
7

Mastering Ionic

James Griffiths

Working with Cloud Firestore

7

Mastering Ionic - Working with Cloud Firestore
Saints at Play Limited

Copyright © 2017 by Saints at Play Limited

Notice of rights
All rights reserved. No part of this book may be reproduced or transmitted in any form by any means
(electronic, mechanical, photocopying, recording or otherwise) without the prior written permission of the
author.

If you have a copy of this e-book and did not pay for it you are depriving the author and publisher of their
rightful royalties. Please pay for your copy by purchasing it at Leanpub.

For all enquiries regarding obtaining permission for book reprints and excerpts please contact the author
at Leanpub.

Notice of liability
The information contained within this book is distributed on an “As Is” basis without warranty.

While every precaution has been taken in the preparation of the book and its supplied computer code,
neither the author, Saints at Play Limited (including its agents, associates and any third parties) nor the
publisher shall be held liable to any person or entity for any loss or damage howsoever caused, or alleged
to be caused, whether directly or indirectly, by the content and instructions contained within this book and/or
the supplied computer code or by the computer hardware and software products described within its pages.

Trademarks
This e-book identifies product names and services known to be trademarks, registered trademarks, or
service marks of their respective holders which are used purely in an editorial fashion throughout this
e-book.

In addition, terms suspected of being trademarks, registered trademarks, or service marks have been
appropriately capitalised, although neither the author, Saints at Play Limited (including its agents,
associates and any third parties) nor the publisher cannot attest to the accuracy of this information.

Use of a term in this book should not be regarded as affecting the validity of any trademark, registered
trademark, or service mark. Neither the author, Saints at Play Limited (including its agents, associates and
any third parties) nor the publisher are associated with any product or vendor mentioned in this book.

Thanks to...

The teams at Ionic and Angular for creating such phenomenal products that allow
millions of developers worldwide to realise their ideas quickly and easily.

The awesome developers and communities behind PHP, MySQL, SQLite, Firebase,
PouchDB, CouchDB, Docker, NodeJS, ExpressJS, MongoDB, Mongoose,
ElectronJS and rxJS.

The developers, contributors and drivers behind all of the JavaScript/TypeScript
packages and libraries used within the projects covered in this ebook - you guys are
awesome!

Every developer who ever helped answer a question that I had or a software bug that
I was trying to fix - I may have forgotten many of your names but I will always
appreciate the assistance you have provided.

Those who believed in me and gave me a chance to shine when many others didn’t
or just wouldn’t - you are not forgotten!

God above all others - without whom nothing would be possible.

Table of Contents

Introduction 5

Glossary 12

Databases - A short summary 16

Cloud Firestore - Building a kanban board 29

Application development 127

Case Study - Cloud Firestore & Firebase Storage 143

In closing 426

Author biography 427

Project downloads 428

7

Introduction

Thank you for purchasing this digital copy of Mastering Ionic: Working with Cloud
Firestore.

My goal with this ebook is to guide you through working with Cloud Firestore and
Firebase Storage to seamlessly integrate data into an Ionic application.

We start with exploring database concepts and terminology - for both SQL and
NoSQL databases before progressing onto developing/publishing Cloud Firestore
powered Ionic Progressive Web Applications.

We’ll cover working with the Cloud Firestore database and Firestore API to provide
CRUD (Create, Read, Update and Delete) functionality for our Ionic applications.

Along the way we’ll work with a range of technologies and services including:

• Cloud Firestore
• Firebase Storage
• Firebase hosting
• HTML5 APIs
• Angular Material library
• Progressive Web Apps
• rxJS library methods

We’ll cover tips for best practice, discuss known limitations and/or potential
challenges with the services/tools that we are using and I’ll provide you with further
resources to reinforce what you’ve learnt within the pages of this e-book.

No matter what your level of experience working with the technologies that we’ll be
covering, I hope you find this e-book both useful and enjoyable and I look forward to
receiving your feedback.

What this book isn’t
If you’re looking for an in-depth technical guide into all the functionality and features
available within the Firebase BaaS platform then this simply is NOT the book for you.

Mastering Ionic: Working with Cloud Firestore

6

What is covered
This book provides detailed information on the core essentials of Cloud Firestore and
Firebase Storage, performing CRUD related operations and how to integrate data
from Cloud Firestore into an Ionic frontend.

I promise you there will be plenty of useful real-world information that you can take
and use within your own projects/applications but a deep-dive into the Firebase
BaaS platform (and all of its core features) is simply not possible (as the book would
have to be at least twice as large…and even then it would only be scratching the
surface).

Prerequisites
I am assuming (hopefully not wrongly!) that you already have, at the very least, a
basic understanding and level of familiarity with developing projects for web, iOS &
Android using the Ionic CLI.

