MySQL into my digital toolbox.

Mastering Ionic: Working with the MEAN Stack

8

https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Objects
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Objects

Fast forward to 2010 and I’m starting my initial journey into developing mobile
applications with jQTouch and PhoneGap, subsequently followed by jQuery mobile
before finally settling on Ionic in 2014.

Along the way I’ve delivered websites and mobile/tablet applications for a variety of
clients including Halco Energy, West Midlands Police, Maplecroft, WQA, Virgin
Media, EDF Energy, Evans Cycles, Shelter and the British Science Association as
well as various digital agencies, marketing companies and small business clients.

I’d like to think, as a result of the past 20+ years, that I’ve accumulated a certain
wealth of experience, knowledge and skills that can be shared with the wider
development community in the form of my blog and, of course, my e-books.

I certainly don’t consider myself to have reached any vast summit of knowledge and,
in some respects, I feel like I’m only just starting to scratch the surface of discovering
what’s possible with all these incredible web based technologies that we have
access to now.

Just like yourself I’m still on a journey of learning, growing and maturing as a
developer...and with the rate of technological change that is continually taking place
there’s always more to learn!

Support
So you’ve purchased my e-book (or are maybe considering making a purchase) and
you might find yourself with some questions regarding how often the content is kept
updated with changes to Ionic and/or the associated technologies that are covered in
these pages, what help/assistance is available with possible development issues you
might encounter and what further resources you might be to access.

Firstly, schedule permitting (although even the best will in the world can be thwarted
by external events and circumstances), I endeavour to keep the e-book content
updated within 7 days of significant changes to Ionic and/or featured databases and
technologies.

I routinely e-mail my customers with news of updated e-book content that has been

Introduction

9

published.

Finally, all downloadable code examples for each chapter and the featured case
studies are available here.

Conventions used within this e-book
Fortunately there’s only a small number of conventions employed within this e-book
that you need to be aware of.

ALL of the code examples that are featured in each of the chapters and case studies
are displayed within a grey rectangle, which may (or may not) contains additional
comments (rendered in italics), like so:

Mastering Ionic: Working with the MEAN Stack

10

// Install the required platforms
npx cap add electron

Important information that requires your full attention is prefixed in its own paragraph
like so:

IMPORTANT

Previous code examples that have been covered/explained will, where further
additions to that script are required, be rendered with a placeholder in the following
format:

...

There will, due to the limitations imposed by the width of the page dimensions of this
e-book, be instances where code might run onto other lines. Where this occurs a
hyphen will be inserted into that line of code to indicate that the displayed code is all
part of the same line.

Use of hyphens in this specific context do NOT form part of the code logic but merely
demonstrate that the code is continuing from one line to the next.

Where external resources are mentioned/used within each chapter these are

Introduction

11

rendered in the form of hyperlinks along with an additional list of those hyperlinked
resources displayed at the end of each chapter.

Finally, each chapter will, where necessary, conclude with a summary of the key
concepts and information that has been covered.

IMPORTANT: You’ll notice, as you go through the code examples covered in each
chapter and case study, that I employ the following practice:

• Use of JSDoc syntax for commenting project component and service classes
• Specific naming conventions for class properties and methods (to help readily

identify, or hint at, the purpose of that segment of code) • Formatting the code so
it is more easily readable

You don’t have to adopt the same practice (as each developer will have their own
specific coding/formatting style) but it is a good idea to invest time into making your
code as understandable/readable as possible (which is why I employ the above
approaches in this e-book as well as my own digital projects).

After all, if you come back to a project 3 or more months later (or are working with
other developers), such efforts will help make managing the project quicker and
easier in the long run - and that can’t be a bad thing (especially if you happen to
forget why you coded something in a certain way!)

Glossary
Technical terms

Technical glossary
To wrap up the introduction to this e-book let’s quickly cover some of the keywords
and terms that we’ll be encountering/using over the following chapters.

I imagine most of you will already be familiar with these so feel free to press on to the
next chapter if that’s the case! If not, please take a few minutes to read through the
following terms and familiarise yourself with their meaning.

