Working with PouchDB

James Griffiths

Mastering lonic - Working with PouchDB

Saints at Play Limited

Copyright © 2017 by Saints at Play Limited

Notice of rights

All rights reserved. No part of this book may be reproduced or transmitted in any form by any means
(electronic, mechanical, photocopying, recording or otherwise) without the prior written permission of the
author.

If you have a copy of this e-book and did not pay for it you are depriving the author and publisher of their
rightful royalties. Please pay for your copy by purchasing it at Leanpub.

For all enquiries regarding obtaining permission for book reprints and excerpts please contact the author
at Leanpub.

Notice of liability
The information contained within this book is distributed on an “As Is” basis without warranty.

While every precaution has been taken in the preparation of the book and its supplied computer code,
neither the author, Saints at Play Limited (including its agents, associates and any third parties) nor the
publisher shall be held liable to any person or entity for any loss or damage howsoever caused, or alleged
to be caused, whether directly or indirectly, by the content and instructions contained within this book and/or
the supplied computer code or by the computer hardware and software products described within its pages.

Trademarks

This e-book identifies product names and services known to be trademarks, registered trademarks, or
service marks of their respective holders which are used purely in an editorial fashion throughout this
e-book.

In addition, terms suspected of being trademarks, registered trademarks, or service marks have been
appropriately capitalised, although neither the author, Saints at Play Limited (including its agents,
associates and any third parties) nor the publisher cannot attest to the accuracy of this information.

Use of a term in this book should not be regarded as affecting the validity of any trademark, registered
trademark, or service mark. Neither the author, Saints at Play Limited (including its agents, associates and
any third parties) nor the publisher are associated with any product or vendor mentioned in this book.

Thanks to...

The teams at lonic and Angular for creating such phenomenal products that allow
millions of developers worldwide to realise their ideas quickly and easily.

The awesome developers and communities behind PHP, MySQL, SQLite, Firebase,
PouchDB, CouchDB, Docker, NodedS, ExpressJS, MongoDB, Mongoose,
ElectrondS and rxJS.

The developers, contributors and drivers behind all of the JavaScript/TypeScript
packages and libraries used within the projects covered in this ebook - you guys are
awesome!

Every developer who ever helped answer a question that | had or a software bug that
| was trying to fix - | may have forgotten many of your names but | will always
appreciate the assistance you have provided.

Those who believed in me and gave me a chance to shine when many others didn’t
or just wouldn’t - you are not forgotten!

God above all others - without whom nothing would be possible.

Table of Contents

Introduction 5
Glossary 12
Databases - A short summary 16
PouchDB - Database API abstraction layer 29
Application development 127
Case Study - PouchDB Jigsaw 143
In closing 293
Author biography 294

Project downloads 295

Introduction

Mastering lonic: Working with PouchDB

Thank you for purchasing this digital copy of Mastering lonic: Working with
PouchDB.

My goal with this ebook is to guide you through working with the frontend database
PouchDB to seamlessly integrate this within an lonic/Angular front-end (whether
this is to be delivered via the browser or as an Electron desktop app).

We start with exploring database concepts and terminology - for both SQL and
NoSQL databases before progressing onto 2 separate projects featuring applications
powered by lonic/PouchDB.

Within each project that we cover we’ll work with the simple, but powerful, PouchDB
API and leverage its features to provide CRUD (Create, Read, Update and Delete)
functionality for our lonic applications.

Along the way we’ll work with a range of technologies and services including:

« CapacitordS

« Custom Search JSON API

« Google’s Programmable Search engine
« rxJS library methods

« ElectrondS.

We’'ll cover tips for best practice, discuss known limitations and/or potential
challenges with the services/tools that we are using and I'll provide you with further
resources to reinforce what you’ve learnt within the pages of this e-book.

No matter what your level of experience working with the technologies that we’ll be
covering, | hope you find this e-book both useful and enjoyable and | look forward to
receiving your feedback.

What this book isn’t

If you’re looking for an in-depth technical guide into all the functionality and features
of PouchDB - including every API method that the database offers then this simply is
NOT the book for you (you can access the online documentation for that purpose).

https://pouchdb.com/api.html

Introduction

What is covered

This book provides detailed information on the core essentials of PouchDB and
working with its most commonly used APl methods, performing CRUD related
operations and how to integrate data from PouchDB into an lonic frontend.

| promise you there will be plenty of useful real-world information that you can take
and use within your own projects/applications but a deep-dive into PouchDB

(and all of its core features) is simply not possible (as the book would have to be at
least twice as large to accommodate this...and even then it would only be scratching
the surface).

Prerequisites

| am assuming (hopefully not wrongly!) that you already have, at the very least, a
basic understanding and level of familiarity with developing projects for web, iOS &
Android using the lonic CLI.

You will also need to be familiar with understanding and being able to use HTMLS5,
Sass/CSS and Angular/TypeScript which are core languages/frameworks used
within lonic.

| won’t be covering those languages/frameworks in depth (other than demonstrating
how they can be used throughout the projects we’ll be developing) so, if you do
require any background information/further instruction on their usage, a good place
to start would be with the following resources:

You will also need to have some familiarity/experience with command line usage as
we’ll be creating projects, page components & Angular services, installing the
required plugins and software libraries as well as deploying projects to Electron with
the lonic CLI.

https://angular.io
https://typescriptlang.org
https://html.com/html5/
https://sass-lang.com/
https://developer.mozilla.org/en-US/docs/Learn/CSS/First_steps/What_is_CSS

Mastering lonic: Working with PouchDB

Last, but not least, you’ll also need to have a basic understanding (as well as some
experience) with object oriented programming (otherwise referred to by its acronym
of OOP) as TypeScript is a class based OOP language (actually a superset of
JavaScript if you want to get technical).

If you’re not all that familiar with Object Oriented Programming (in the context of
TypeScript/JavaScript) then | would recommend starting with the following online
resource which should help get you up to speed.

So who am | and why should you listen to me?
I’ll answer the last part of that heading first....only if you feel you want to!