You will also need to be familiar with understanding and being able to use HTML5,
Sass/CSS and Angular/TypeScript which are core languages/frameworks used
within Ionic.

I won’t be covering those languages/frameworks in depth (other than demonstrating
how they can be used throughout the projects we’ll be developing) so, if you do
require any background information/further instruction on their usage, a good place
to start would be with the following resources:

• Angular
• TypeScript
• HTML5
• Sass
• CSS

You will also need to have some familiarity/experience with command line usage as
we’ll be creating projects, page components & Angular services, installing the
required plugins and software libraries as well as deploying projects to Progressive
Web Apps with Firebase Hosting through both the Ionic and Firebase Tools CLI.

Introduction

7

https://angular.io
https://typescriptlang.org
https://html.com/html5/
https://sass-lang.com/
https://developer.mozilla.org/en-US/docs/Learn/CSS/First_steps/What_is_CSS

Last, but not least, you’ll also need to have a basic understanding (as well as some
experience) with object oriented programming (otherwise referred to by its acronym
of OOP) as TypeScript is a class based OOP language (actually a superset of
JavaScript if you want to get technical).

If you’re not all that familiar with Object Oriented Programming (in the context of
TypeScript/JavaScript) then I would recommend starting with the following online
resource which should help get you up to speed.

So who am I and why should you listen to me?
I’ll answer the last part of that heading first....only if you feel you want to!

Joking aside my background in web/mobile development stretches back to 2002
when developing online projects, almost exclusively in the form of websites (as the
iPhone was still 5 years away and mobile development was, to put it mildly, an
extremely small niche due to limited possibilities with the available technologies,
tools and device/browser support - anyone reading this remember WAP?), was in a
relatively nascent stage.

Even though largely forgotten and, in many developer circles (for those of us who are
old enough to remember) widely derided and scorned, Macromedia Flash MX was
my introduction to developing websites and applications (albeit only browser and CD/
DVD-ROM based at the time).

I’m probably going to invite ridicule and exasperation with the following statement but
I loved working with that software and the possibilities it opened up for creative
experimentation, programming and designing/developing applications.
As the first decade of the twenty-first century progressed, and browser support for
language standards and features improved, it became more and more apparent that
Flash had certain limitations that working with HTML/CSS (and the re-emergence
of JavaScript as a scripting language - helped with frameworks like jQuery and
MooTools as well as a trend towards consistent browser support) didn’t.

This gradually led to more frontend focussed development as well as incorporating
PHP/MySQL into my digital toolbox.

Mastering Ionic: Working with Cloud Firestore

8

https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Objects
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Objects

Fast forward to 2010 and I’m starting my initial journey into developing mobile
applications with jQTouch and PhoneGap, subsequently followed by jQuery mobile
before finally settling on Ionic in 2014.

Along the way I’ve delivered websites and mobile/tablet applications for a variety of
clients including Halco Energy, West Midlands Police, Maplecroft, WQA, Virgin
Media, EDF Energy, Evans Cycles, Shelter and the British Science Association as
well as various digital agencies, marketing companies and small business clients.

I’d like to think, as a result of the past 20+ years, that I’ve accumulated a certain
wealth of experience, knowledge and skills that can be shared with the wider
development community.

I certainly don’t consider myself to have reached any vast summit of knowledge and,
in some respects, I feel like I’m only just starting to scratch the surface of discovering
what’s possible with all these incredible web based technologies that we have
access to now.

Just like yourself I’m still on a journey of learning, growing and maturing as a
developer...and with the rate of technological change that is continually taking place
there’s always more to learn!

Support
So you’ve purchased my e-book (or are maybe considering making a purchase) and
you might find yourself with some questions regarding how often the content is kept
updated with changes to Ionic and/or the associated technologies that are covered in
these pages, what help/assistance is available with possible development issues you
might encounter and what further resources you might be to access.

Firstly, schedule permitting (although even the best will in the world can be thwarted
by external events and circumstances), I endeavour to keep the e-book content
updated within 7 days of significant changes to Ionic and/or featured databases and
technologies.

Introduction

9

Mastering Ionic: Working with Cloud Firestore

10

// Install the required platforms
npx cap add electron

Important information that requires your full attention is prefixed in its own paragraph
like so:

IMPORTANT

Previous code examples that have been covered/explained will, where further
additions to that script are required, be rendered with a placeholder in the following
format:

...

There will, due to the limitations imposed by the width of the page dimensions of this
e-book, be instances where code might run onto other lines. Where this occurs a
hyphen will be inserted into that line of code to indicate that the displayed code is all
part of the same line.