ACID
Acronym for Atomicity, Consistency, Isolation & Durability - a measure used to
determine how effective a database system is as at performing transactions

Angular
A front-end component-based framework for building scalable web applications that
is the default choice of framework for Ionic

API
Application Programming Interface - A set of tools for a particular software library,
framework or service that developers can utilise in their own projects

Authentication
The act of verifying that a supplied identity is genuine

Authorisation
The act of granting access to a system or service

Backend as a Service
Often referenced as the acronym BaaS refers to a cloud computing model which
allows web/mobile application developers to connect with services such as cloud
storage, push notifications and NoSQL databases through the use of dedicated
API’s/SDK’s

BASE
Acronym short for Basically Available, Soft state, Eventual consistency - a data
consistency model used by many NoSQL databases

Glossary - Technical terms

13

CapacitorJS
A cross-platform runtime API similar to Apache Cordova that is focussed on
performant mobile applications that adhere to Web Standards while accessing native
device functionality on platforms where support is available

Content Delivery Network
A Content Delivery Network, often abbreviated as CDN, is a system of distributed
servers, spanning multiple geographical locations, that allows websites and
applications to benefit from high availability of content, low network latency and
improved performance

Class based programming
A style of Object-Oriented Programming where objects are generated through the
use of classes

CLI
Command Line Interface - A software utility that allows commands to be executed
solely through text input

CRUD
Acronym for Create, Read, Update and Delete, which are common operations
performed on data

Electron
An application development framework that allows users to build cross-platform
desktop applications using HTML, CSS & JavaScript

Firebase
A Google owned/managed BaaS platform which provides a variety of cloud related
services such as Authentication, Storage, NoSQL databases & Push notifications

Hybrid Apps
Mobile applications that are typically developed using web based languages such as
HTML, CSS and JavaScript which are then able to be published within native mobile
wrappers for deployment to iOS, Android, Windows Mobile devices etc

Mastering Ionic: Working with the MEAN Stack

14

Ionic Framework
An open source application development framework for developing progressive web
apps and mobile applications

JSON
JavaScript Object Notation - A subset of the JavaScript programming language that
specifies/provides a standard for exchanging data

Node
An open-source, cross platform JavaScript environment for developing server-side
web applications

NoSQL
A type of database where data is typically stored in the form of JSON objects

Object Oriented Programming
Often referenced by its acronym of OOP - A type of programming where code is
developed based around the concept of objects and their relationship to one another

Package Manager
A tool, or collection of tools, for managing the installation, configuration, upgrading,
removal and, in some cases, browsing of software modules on a user’s computer

SDK
Software Development Kit - A suite of development tools that developers can use
with a particular software program, library or platform

Transaction
A unit of work performed within a database system

15

Glossary - Technical terms

Databases
A short summary

In its simplest definition a database is a structured container for storing data and
allowing that to be acted upon (I.e. CRUD related operations, importing/exporting
data and performing searches).

Databases come in a variety of models (and often implement schemas).

Models and schemas
A database model determines the logical structure of a database including the
relationships and constraints of how data is able to be stored and accessed.

Common database models include:

• Hierarchical
• Relational (aka Relational Database Management System [RDBMS] or SQL
database)

• Non-relational (NoSQL)
• Object-oriented
• Network

Of these the Relational and Non-relational (NoSQL) database models are the most
commonly used - at least as far as most organisations/developers are concerned.

A database schema refers to the logical grouping, organisation and structure of
objects that are used within the database (such as tables, views, indexes, stored
procedures etc).

For example, a database model may define the overall structure of the database and
how data is stored/accessed (i.e. relational or NoSQL) yet there may be one or more
schemas defining the structure, organisation and relationships between certain parts
of that database system (i.e. accounting schemas, auditing schemas, reporting
schemas etc)

Models and schemas can often be confusing to define as they are sometimes used
interchangeably or given slightly different meanings with some database systems.