Joking aside my background in web/mobile development stretches back to 2002
when developing online projects, almost exclusively in the form of websites (as the
iPhone was still 5 years away and mobile development was, to put it mildly, an
extremely small niche due to limited possibilities with the available technologies,
tools and device/browser support - anyone reading this remember WAP?), was in a
relatively nascent stage.

Even though largely forgotten and, in many developer circles (for those of us who are
old enough to remember) widely derided and scorned, Macromedia Flash MX was
my introduction to developing websites and applications (albeit only browser and CD/
DVD-ROM based at the time).

I’m probably going to invite ridicule and exasperation with the following statement but
| loved working with that software and the possibilities it opened up for creative
experimentation, programming and designing/developing applications.

As the first decade of the twenty-first century progressed, and browser support for
language standards and features improved, it became more and more apparent that
Flash had certain limitations that working with HTML/CSS (and the re-emergence

of JavaScript as a scripting language - helped with frameworks like jQuery and
MooTools as well as a trend towards consistent browser support) didn’t.

This gradually led to more frontend focussed development as well as incorporating
PHP/MySQL into my digital toolbox.

https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Objects
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Objects

Introduction

Fast forward to 2010 and I'm starting my initial journey into developing mobile
applications with jQTouch and PhoneGap, subsequently followed by jQuery mobile
before finally settling on lonic in 2014.

Along the way I've delivered websites and mobile/tablet applications for a variety of
clients including Halco Energy, West Midlands Police, Maplecroft, WQA, Virgin
Media, EDF Energy, Evans Cycles, Shelter and the British Science Association as
well as various digital agencies, marketing companies and small business clients.

I’d like to think, as a result of the past 20+ years, that I've accumulated a certain
wealth of experience, knowledge and skills that can be shared with the wider
development community in the form of my blog and, of course, my e-books.

| certainly don’t consider myself to have reached any vast summit of knowledge and,
in some respects, | feel like I'm only just starting to scratch the surface of discovering
what’s possible with all these incredible web based technologies that we have
access to now.

Just like yourself I'm still on a journey of learning, growing and maturing as a
developer...and with the rate of technological change that is continually taking place
there’s always more to learn!

Support

So you’ve purchased my e-book (or are maybe considering making a purchase) and
you might find yourself with some questions regarding how often the content is kept
updated with changes to lonic and/or the associated technologies that are covered in
these pages, what help/assistance is available with possible development issues you
might encounter and what further resources you might be to access.

Firstly, schedule permitting (although even the best will in the world can be thwarted
by external events and circumstances), | endeavour to keep the e-book content
updated within 7 days of significant changes to lonic and/or featured technologies.

| routinely e-mail my customers with news of updated e-book content that has been
published.

Mastering lonic: Working with PouchDB

Finally, all downloadable code examples for each chapter are available here.

Conventions used within this e-book
Fortunately there’s only a small number of conventions employed within this e-book
that you need to be aware of.

ALL of the code examples that are featured in each of the chapters and case studies
are displayed within a grey rectangle, which may (or may not) contains additional
comments (rendered in italics), like so:

// Install the required platforms
npx cap add electron

Important information that requires your full attention is prefixed in its own paragraph
like so:

IMPORTANT

Previous code examples that have been covered/explained will, where further
additions to that script are required, be rendered with a placeholder in the following
format:

There will, due to the limitations imposed by the width of the page dimensions of this
e-book, be instances where code might run onto other lines. Where this occurs a
hyphen will be inserted into that line of code to indicate that the displayed code is all
part of the same line.

Use of hyphens in this specific context do NOT form part of the code logic but merely
demonstrate that the code is continuing from one line to the next.

Where external resources are mentioned/used within each chapter these are

rendered in the form of hyperlinks along with an additional list of those hyperlinked
resources displayed at the end of each chapter.

10

Introduction

Finally, each chapter will, where necessary, conclude with a summary of the key
concepts and information that has been covered.

IMPORTANT: You’ll notice, as you go through the code examples covered in each
chapter and case study, that | employ the following practice:

« Use of JSDoc syntax for commenting project component and service classes

+ Specific naming conventions for class properties and methods (to help readily
identify, or hint at, the purpose of that segment of code)

« Formatting the code so it is more easily readable

You don’t have to adopt the same practice (as each developer will have their own
specific coding/formatting style) but it is a good idea to invest time into making your
code as understandable/readable as possible (which is why | employ the above
approaches in this e-book as well as my own digital projects).

After all, if you come back to a project 3 or more months later (or are working with
other developers), such efforts will help make managing the project quicker and
easier in the long run - and that can’t be a bad thing (especially if you happen to
forget why you coded something in a certain way!)

11

Glossary
Technical terms

Glossary - Technical terms

Technical glossary
To wrap up the introduction to this e-book let’s quickly cover some of the keywords
and terms that we’ll be encountering/using over the following chapters.

| imagine most of you will already be familiar with these so feel free to press on to the
next chapter if that’s the case! If not, please take a few minutes to read through the
following terms and familiarise yourself with their meaning.

ACID
Acronym for Atomicity, Consistency, Isolation & Durability - a measure used to
determine how effective a database system is as at performing transactions

Angular
A front-end component-based framework for building scalable web applications that
is the default choice of framework for lonic

API
Application Programming Interface - A set of tools for a particular software library,
framework or service that developers can utilise in their own projects

Authentication
The act of verifying that a supplied identity is genuine

Authorisation
The act of granting access to a system or service

Backend as a Service

Often referenced as the acronym BaaS refers to a cloud computing model which
allows web/mobile application developers to connect with services such as cloud
storage, push notifications and NoSQL databases through the use of dedicated
API's/SDK’s

BASE

Acronym short for Basically Available, Soft state, Eventual consistency - a data
consistency model used by many NoSQL databases

13

Mastering lonic: Working with PouchDB

CapacitorJdS

A cross-platform runtime API similar to Apache Cordova that is focussed on
performant mobile applications that adhere to Web Standards while accessing native
device functionality on platforms where support is available