Mastering Ionic: Working with the MEAN Stack

17

Relational databases
A relational database model structures, groups and organises data using:

• Tables (structures that impose a schema on the records that they contain)
• Rows (the individual records that are stored within a table)
• Columns (the distinct fields that data is stored under for each record)

Fields come in many different data types (with potential constraints and additional
flags depending on the data type being supported) which may include - for example:

• integer
• float
• text
• date
• boolean

Relationships
Tables can establish relationships with one another through the use of keys:

• Primary key - A table column where each record has a unique value
• Foreign key - A table column whose values references the primary key of

another table

Within an RDBMS there are 3 possible types of relationships between tables.

A One-to-one relationship consists of a single record on each side - for example, the
relationship between a country and its capital city (as a country will only ever have
one capital):

country

country_id

capital_id

capitals

capital_id

name

Databases - A short summary

18

A Many-to-many relationship consists of multiple entries on both sides of the
relationship. This could be represented in a movies database for example where a
single movie can feature many cast members and a cast member can feature in
many movies:

departments

department_id

name

staff

staff_id

department_id

name

films

film_id

name

cast

cast_id

name

film_cast

film_id

cast_id

A One-to-many relationship consist of a single record on one side and many records
on the other side. This could occur, for example, in a company where an employee
belongs to a single department but a department can have many employees:

Normalisation
When designing the data architecture for a SQL database system (I.e. determining
the quantity, types and nomenclature of fields used within the different tables and the
purpose of each table) it’s important to minimise data duplication to make data entry
more efficient and easier.

Mastering Ionic: Working with the MEAN Stack

19

For example if there are two or more tables that contain a product name column it
would make more sense to link these together so that data only needs to be entered
once and not multiple times for the same item.

This process of reducing data duplication to make a maximally efficient relational
database system is known as normalisation.

The use of normal forms - a guiding set of stages for which a database achieves
ever greater levels of normalisation - was introduced by computer scientist Edgar
Frank Codd in the early 1970’s.

These normalisation guidelines consist of six normal forms although, typically, if a
database is in Third Normal Form (3NF) it is generally considered to be normalised.

You can read more about database normalisation here.

SQL Queries
Users can query data within a relational database management system using SQL
(Structured Query Language) which can be simple in its instruction or increasingly
complex depending on the requirements and granularity of the query (which is where
normalisation helps by making the system more performant).

A simple query such as retrieving all book records from a single books table in
descending order of entry (i.e. most recent first) might be written as follows:

SELECT * FROM books ORDER BY book_id DESC

The SQL syntax is relatively simple and intuitive so that even to a non-database
specialist the purpose of the query would be relatively self-explanatory.

A more complex SQL query - say retrieving a list of all films, their cast members and
the studio responsible for producing that film where ticket sales grossed over $25
million dollars might look something like the following:

Databases - A short summary

20

https://en.wikipedia.org/wiki/Edgar_F._Codd
https://en.wikipedia.org/wiki/Edgar_F._Codd
https://en.wikipedia.org/wiki/Database_normalization

As you can see even with more complex queries SQL is relatively intuitive and easy
to grasp (although some of the more complex query logic can take time to mentally
parse - especially when working with different types of JOIN statements to draw data
from multiple tables).

To learn more about SQL visit this online resource.

ACID
Databases that perform transactions in a timely, reliable and efficient manner are
said to be ACID complaint.

ACID is an acronym for:

• Atomicity (all parts of a database transaction work as expected)
• Consistency (database transactions are performed as expected with no deviation

in behaviour)
• Isolation (multiple transactions can be performed concurrently without affecting

one another)
• Durability (data is saved with successful transactions even if a system failure or

power outage occurs)

Relational database systems are widely trusted due to their ACID compliance.

Real world usage
Unsurprisingly many developers and organisations make use of relational databases
to deliver their products/services (and you may likely have worked with such
databases in an educational and/or professional context).

SELECT movies.id, movies.title, cast.id, cast.name, studio.id, studio.name
FROM movies INNER JOIN cast ON cast.movieId = movies.id INNER JOIN
studio ON studio.id = movies.studioId WHERE movies.id IN (SELECT movieId
FROM movies GROUP BY sales HAVING COUNT(*) > 25000000)

Mastering Ionic: Working with the MEAN Stack

21

https://www.learnsqlonline.org

Relational database overview

Pros Cons

ACID (Atomicity, Consistency, Isolation &
Durability) compliant - ensures that a
database transaction is completed
accurately and in a timely fashion

More time-consuming and difficult to modify
pre-existing database architecture due to
constraints in the database model

Support for table joins High volume transactions can result in
decreases in performance

Ability to perform complex queries Difficult to scale with large amounts of data

Rigid, predictable structure for data Does not work well with unstructured data

Allows for many different data types Data normalisation can result in
performance penalties

Such widely used SQL databases include (but are not limited to):

• MySQL
• PostgreSQL
• MariaDB
• SQLite
• Oracle
• Microsoft SQL Server

If you’ve ever developed applications using PHP then MySQL (and possibly
PostgreSQL and MariaDB - a fork of MySQL) will likely be somewhat familiar to you.

To summarise then:

That concludes our brief and very basic introduction/overview of relational databases
(and there’s a lot more to learn…but for this book I want to keep things relatively
simple and focus only on what we need to know for working with Ionic) so we’ll now
perform a similar walkthrough with NoSQL databases.

Databases - A short summary

22

Non-relational databases
Ironically one of the strengths of relational databases is also experienced by many
organisations and developers as one of its significant weaknesses: a rigid
database architecture.

This rigid structure can be time-consuming, expensive and difficult to subsequently
modify should even minor changes in data architecture be required (such as, for
example, the addition of further fields or a change in the data types for existing
fields).

Given that modern applications consume vast amounts of data (often supplied
through third-party APIs) in the form of JSON objects SQL databases are not best
suited for storage of, nor scaling with, such data formats.

Non-relational, more popularly known as NoSQL, databases were developed to
address and meet these particular needs (amongst others).

Types of NoSQL
Instead of using tables non-relational databases store data using different models:

• Column-based (data is stored by column not row)
• Document (data is stored, often similar to JSON objects, in documents)
• Graph (data sets are represented as nodes, edges and properties with

relationships represented as edges - or lines - between nodes)
• Key-Value (items of data are stored as key-value pairs within the database)

Data is typically stored as JSON, BSON (Binary JSON) or XML depending on the
type of NoSQL database and the schema(s) that are supported.

In subsequent projects we will be working with document oriented NoSQL databases
and will explore their data storage model that uses collections, documents and fields.

Mastering Ionic: Working with the MEAN Stack

23

As there are a variety of NoSQL database models there is no one uniform language
(unlike SQL with relational database systems) that can be used to perform queries
across different systems.

For example Neo4J uses its own SQL inspired language called Cypher Query
Language which is designed to work with its graphing NoSQL database model.

Using Cypher Query Language we could (in a hypothetical Neo4J database), for
example, run the following query to retrieve all movies starring Keanu Reeves:

db.users.insert({
id: "aebd4fs001",
surname: "Bloggs",
first_name: "Joe",
email: "joe.bloggs@joebloggs.com",
age: 25,
status: "Active"
})

MATCH (keanu:Person {name: 'Keanu Reeves'})-[r:ACTED_IN]->(movie:Movie)
RETURN keanu, r, movie

Looks somewhat similar to SQL doesn’t it?

If we are using NoSQL document-oriented database MongoDB however we would
perform queries (in this case adding a new document to an hypothetical users
database collection) using Mongo Query language (MQL) like so:

Notice how even though this is called a query language it looks nothing like
traditional SQL or Cypher but shares the same dot syntax approach as working with
JavaScript?

Unlike relational databases it is more difficult to port data between different NoSQL
databases due to the different models that are used (document, graph, key-value
and column).

Databases - A short summary

24

Dropping ACID?
Many NoSQL databases sacrifice atomicity (where the integrity of the entire
database transaction is guaranteed - not just a certain part of the transaction) or
consistency (where database transactions are only successful where they meet
certain database rules) in order to achieve high performance/scalability.

Although these features make SQL databases highly reliable they can present
performance problems with high data/traffic usage as well as scaling issues - both of
which NoSQL databases are adept in addressing and overcoming.