Content Delivery Network

A Content Delivery Network, often abbreviated as CDN, is a system of distributed
servers, spanning multiple geographical locations, that allows websites and
applications to benefit from high availability of content, low network latency and
improved performance

Class based programming
A style of Object-Oriented Programming where objects are generated through the
use of classes

CLlI
Command Line Interface - A software utility that allows commands to be executed
solely through text input

CRUD
Acronym for Create, Read, Update and Delete, which are common operations
performed on data

Electron
An application development framework that allows users to build cross-platform
desktop applications using HTML, CSS & JavaScript

Firebase
A Google owned/managed Baa$S platform which provides a variety of cloud related
services such as Authentication, Storage, NoSQL databases & Push notifications

Hybrid Apps

Mobile applications that are typically developed using web based languages such as
HTML, CSS and JavaScript which are then able to be published within native mobile
wrappers for deployment to iOS, Android, Windows Mobile devices etc

14

Glossary - Technical terms

lonic Framework
An open source application development framework for developing progressive web
apps and mobile applications

JSON
JavaScript Object Notation - A subset of the JavaScript programming language that
specifies/provides a standard for exchanging data

Node
An open-source, cross platform JavaScript environment for developing server-side
web applications

NoSQL
A type of database where data is typically stored in the form of JSON objects

Object Oriented Programming
Often referenced by its acronym of OOP - A type of programming where code is
developed based around the concept of objects and their relationship to one another

Package Manager
A tool, or collection of tools, for managing the installation, configuration, upgrading,
removal and, in some cases, browsing of software modules on a user’s computer

SDK
Software Development Kit - A suite of development tools that developers can use
with a particular software program, library or platform

Transaction
A unit of work performed within a database system

15

Databases
A short summary

Mastering lonic: Working with PouchDB

In its simplest definition a database is a structured container for storing data and
allowing that to be acted upon (l.e. CRUD related operations, importing/exporting
data and performing searches).

Databases come in a variety of models (and often implement schemas).
Models and schemas
A database model determines the logical structure of a database including the

relationships and constraints of how data is able to be stored and accessed.

Common database models include:

Hierarchical

Relational (aka Relational Database Management System [RDBMS] or SQL
database)

Non-relational (NoSQL)

Object-oriented

Network

Of these the Relational and Non-relational (NoSQL) database models are the most
commonly used - at least as far as most organisations/developers are concerned.

A database schema refers to the logical grouping, organisation and structure of
objects that are used within the database (such as tables, views, indexes, stored
procedures etc).

For example, a database model may define the overall structure of the database and
how data is stored/accessed (i.e. relational or NoSQL) yet there may be one or more
schemas defining the structure, organisation and relationships between certain parts
of that database system (i.e. accounting schemas, auditing schemas, reporting
schemas etc)

Models and schemas can often be confusing to define as they are sometimes used
interchangeably or given slightly different meanings with some database systems.

17

Databases - A short summary

Relational databases
A relational database model structures, groups and organises data using:

Tables (structures that impose a schema on the records that they contain)
* Rows (the individual records that are stored within a table)
Columns (the distinct fields that data is stored under for each record)

Fields come in many different data types (with potential constraints and additional
flags depending on the data type being supported) which may include - for example:

integer
« float

+ text

+ date

* boolean

Relationships
Tables can establish relationships with one another through the use of keys:

+ Primary key - A table column where each record has a unique value
Foreign key - A table column whose values references the primary key of
another table

Within an RDBMS there are 3 possible types of relationships between tables.
A One-to-one relationship consists of a single record on each side - for example, the

relationship between a country and its capital city (as a country will only ever have
one capital):

country capitals
country id capital_id
capital_id name

18

Mastering lonic: Working with PouchDB

A One-to-many relationship consist of a single record on one side and many records
on the other side. This could occur, for example, in a company where an employee
belongs to a single department but a department can have many employees:

departments

department_id

staff

name

staff_id

department _id

name

A Many-to-many relationship consists of multiple entries on both sides of the
relationship. This could be represented in a movies database for example where a
single movie can feature many cast members and a cast member can feature in

many movies:

films

film_id

name

film_cast

cast

film_id

cast_id

cast _id

name

Normalisation

When designing the data architecture for a SQL database system (l.e. determining
the quantity, types and nomenclature of fields used within the different tables and the
purpose of each table) it’s important to minimise data duplication to make data entry

more efficient and easier.

Databases - A short summary

For example if there are two or more tables that contain a product name column it
would make more sense to link these together so that data only needs to be entered
once and not multiple times for the same item.

This process of reducing data duplication to make a maximally efficient relational
database system is known as normalisation.

The use of normal forms - a guiding set of stages for which a database achieves
ever greater levels of normalisation - was introduced by computer scientist Edgar
Frank Codd in the early 1970’s.

These normalisation guidelines consist of six normal forms although, typically, if a
database is in Third Normal Form (3NF) it is generally considered to be normalised.

You can read more about database normalisation here.

SQL Queries

Users can query data within a relational database management system using SQL
(Structured Query Language) which can be simple in its instruction or increasingly
complex depending on the requirements and granularity of the query (which is where
normalisation helps by making the system more performant).

A simple query such as retrieving all book records from a single books table in
descending order of entry (i.e. most recent first) might be written as follows:

SELECT * FROM books ORDER BY book_id DESC

The SQL syntax is relatively simple and intuitive so that even to a non-database
specialist the purpose of the query would be relatively self-explanatory.

A more complex SQL query - say retrieving a list of all films, their cast members and

the studio responsible for producing that film where ticket sales grossed over $25
million dollars might look something like the following:

20

https://en.wikipedia.org/wiki/Edgar_F._Codd
https://en.wikipedia.org/wiki/Edgar_F._Codd
https://en.wikipedia.org/wiki/Database_normalization

Mastering lonic: Working with PouchDB

SELECT movies.id, movies.title, cast.id, cast.name, studio.id, studio.name
FROM movies INNER JOIN cast ON cast.movield = movies.id INNER JOIN
studio ON studio.id = movies.studiold WHERE movies.id IN (SELECT movield
FROM movies GROUP BY sales HAVING COUNT(*) > 25000000)

As you can see even with more complex queries SQL is relatively intuitive and easy
to grasp (although some of the more complex query logic can take time to mentally
parse - especially when working with different types of JOIN statements to draw data
from multiple tables).

To learn more about SQL visit this online resource.

ACID
Databases that perform transactions in a timely, reliable and efficient manner are
said to be ACID complaint.

ACID is an acronym for:

Atomicity (all parts of a database transaction work as expected)

« Consistency (database transactions are performed as expected with no deviation
in behaviour)

+ Isolation (multiple transactions can be performed concurrently without affecting
one another)

- Durability (data is saved with successful transactions even if a system failure or
power outage occurs)

Relational database systems are widely trusted due to their ACID compliance.
Real world usage
Unsurprisingly many developers and organisations make use of relational databases

to deliver their products/services (and you may likely have worked with such
databases in an educational and/or professional context).

21

https://www.learnsqlonline.org

Databases - A short summary

Such widely used SQL databases include (but are not limited to):

- MySQL

« PostgreSQL

« MariaDB

- SQLite

« Oracle

« Microsoft SQL Server

If you’ve ever developed applications using PHP then MySQL (and possibly
PostgreSQL and MariaDB - a fork of MySQL) will likely be somewhat familiar to you.

To summarise then:

Relational database overview

Pros Cons

ACID (Atomicity, Consistency, Isolation & More time-consuming and difficult to modify
Durability) compliant - ensures that a pre-existing database architecture due to
database transaction is completed constraints in the database model

accurately and in a timely fashion

Support for table joins High volume transactions can result in
decreases in performance

Ability to perform complex queries Difficult to scale with large amounts of data
Rigid, predictable structure for data Does not work well with unstructured data
Allows for many different data types Data normalisation can result in

performance penalties

That concludes our brief and very basic introduction/overview of relational databases
(and there’s a lot more to learn...but for this book | want to keep things relatively
simple and focus only on what we need to know for working with lonic) so we’ll now
perform a similar walkthrough with NoSQL databases.

22

Mastering lonic: Working with PouchDB

Non-relational databases

Ironically one of the strengths of relational databases is also experienced by many
organisations and developers as one of its significant weaknesses: a rigid
database architecture.

This rigid structure can be time-consuming, expensive and difficult to subsequently
modify should even minor changes in data architecture be required (such as, for
example, the addition of further fields or a change in the data types for existing
fields).

Given that modern applications consume vast amounts of data (often supplied
through third-party APIs) in the form of JSON objects SQL databases are not best
suited for storage of, nor scaling with, such data formats.

Non-relational, more popularly known as NoSQL, databases were developed to
address and meet these particular needs (amongst others).

Types of NoSQL
Instead of using tables non-relational databases store data using different models:

Column-based (data is stored by column not row)

« Document (data is stored, often similar to JSON objects, in documents)
Graph (data sets are represented as nodes, edges and properties with
relationships represented as edges - or lines - between nodes)

Key-Value (items of data are stored as key-value pairs within the database)

Data is typically stored as JSON, BSON (Binary JSON) or XML depending on the
type of NoSQL database and the schema(s) that are supported.

In subsequent projects we will be working with document oriented NoSQL databases
and will explore their data storage model that uses collections, documents and fields.

23

Databases - A short summary

As there are a variety of NoSQL database models there is no one uniform language
(unlike SQL with relational database systems) that can be used to perform queries
across different systems.

For example Neo4dJ uses its own SQL inspired language called Cypher Query
Language which is designed to work with its graphing NoSQL database model.

Using Cypher Query Language we could (in a hypothetical Neo4dJ database), for
example, run the following query to retrieve all movies starring Keanu Reeves:

MATCH (keanu:Person {name: 'Keanu Reeves'})-[r:ACTED_IN]->(movie:Movie)
RETURN keanu, r, movie

Looks somewhat similar to SQL doesn't it?

If we are using NoSQL document-oriented database MongoDB however we would
perform queries (in this case adding a new document to an hypothetical users
database collection) using Mongo Query language (MQL) like so:

db.users.insert({
id: "aebd4fs001",
surname: "Bloggs",
first_name: "Joe",
email: "joe.bloggs@joebloggs.com",
age: 25,
status: "Active"

Y

Notice how even though this is called a query language it looks nothing like
traditional SQL or Cypher but shares the same dot syntax approach as working with
JavaScript?

Unlike relational databases it is more difficult to port data between different NoSQL

databases due to the different models that are used (document, graph, key-value
and column).

24

Mastering lonic: Working with PouchDB

Dropping ACID?

Many NoSQL databases sacrifice atomicity (where the integrity of the entire
database transaction is guaranteed - not just a certain part of the transaction) or
consistency (where database transactions are only successful where they meet
certain database rules) in order to achieve high performance/scalability.

Although these features make SQL databases highly reliable they can present
performance problems with high data/traffic usage as well as scaling issues - both of
which NoSQL databases are adept in addressing and overcoming.

Typically, in lieu of ACID compliance, many NoSQL databases offer BASE
properties:

Basically Available - In the event of failure the system is guaranteed to be
available

Soft state - Data state could change without user interaction due to eventual
consistency

Eventual consistency - Consistency is not guaranteed at the transaction level but,
after application data input, the system will be eventually consistent once data
has replicated to all database nodes

Although BASE offers less assurances than ACID it effectively handles rapid data
changes and scales well.

Not all NoSQL databases are non-ACID compliant but this may be an issue with
organisations who require ACID compliant database in their day-to-day operations.