Typically, in lieu of ACID compliance, many NoSQL databases offer BASE
properties:

• Basically Available - In the event of failure the system is guaranteed to be
available

• Soft state - Data state could change without user interaction due to eventual
consistency

• Eventual consistency - Consistency is not guaranteed at the transaction level but,
after application data input, the system will be eventually consistent once data
has replicated to all database nodes

Although BASE offers less assurances than ACID it effectively handles rapid data
changes and scales well.

Not all NoSQL databases are non-ACID compliant but this may be an issue with
organisations who require ACID compliant database in their day-to-day operations.

Advantages of NoSQL
• Can accommodate flexible data structures
• Designed to efficiently handle larger volumes of data
• Designed with an architecture to allow scaling for greater traffic
• Can be faster to develop with as the data structure allows for changes in response

to modern agile development practices (with sprints, iterations and more frequent
code changes)

Mastering Ionic: Working with the MEAN Stack

25

• NoSQL data tends to integrate more easily, due to its structure/syntax, with
JavaScript in modern cross-platform applications

• Polyglot persistence - allows for use of multiple data storage models within an
application (i.e. using document and graph databases for separate areas of an
application that require different data models)

• Minimises impedance mismatch - a term used to describe the difference between
the relational model of the database and the structure of the data that is being
saved (for example graphing data being saved in a tabular format - as in relational
database systems)

Disadvantages of NoSQL
• Difficulty in porting data between different types of NoSQL database
• Many NoSQL databases do not offer ACID compliance
• Schema-less architecture can be off-putting to some developers concerned with

maintaining data integrity
• Data is denormalised which requires mass updating (I.e. when changing a product

image)
• No standardised query language across different database models

Real world usage
Given the flexibility of architecting data structures, increased data scalability,
integration with modern web applications using JavaScript and performance it’s not
surprising that NoSQL databases have grown in popularity in recent years.

Some of the more widely used NoSQL databases include (but are not limited to):

• MongoDB
• Cloud Firestore
• Redis
• DynamoDB
• Apache Cassandra
• Neo4J
• PouchDB

Databases - A short summary

26

This then concludes our brief and very basic introduction/overview of Non-relational
(or NoSQL) databases.

Unfortunately we are simply not able to cover each NoSQL database model in this
book (graph, key-value, column and document - due to the volume of concepts
and resources that would need to be covered).

As a result of this I have deliberately focussed on document oriented solutions as
these are the most widely used NoSQL database model for many developers.

Mastering Ionic: Working with the MEAN Stack

27

Non-relational database overview

Pros Cons

Handles structured, semi-structured and
unstructured data efficiently

Schema-less architecture (data integrity
enforced from application not database)

Scales well with massive data storage Not always ACID compliant

Scales well with cloud computing
architecture

Difficult to port data between different
NoSQL database models

Allows for multiple different types of data
structures to be implemented

No standardised query language

API/data structure integrates well with
JavaScript in modern cross-platform apps

Reduced query times due to data
architecture

MongoDB and Cloud Firestore are largely familiar with many frontend/mobile app
developers due to their strong integration with JavaScript based technology stacks
(and these, as you may remember from the contents page, along with PouchDB will
be the NoSQL databases that we’ll be working with in the pages of this ebook).

To summarise then:

Databases - A short summary

28

Resources
There’s a lot more to learn about databases where SQL and NoSQL are concerned,
and we’ve only scratched the surface covering the basics with this brief chapter.

Further database resources can be explored here:

• Structured Query Language
• Types of databases
• NoSQL

https://en.wikipedia.org/wiki/SQL
https://www.mongodb.com/databases/types
https://en.wikipedia.org/wiki/NoSQL

MEAN
Building aYouTube playlist

The MEAN stack is a popular open-source development stack built on JavaScript
that uses the following four key technologies :

• MongoDB - NoSQL object-oriented database
• Express - A web application framework providing routing and middleware

functionality for more seamless front-end and backend integration
• Angular - Front-end development framework (that we’re familiar with as Ionic

developers)
• NodeJS - A backend runtime environment that allows JavaScript to be used

outside of the browser for server side scripting and writing command line tools

One of the many benefits of using the MEAN stack is the use of a single unified
language across all of the different layers of that stack: JavaScript (or, in the case of
Angular, as the superset of JavaScript known as TypeScript).

This unified language approach helps with development as we don’t need to switch
between - and learn/know - different languages for each tool (i.e. such as PHP or
SQL with the server-side LAMP stack). This also has the added benefit of not
needing to familiarise ourselves with different configurations as each of the tools in
the MEAN stack can be installed/set-up using the same, or very similar, tools
(homebrew and npm for example).

In the ever-evolving world of digital technologies you might also see similar, albeit
competing, JavaScript development stacks based on newer tools/frameworks (or
different approaches with existing technologies) such as:

• MERN (Mongo, Express, React & Node)
• MEVN (Mongo, Express, VueJS & Node)
• JAM (JavaScript, API & Markup)

Each of these different technology stacks has its pros & cons and, as with all tools, a
lot of this is determined by your working environment (if part of a development team)
and personal preferences as a developer (for example, I love working with Angular
but cannot stand React).

In this chapter we’re going to be focusing on using the MEAN stack to develop an

30

Mastering Ionic: Working with the MEAN Stack

https://www.ibm.com/cloud/learn/lamp-stack-explained
https://brew.sh/
https://www.npmjs.com/

Ionic application that leverages a Node/MongoDB backend using Express for
managing API routes and middleware functionality with all HTTP requests.

What we’ll be creating
Our Ionic/MEAN app will consist of a single page application that offers users the
following features and functionality:

• Perform YouTube searches
• Display/create/amend/delete video playlists
• Ability to assign returned YouTube videos to a selected playlist
• Remove videos from playlists
• Save playlists automatically to MongoDB

We’ll develop our database driven application, in addition to using the MEAN stack,
with the following third-party services/tools:

• YouTube API
• NGX pagination plugin

By the end of this chapter you should have a fully functioning Ionic/MEAN app that
runs on your local development environment like so:

31

MEAN - Building a YouTube playlist

32

Mastering Ionic: Working with the MEAN Stack

Our application UI is minimal and makes use of various Ionic UI components as well
as custom Angular components to manage data input and display.

Notice a pattern here? This is the same approach we have used throughout prior
projects that we have developed and covered…if it ain’t broke, don’t fix it!

YouTube video searches are performed using the search entry bar and all returned
results (assuming they exist for the supplied search term) are displayed using the Ion
Grid component:

Video playlists can be created in one of 2 ways:

• Independently using the Create a new playlist button at the top-left hand side of
the page

• When selecting a YouTube video search result to add to a playlist

The first method to create playlist simply presents the following form displayed within
an Ionic ModalController window:

33

MEAN - Building a YouTube playlist

Our second method of creating a new playlist - when selecting a YouTube video
search result - displays the selected item in an Ionic ModalController window and
allows the user to select New from the Playlist type options that are presented:

Which reveals the same form - used in our first method of creating a playlist - this
time within an Ion Accordion component:

34

Mastering Ionic: Working with the MEAN Stack

If the user had selected an existing playlist from the radio buttons options in the
modal window (when assigning the selected search result entry) then this is what
they would be presented with instead:

Once the completed form has been submitted and saved as a new document in
MongoDB our newly created playlist is displayed on the application’s home page as
the first entry in all of the saved playlists:

35

MEAN - Building a YouTube playlist

Playlists can be edited, viewed and removed using the following icons situated at the
bottom of each playlist listed on the HomePage component view:

• Pencil - Edit the selected playlist
• Search - View the selected playlist (and any videos that it may contain)
• Trash - Delete this playlist (and all videos that it may contain)

36

Mastering Ionic: Working with the MEAN Stack

Editing a playlist publishes the same form that we used to create a playlist within an
Ionic ModalController window (with those fields pre-filled with saved data for that
selected playlist):

Viewing a playlist displays the image associated with that playlist (if one has been
selected by the user), the title and description for that playlist along with any
associated videos displayed underneath this:

37

MEAN - Building a YouTube playlist

Deleting a playlist simply updates the UI (in addition to deleting that document from
the MongoDB collection):

The application itself is fairly simple but is split across the following areas:

• Ionic frontend
• Express routing/middleware logic
• Node server
• MongoDB instance

Let’s start by creating the frontend aspect of our application, install the necessary
modules and generate the different component/services that we require.