Advantages of NoSQL
Can accommodate flexible data structures

- Designed to efficiently handle larger volumes of data
Designed with an architecture to allow scaling for greater traffic

- Can be faster to develop with as the data structure allows for changes in response
to modern agile development practices (with sprints, iterations and more frequent
code changes)

25

Databases - A short summary

NoSQL data tends to integrate more easily, due to its structure/syntax, with
JavaScript in modern cross-platform applications

Polyglot persistence - allows for use of multiple data storage models within an
application (i.e. using document and graph databases for separate areas of an
application that require different data models)

Minimises impedance mismatch - a term used to describe the difference between
the relational model of the database and the structure of the data that is being
saved (for example graphing data being saved in a tabular format - as in relational
database systems)

Disadvantages of NoSQL

Difficulty in porting data between different types of NoSQL database

Many NoSQL databases do not offer ACID compliance

Schema-less architecture can be off-putting to some developers concerned with
maintaining data integrity

Data is denormalised which requires mass updating (l.e. when changing a product
image)

No standardised query language across different database models

Real world usage

Given the flexibility of architecting data structures, increased data scalability,
integration with modern web applications using JavaScript and performance it’s not
surprising that NoSQL databases have grown in popularity in recent years.

Some of the more widely used NoSQL databases include (but are not limited to):

MongoDB

Cloud Firestore
Redis

DynamoDB
Apache Cassandra
Neo4J

PouchDB

26

Mastering lonic: Working with PouchDB

MongoDB and Cloud Firestore are largely familiar with many frontend/mobile app
developers due to their strong integration with JavaScript based technology stacks
(and these, as you may remember from the contents page, along with PouchDB will
be the NoSQL databases that we’ll be working with in the pages of this ebook).

To summarise then:

Non-relational database overview

Pros

Cons

Handles structured, semi-structured and
unstructured data efficiently

Schema-less architecture (data integrity
enforced from application not database)

Scales well with massive data storage

Not always ACID compliant

Scales well with cloud computing
architecture

Difficult to port data between different
NoSQL database models

Allows for multiple different types of data
structures to be implemented

No standardised query language

APl/data structure integrates well with
JavaScript in modern cross-platform apps

Reduced query times due to data
architecture

This then concludes our brief and very basic introduction/overview of Non-relational

(or NoSQL) databases.

Unfortunately we are simply not able to cover each NoSQL database model in this
book (graph, key-value, column and document - due to the volume of concepts
and resources that would need to be covered).

As a result of this | have deliberately focussed on document oriented solutions as
these are the most widely used NoSQL database model for many developers.

Databases - A short summary

Resources
There’s a lot more to learn about databases where SQL and NoSQL are concerned,
and we’ve only scratched the surface covering the basics with this brief chapter.

Further database resources can be explored here:
« Structured Query Language

« Types of databases
« NoSQL

28

https://en.wikipedia.org/wiki/SQL
https://www.mongodb.com/databases/types
https://en.wikipedia.org/wiki/NoSQL

PouchDB
Database API abstraction layer

Mastering lonic: Working with PouchDB

PouchDB is an open-source, JavaScript, NoSQL, client-side database that runs in
the browser, using the browser’s underlying storage mechanism - typically
IndexedDB or, if this is unavailable/unsupported, defaulting to WebSQL instead.

This essentially makes PouchDB a sort of abstraction layer, providing developers
with a single API through which the software then determines the appropriate
database storage mechanism to use.

As you can imagine this helps simplify the process of handling data within our web
and mobile apps as developers don't have to choose between writing for WebSQL or
IndexedDB - PouchDB simply manages that in the background (note: as of PouchDB
7.0 WebSQL is not supported by default but must be enabled through use of the
PouchDB WebSQL adapter).

Given the fragmented nature of web browsers (even with modern browser support
there are still organisations/individuals running legacy software which doesn’t always
play nice - or even at all - with modern web technologies) there’s always that
question.....can | use this?

With PouchDB you’re covered from the following browsers/platforms upwards:

+ Firefox 29+ (Including Firefox OS and Firefox for Android)
« Chrome 30+

- Safari 5+

* Internet Explorer 10+

« Opera 21+

+ Android 4.0+

« iI0S7.1+

+ Windows Phone 8+

The only time where this will clearly be an issue is where browser versions prior to
the above need to be supported (thankfully such instances should be very rare
indeed...that said let’s hope that you never find yourself working with a client where

you still have to still support IE6 of all browsers!)

If you are unfortunate enough to find yourself in a situation where you DO need to

30

PouchDB - Database API abstraction layer

support older browsers PouchDB provides some guidance on measures you might
want to consider.

Given that we’ll be developing with lonic/Angular we’re supported as far using
PouchDB is concerned.

Great...so what does PouchDB look like?

The PouchDB API
As a NoSQL database solution PouchDB provides a robust and intuitive JavaScript
API that developers can use to manage their front-end database interactions.

The API syntax should look somewhat familiar to JavaScript/TypeScript/lonic (delete
as applicable here) developers (comments have been added for guidance):

// Create a PouchDB instance
const db = new PouchDB("name-of-database-here", {size: 50})

// Add a document to the database
const snippetToAdd = {
_id: new Date().tolSOString(),
content: title

b
db.put(snippetToAdd, function callback(error, result) {
if (lerror) {
console.log('Whoo! We successfully posted an entry to the database!’);
} else {

console.log('Dang! We messed up somewhere');
console.dir(err);

}
1;

// Remove a document from the database
const snippetToRemove = {

31

https://pouchdb.com/adapters.html#pouchdb_in_the_browser
https://pouchdb.com/adapters.html#pouchdb_in_the_browser

Mastering lonic: Working with PouchDB

_id: id,
_rev:rev

5

db.remove(snippetToRemove , function callback(error, result) {
if (lerror) {
console.log('Whoo! We successfully removed an entry from the database!");
} else {
console.log('Dang! We messed up somewhere');
console.dir(err);

}
D;

Pretty self-explanatory right?

Some of you might be recoiling at the use of callbacks in the above methods but the
PouchDB API (which is entirely asynchronous) allows developers to manage such
asynchronous operations using any of the following approaches:

- callbacks
Promises
async/await

Simply take your pick and work with what suits you best!
We're not going to dwell on the syntax for the API here as we'll be covering that while

we're developing our app but if you're feeling a little impatient you can always visit
the online docs for further information.