After we complete this step we’ll focus on creating/configuring the Node, Express
and MongoDB backend aspect of the application.

Laying the Ionic foundations
Open up your command line terminal of choice, navigate to a preferred location on
your computer and start with creating a new directory titled app.

Within this app directory create a new ionic project named ionic-youtube and,
once completed, generate the necessary Angular services, custom components and
TypeScript interfaces before finishing off with installing the required npm packages:

38

Mastering Ionic: Working with the MEAN Stack

mkdir app
cd ./app
ionic start ionic-youtube blank --type=angular
// Select NgModules from the menu options prompt
cd ./ionic-youtube
ionic generate interface interfaces/playlist
ionic generate interface interfaces/video
ionic generate component components/create-playlist
ionic generate component components/manage-videos-for-playlist
ionic generate component components/view-playlist
ionic generate module components/shared-components
ionic generate service services/data-change-listener
ionic generate service services/playlists
ionic generate service services/utilities
ionic generate service services/youtube
npm install --save ngx-pagination

Let’s quickly cover the following components, services and interfaces we have just
generated for this project so we are familiar with their intended purpose/function:

• interfaces/playlist - defines the expected structure for our playlist data
• interfaces/video - defines the expected structure for returned YouTube videos

in search results
• components/create-playlist - Allows playlists to be created for the application
• components/manage-videos-for-playlist - Allows selected video from YouTube

search results to be added to a playlist (existing or one that is created on-the-fly)
• components/view-playlist - Allows details of the playlist and all assigned videos

to be viewed
• components/shared-components/shared-components.module.ts - Feature

module to allow custom components to be exported for use in other parts of the
application

• services/data-change-listener.service.ts - cross-component communication for
notification of changes to data

• services/playlists.service.ts - manages the creation/amendment/removal and
retrieval of playlists

• services/utilities.service.ts - supplies utility methods for use throughout the
application

• services/youtube.service.ts - Performs YouTube video search by keywords and
returns any matching results

We’ll return to these later and cover them in more depth but first let’s turn our
attention to the server side of the application.

Routing, middleware and databases
The backend for our application consists of NodeJS for our server, Express for
routing and middleware management and MongoDB for data storage and retrieval.

Before we go any further we need to ensure these are installed on and, where
necessary, configured for our system - starting with our web server.

If you haven’t already installed the latest version of node on your development
environment then download the installer for your particular system and follow the
installer steps before proceeding.

If this is already in place then we can move swiftly onto our next step…

Installing & configuring MongoDB
The simplest and quickest way to install MongoDB on Linux/Mac OS is using the
package manager tool Homebrew.

If you don't have Homebrew currently installed on your Mac OS system then run the
following from the command line to rectify this:

MEAN - Building a YouTube playlist

39

/bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/
HEAD/install.sh)"

Alternative installation options for Homebrew can also be found here.

Once Homebrew has been successfully installed simply run the following command
to install the Community Edition of MongoDB to your system:

https://nodejs.org/en/download/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-os-x/
https://brew.sh
https://docs.brew.sh/Installation

Mastering Ionic: Working with the MEAN Stack

40

brew install mongodb

Be sure to follow the steps listed here to successfully run the installed MongoDB
software.

With MongoDB now installed on our machine let's explore the underlying database
and concepts before taking a little sidestep and exploring a GUI application that we
can use to interact with created databases.

Data modelling according to Mongo
MongoDB, as explained earlier, is a document database solution that stores data in
the form of JSON object-based documents. If you're familiar with SQL databases
then it might be a little 'odd' at first to understand how document-oriented databases
tackle data storage.

Simply put a MongoDB database instance is structured around the use of collections,
documents and fields.

Broadly speaking a collection can be thought of in similar terms to a SQL database
table; it is used to store category specific data (I.e. user details, restaurant locations,
film genres etc).

A document, if we continue our comparison with SQL terms, can be seen as the
individual 'row' of data within a collection.

Finally, a field in a document can be thought of as a column in a SQL table. Similar
to their SQL column counterparts a field is able to be defined by particular data types
(such as String, Boolean, Date etc) and indexes where required.

It's important to note that each document can have different fields applied to it if and
where required, which makes document-oriented databases like MongoDB, radically
different from traditional SQL databases with their strict schemas.

For the purposes of this tutorial we're going to maintain a strict schema for the
documents within our MongoDB database instance using a node package called

https://www.mongodb.com/docs/manual/tutorial/install-mongodb-on-os-x/#run-mongodb

Mongoose which will allow us to map objects to data (more on this later).

With this conceptual map in place let's quickly explore a GUI tool that we can use to
interface with MongoDB databases.

Studio 3T
Formerly known as Robo 3T Studio 3T is a free, open-source, cross platform GUI
tool (Windows, Mac OS and Linux) for managing local MongoDB databases.

Once MongoDB has been installed on your system you can simply interface with the
software through the Studio 3T tool instead of the command line (which although
not inefficient can be tedious at times to work with - no matter how hardcore a
developer you might be it's hard to argue against the benefits of a GUI when it
comes to data management).

For example, you can view a collection's documents in tree view:

MEAN - Building a YouTube playlist

41

Alternatively, you can choose to view a collection's documents in a table view instead
(which, depending on the number of fields - and their types/quantity of data, doesn’t
always make for the most effective UI to engage with said data):

Mastering Ionic: Working with the MEAN Stack

42

Or maybe just opt for a document view instead (which is my personal favourite as it
directly mirrors working with code):

Documents can be individually managed by right-clicking on the selected document
to present a contextual menu listing the available options:

MEAN - Building a YouTube playlist

43

The selected document is then opened within a modal window and able to be edited
in-situ:

As you've no doubt gathered from the above screen captures Studio 3T makes
interfacing with and managing MongoDB database collections and documents quick
and easy to accomplish. With such a well designed, intuitive and user friendly
interface the software is a must-have for any developer working with MongoDB (and

it certainly beats using the command line - although Studio 3T does offer that facility
too).

One word of caution though - the Studio 3T price tag is quite hefty unless you are
working almost exclusively with MongoDB (and generating decent income from your
particular products/services to justify purchasing a full license):

In the context of this project we'll only be using Studio 3T to test the results of
managing the MongoDB data with our Ionic/Node application (but it's a tool you
might want to consider using in your own MongoDB projects - if you aren't already).

Setting the server side foundation
Remember earlier when we generated the Ionic project with its Angular components,
services & interfaces that we did so within a sub-directory that we created with the
name of app?

The app sub-directory is the container for all of the front-end of our application.

Now we need to create the container for the server-side of our application.

Navigate to the parent directory that contains the app sub-directory and create

44

Mastering Ionic: Working with the MEAN Stack

another sub-directory with the name of server.

You should now have the following directory structure (I have named the parent
containing directory ionic-youtube just to identify the overall name of the project):

45

MEAN - Building a YouTube playlist

ionic-youtube

app

server

npm install --save body-parser
npm install --save cors
npm install --save express
npm install --save mongoose
npm install --save uuid4
npm install --save nodemon

Backend setup
Open your system CLI and navigate to the root of the server directory before running
the following command to generate a node project:

npm init

With each CLI prompt that is subsequently displayed (these are used to generate the
package.json file for the project) simply accept all the defaults before running the
following packages:

As you are no doubt aware node has a large ecosystem of packages that can be
added to projects so let's take a moment to walk through each of the above and
discuss why they are installed for this project.

• Express - a web application framework for node that provides features such as
routing (defining navigation paths within the application), HTTP utility methods

https://expressjs.com/

46

Mastering Ionic: Working with the MEAN Stack

End of preview