In a nutshell here’s why you might want to consider using PouchDB in your next lonic
project:

Provides a consistent, robust and intuitive database abstraction API

Adapters for different front-end storage technologies (WebSQL, LocalStorage and
In-memory)

32

https://pouchdb.com/api.html
https://pouchdb.com/api.html

PouchDB - Database API abstraction layer

Wide range of plugins for extending/augmenting PouchDB capabilities
« Can be used locally/remotely (across HTTP)
« Synchronises with CouchDB on server

With our brief walkthrough of the basics of PouchDB covered let’s now take a look at
what we’re going to be developing over the course of this chapter.

Our PouchDB/lonic app

Working with lonic (and the underlying Angular framework) we’ll implement PouchDB
as a database abstraction layer to develop a simple but functional application that
manages/performs the following:

+ Integrates the Google Custom Search API
+ Allows user to perform searches for lonic/front-end related technologies

Returned results can be saved to PouchDB at the user’s discretion and full control
+ Allows PouchDB CRUD operations to be performed with selected search entries

In its default state our application will appear as follows:

PouchDB Google Search PERFORM SEARCH VIEW DATABASE

Empty!

Please use the search function above to query Google and generate
database entries from the returned results.

We can select the perform search button in the top-right hand corner of the screen to
display the search input field where we can enter a technology related search term:

33

Mastering lonic: Working with PouchDB

PouchDB Google Search PERFORM SEARCH VIEW DATABASE

Search for a web technology:

As you can see our search screen - in its default state - is quite minimal.
This changes when results are displayed from the Google Search API.

Results returned for our submitted search term are displayed in their own custom
Angular component - allowing the user the option to individually save a result to
PouchDB - or to clear all of the returned results:

PouchDB Google Search PERFORM SEARCH VIEW DATABASE

Search for a web technology. ~ StencilJS Q

Search results for StencilJS

Stencil.js

Stencil is a toolchain for building reusable, scalable Design Systems. Generate small, blazing fast,

and 100% standards based Web Components that run in every ...

Add to database

Getting Started - Stencil

Mobile CI/CD made easy. Build, publish, and update from the cloud. © 2022 StencilJS. Released

under MIT License. x. Thanks for your interest!

Add to database

Stencil - A Compiler for Web Components - Stencil

Mobile CI/CD made easy. Build, publish, and update from the cloud. © 2022 StencilJS. Released

under MIT License. x. Thanks for your interest!

Add to database

&

When a user selects a specific search result the button changes colour and the text
now displays the instruction Remove from Database (allowing the user to instantly
identify which record(s) have been selected as well as to be able to reverse their
selection if they so wish):

34

PouchDB - Database API abstraction layer

PouchDB Google Search PERFORM SEARCH VIEW DATABASE

Search for a web technology: ~ Stencil Q

Search results for Stencil

CLEAR

Stencil

Stencil is a toolchain for building reusable, scalable Design Systems. Generate small, blazing fast,
and 100% standards based Web Components that run in ...

Remove from Database

Stencil - A Compiler for Web Components - Stencil

Stencil combines the best concepts of the most popular frameworks into a simple build-time tool.

Stencil uses TypeScript, JSX, and CSS to create standards-based ...
Add to database

My First Component - Stencil

tsx extension is required since Stencil components are built using JSX and TypeScript. Here is an
example of what a Stencil component looks like: import { ...

Add to database

Selecting the View Database button at the top right-hand corner of the page allows
all existing PouchDB documents to be asynchronously rendered to the screen.

Each displayed listing allows the user to amend or remove that from PouchDB:

PouchDB Google Search PERFORM SEARCH VIEW DATABASE

Using Capacitor with React - Capacitor

React & Capacitor. Build native mobile apps with web technology and React. 01. Install Capacitor. Add Capacitor to your project ...

EDIT REMOVE

¢ capacitor

Build Native and Progressive Web Apps with React and lonic

100+ Beautiful React Components. React-optimized mobile and web components for building blazing fast mobile, web, and desktop

apps. lonic React comes with ... EDIT REMOVE

@ lonic React

React Integration with Stencil - Stencil

Support: React v17+ » TypeScript 3.7+ * Stencil v2.9.0+. Stencil provides a wrapper for your custom elements to be used as first-

class React components. EDIT REMOVE

Mastering lonic archive!

Dec 22,2017 ... In part 2 of our developing lonic application with Node & MongoDB series we're going to focus on the node o ——
functionality for our project.

Developing an lonic application powered by Node/MongoDB

Dec 22,2017 ... Of course this isn't going to be much use to us if we can't actually add new documents to the MongoDB database
. EDIT REMOVE
(and subsequently retrieve and ...

Developing an lonic CRUD application with Node and MongoDB

+
+
+

Dec 22,2017 ... MongoDB, as explained earlier, is a document database solution that stores data in the form of JSON object-based | I— e

As our data is loaded asynchronously (for both database entries and search results)
we use a loader animation to signal to the user that this process is underway:

r

35

Mastering lonic: Working with PouchDB

PouchDB Google Search PERFORM SEARCH VIEW DATABASE

N P

4

Clicking on the edit button for a rendered database entry displays the editable fields
for that record in an lonic ModalController window (with Angular ReactiveForms
validation implemented for the form):

Manage database entry

React & Capacitor. Build native mobile apps with web technology and React. 01.
Install Capacitor. Add Capacitor to your project ...

URL

https://capacitorjs.com/solution/react

Tags

Briefy enter some keywords (separated by commas)...

Is displayed?

Our application is pretty simple in scope but covers the fundamentals of working with
PouchDB as well as demonstrating how different technologies can work together in
the context of an lonic application.

36

PouchDB - Database API abstraction layer

Now that we know what we’ll be developing let’s create the basic lonic project
skeleton (and then focus on setting up the Custom Search API for Google searches).

Laying the foundations

Assuming that you have all the necessary system/software prerequisites (mentioned
in our getting started chapter) in place open up your system command line and
issue the following instructions to create a new lonic project, install the necessary
software modules and generate the required page components, interfaces, modules
and services:

ionic start pouchdb-technologies blank --type=angular
// Select NgModules from the menu options prompt
cd ./pouchdb-technologies/

npm install --save pouchdb

npm install --save-dev @types/pouchdb

npm install --save pouchdb-browser

npm install --save-dev @types/pouchdb-browser
ionic generate interface interfaces/result

ionic generate service services/pouch-db-manager
ionic generate service services/google-search

ionic generate service services/utilities

ionic generate service services/data-change-listener
ionic generate component components/search-result
ionic generate component components/display-entry
ionic generate component components/manage-entry
ionic generate module components/shared-components

Let’s quickly cover the files we have generated here and their purpose.
Starting with our app/interfaces directory we have the following single interface:

+ interfaces/result - will contain the “contracts” for the expected structure of the
returned Google Custom API search results and saved database entries

Our services are contained within their own dedicated app/services directory
and will be responsible for managing the “heavy lifting” for certain functionality:

37

Mastering lonic: Working with PouchDB

services/pouch-db-manager - will make use of the PouchDB API to provide
database configuration logic and CRUD methods for the application
services/google-search - supplies keywords/terms to Google Custom Search
APl and returns results

services/utilities - “catch-all” service for generic functionality used within the app
services/data-change-listener - Uses the rxJS library BehaviorSubject for cross
component communication where data changes need to be subscribed (and
responded) to

Our custom Angular components are located within the app/components directory
and consist of the following:

SearchResultComponent - Manages display of each returned result from the
Custom Search API query

DisplayEntryComponent - Manages display of each saved database record
ManageEntryComponent - Allows a saved database entry to be edited/viewed

Finally, within the app/components/shared-components directory, we also declare
an Angular feature module to allow our custom components to be exported for use
throughout different areas of the application:

SharedComponentsModule - Angular module that exports the custom
components allowing them to be imported into other application modules where
requested (and not imported across ALL of the application - as they would be if
imported within the application root module - making this a more optimised
approach to managing component usage)

We’'ll cover each of the above in further depth a little later in this chapter but first we
need to set up our Custom Search API through Google.

Enabling the Custom Search JSON API
In Google’s own words:

The Custom Search JSON API lets you develop websites and applications to
retrieve and display search results from Programmable Search Engine

38

https://developers.google.com/custom-search/v1/overview

PouchDB - Database API abstraction layer

programmatically. With this API, you can use RESTful requests to get either web
search or image search results in JSON format.

One important point to note about this API: users can make 100 search queries per
day for free (after this limit has been passed billing must be enabled).

This daily free quota gives us enough room to play, test and experiment with the API
in our development projects.

There are two aspects that need to be in place to implement and use the Custom
Search JSON API in your projects:

+ Create and configure a Programmable Search Engine
« Create a project APl key

Let’s go through these step-by-step - starting with creating the Programmable
Search Engine.

What’s a Programmable Search Engine?

Google offers developers/organisations the opportunity to add a customisable search
feature to their websites/applications to deliver results that are powered by the
Google Search service.

As the name of this feature implies the Programmable Search Engine allows the
user to program the content that is to be searched - whether that is from a single
source (such as their own website) or multiple sources.

We’ll be using the Custom Search JSON API to query our Programmable Search
Engine (which, as mentioned earlier, is free to use for up to 100 queries per day) but
first we need to actually create - and configure - our Programmable Search Engine.

Begin by signing into the Programmable Search Engine Control panel using your
Google account or, if you don't have such an account, create a new one here.

Once logged in you will be directed to the following screen where you are invited to
enter the url of the site that you wish to search.

39

https://programmablesearchengine.google.com/create/new
https://developers.google.com

Mastering lonic: Working with PouchDB

You can enter multiple URLs (one URL per new auto-generated input field) if you
wish (and that is exactly what we will be doing for the purposes of this project).

You can, if you so wish, change the default language for the page layout and
localisation of the search engine (useful if you happen to be providing results in
Hebrew or Arabic for example).

For the purposes of this chapter I’'m going to leave this set to the default English.
Finally, you need to provide a name for your search engine.

In its default state this is how the screen appears:

Google KES

Programmable Search Preview the new Control Panel! Preview

| New search engine
Enter the site name and click "Create" to create a search engine for your site. Learn more

» Edit search engine
~ Help Sites to search

Help Center
Help forum
Blog
Documentation You can add any of the following:
Terms of Service Indivi
Visit Help Forum Enti
(Ask a question) Parts te: x
Send Feedback Entire domain: *.example.com

I'm not a robot

ccccccccc

By clicking 'Create’, you agree with the Terms of Service .

For the purposes of this project we’ll be adding the following websites (if you can
think of suitable alternatives or additional resources for searching then feel free to
augment or completely replace this list):

* masteringionic.com
+ angular.io

+ capacitorjs.com

+ stenciljs.com

40

PouchDB - Database API abstraction layer

* ionicframework.com
- firebase.com

| have also given this Programmable Search Engine the name Masteringionic:

Programmable Search

I New search engine
» Edit search engine
~ Help

Help Center

Help forum

Blog

Documentation

Terms of Service
Visit Help Forum
(Ask a question)
Send Feedback

Preview the new Control Panel! Preview

Enter the site name and click "Create" to create a search engine for your site. Learn more

Sites to search

masteringionic.com

angular.io

capaciorjs.com

stencilis.com

ionicframework.com

firebase.com

You can add any of the following:

Individual pages: www.example.com/page.html

Entire site: www.mysite.com/*

Parts of site: www.example.com/docs/* or www.example.com/docs/
Entire domain: *.example.com

Language ©

English $
Name of the search engine

Masteringionic

I'm not a robot

By clicking 'Create’, you agree with the Terms of Service .

©2022 Google - Google Home - About Google - Privacy Policy

Once you have completed the reCaptcha and clicked on the Create button you will

be greeted with the following congratulations screen:

Google

Programmable Search

New search engine
» Edit search engine
~ Help
Help Center
Help forum
Blog
Documentation
Terms of Service
Visit Help Forum
(Ask a question)
Send Feedback

Congratulations!

You've successfully created your search engine.

Add it to your site

View it on the web

Modify your search engine

Public URL

Control Panel

©2022 Google - Google Home - About Google - Privacy Policy

41

Mastering lonic: Working with PouchDB

Notice the Edit search engine link in the sub-menu on the left hand-side of the
screen? Click on this as we need to access the Search engine ID (this is important
as this forms an essential part of the query string that we need to supply when
making HTTP calls to the Custom Search JSON API).

The Search engine ID is located under the Basics tab as shown below - copy this
value and store this in a temporary text file for safekeeping (we’ll come back to this
later):

Google il e
Programmable Search Preview the new Control Panel! Preview

Basics | Ads Users Advanced

arch engine
Provide basic details and preferences for your search engine. Learn more
e ennanceD By Google
Masteringionic ~ +

I Setup Search engine name

Look and feel
Search features
Statistics and Logs ~ Search engine description

Masteringionic

» Help
Visit Help Forum
(Ask a question) Search engine keywords ©
Send Feedback

Edition
Standard

Search engine ID
9 Copy to clipboard

Public URL

Region All Regions

Add Delete Filter Label ~ 1-60f6

Available in Site Restricted

With our Programmable search engine now in place all that remains is to set up an
API key to allow usage of the Custom Search JSON API within our project.

Fortunately this is a very simple and quick process - open your system browser and
navigate to this URL: https://developers.google.com/custom-search/vi/overview.

Under the Prerequisites section click onto the Get a key button in the sub-section
titled API key.

If you are not already logged into your Google Developer account you will be

redirected and prompted to do so - upon successful login you will then be redirected
back to this page.

42

https://developers.google.com/custom-search/v1/overview

PouchDB - Database API abstraction layer

Once logged in (or if already logged in) you will be presented with a modal titled
Enable Custom Search API that displays a dropdown menu listing your existing
Google projects (if any) and an option to Create a new project like so:

Enable Custom Search API

CANCEL NEXT

Enter a name for the new project (I.e. Pouch Tech below) and click next:

Enable Custom Search API

Enter new project name

Pouch Tech|

CANCEL NEXT

Generating the project may take a few seconds to complete so sit back and relax
until you see the following You’re all set! Message:

43

Mastering lonic: Working with PouchDB

You're all set!

You're ready to start developing with Custom Search API

SHOW KEY

o To improve your app's security, restrict this key's usage in the API Console.

Click on the Show Key button to reveal the API key that is associated with the
Programmable Search Engine (and that you’ll need to use for making HTTP calls to
the Custom Search JSON API):

You're all set!
You're ready to start developing with Custom Search AP|
YOUR API KEY

— o

@ Toimprove your app's security, restrict this key's usage in the API Console

Similar to the Search Engine ID value copy and paste the displayed API key value
into a temporary text file for safekeeping (we’ll use this shortly).

Next - restrict the API key usage by clicking on the API Console link in the modal.

44

PouchDB - Database API abstraction layer

= Google Cloud $ PouchTech v Q Search Products, resources, docs (/) v
Name * \ API Key
& APl key J [5] ‘
i Use this key in your application by passing it with key=API_KEY parameter.
Key restrictions
o Creation date July 14,2022 at 8:59:46 PM GMT+7
A This key is i To prevent i use, we restricting
2 where and for which APIs it can be used. Learn more 2

Application restrictions

An application restriction controls which websites, IP addresses, or applications can use your
API key. You can set one application restriction per key.

@® None

(O HTTP referrers (web sites)

O 1P addresses (web servers, cron jobs, etc.)
O Android apps

QO i0S apps

API restrictions

API restrictions specify the enabled APIs that this key can call

(O Dontt restrict key
This key can call any API

@ Restrict key

1API -

Selected APIs:

Custom Search API

Note: It may take up to 5 minutes for settings to take effect

SAVE CANCEL

This redirects to the Google Cloud project Key restrictions page.

Under the API restrictions section select the Restrict key radio button. This will
then present a dropdown menu from which you need to select the Custom Search
API option.

Once done click on the Save button and, with that, all necessities for our API
configuration are now concluded!

With all of our backend configurations firmly in place let’s now return to our lonic
project and begin building out the foundations that we generated earlier via the CLI
tool - starting with our environment files.

Environment is everything
Remember those Search Engine ID and API key values that | asked you to copy and
paste into a temporary text file for safekeeping?

Now’s the time to integrate those into our lonic project.

Within the pouchdb-technologies/src/environments directory open the following

45

Mastering lonic: Working with PouchDB

files contained within there:

environment.ts
environment.prod.ts

Within each of these environment configuration files add the following block of code
(substituting the placeholder texts with your copied values) inside the environment
object as shown below (additions are highlighted in bold and | have chosen the
environment.ts file as an example here but the same applies to both environment
files):

export const environment = {
production: false,
settings: {
keys: {
searchEngineAPI: 'YOUR-GOOGLE-PROJECT-API-KEY-VALUE-HERE',
searchEngineld: 'YOUR-SEARCH-ENGINE-ID-VALUE-HERE'
}
databases: {
pouchdb: {
name: 'technologies’

}
}
};

Here we simply define a settings object which declares property references for our
Google project API key and search engine Id values and pouchDB database name.

The beauty of using our environment files to implement site wide configurations such
as database values and API keys is that these are located in one central, intuitive
and easy to manage location within the project instead of being scattered throughout
different components or services.

We can always add further configurations to these environment files if we were to

build out the project with additional APls, third-party software integrations (which
require their own configuration values to be implemented) and so on and so forth.

46

PouchDB - Database API abstraction layer

End of preview

47