Use of hyphens in this specific context do NOT form part of the code logic but merely
demonstrate that the code is continuing from one line to the next.

I routinely e-mail my customers with news of updated e-book content that has been
published.

Finally, all downloadable code examples for each chapter and the featured case
studies are available here.

Conventions used within this e-book
Fortunately there’s only a small number of conventions employed within this e-book
that you need to be aware of.

ALL of the code examples that are featured in each of the chapters and case studies
are displayed within a grey rectangle, which may (or may not) contains additional
comments (rendered in italics), like so:

Introduction

11

Where external resources are mentioned/used within each chapter these are
rendered in the form of hyperlinks along with an additional list of those hyperlinked
resources displayed at the end of each chapter.

Finally, each chapter will, where necessary, conclude with a summary of the key
concepts and information that has been covered.

IMPORTANT: You’ll notice, as you go through the code examples covered in each
chapter and case study, that I employ the following practice:

• Use of JSDoc syntax for commenting project component and service classes
• Specific naming conventions for class properties and methods (to help readily

identify, or hint at, the purpose of that segment of code) • Formatting the code so
it is more easily readable

You don’t have to adopt the same practice (as each developer will have their own
specific coding/formatting style) but it is a good idea to invest time into making your
code as understandable/readable as possible (which is why I employ the above
approaches in this e-book as well as my own digital projects).

After all, if you come back to a project 3 or more months later (or are working with
other developers), such efforts will help make managing the project quicker and
easier in the long run - and that can’t be a bad thing (especially if you happen to
forget why you coded something in a certain way!)

Glossary
Technical terms

Technical glossary
To wrap up the introduction to this e-book let’s quickly cover some of the keywords
and terms that we’ll be encountering/using over the following chapters.

I imagine most of you will already be familiar with these so feel free to press on to the
next chapter if that’s the case! If not, please take a few minutes to read through the
following terms and familiarise yourself with their meaning.

ACID
Acronym for Atomicity, Consistency, Isolation & Durability - a measure used to
determine how effective a database system is as at performing transactions

Angular
A front-end component-based framework for building scalable web applications that
is the default choice of framework for Ionic

API
Application Programming Interface - A set of tools for a particular software library,
framework or service that developers can utilise in their own projects

Authentication
The act of verifying that a supplied identity is genuine

Authorisation
The act of granting access to a system or service

Backend as a Service
Often referenced as the acronym BaaS refers to a cloud computing model which
allows web/mobile application developers to connect with services such as cloud
storage, push notifications and NoSQL databases through the use of dedicated
API’s/SDK’s

BASE
Acronym short for Basically Available, Soft state, Eventual consistency - a data
consistency model used by many NoSQL databases

Glossary - Technical terms

13

CapacitorJS
A cross-platform runtime API similar to Apache Cordova that is focussed on
performant mobile applications that adhere to Web Standards while accessing native
device functionality on platforms where support is available

Content Delivery Network
A Content Delivery Network, often abbreviated as CDN, is a system of distributed
servers, spanning multiple geographical locations, that allows websites and
applications to benefit from high availability of content, low network latency and
improved performance

Class based programming
A style of Object-Oriented Programming where objects are generated through the
use of classes

CLI
Command Line Interface - A software utility that allows commands to be executed
solely through text input

CRUD
Acronym for Create, Read, Update and Delete, which are common operations
performed on data

Electron
An application development framework that allows users to build cross-platform
desktop applications using HTML, CSS & JavaScript

Firebase
A Google owned/managed BaaS platform which provides a variety of cloud related
services such as Authentication, Storage, NoSQL databases & Push notifications

Hybrid Apps
Mobile applications that are typically developed using web based languages such as
HTML, CSS and JavaScript which are then able to be published within native mobile
wrappers for deployment to iOS, Android, Windows Mobile devices etc

Mastering Ionic: Working with Cloud Firestore

14

Ionic Framework
An open source application development framework for developing progressive web
apps and mobile applications

JSON
JavaScript Object Notation - A subset of the JavaScript programming language that
specifies/provides a standard for exchanging data

Node
An open-source, cross platform JavaScript environment for developing server-side
web applications

NoSQL
A type of database where data is typically stored in the form of JSON objects

Object Oriented Programming
Often referenced by its acronym of OOP - A type of programming where code is
developed based around the concept of objects and their relationship to one another

Package Manager
A tool, or collection of tools, for managing the installation, configuration, upgrading,
removal and, in some cases, browsing of software modules on a user’s computer

SDK
Software Development Kit - A suite of development tools that developers can use
with a particular software program, library or platform

Transaction
A unit of work performed within a database system

15

Glossary - Technical terms

Databases
A short summary

In its simplest definition a database is a structured container for storing data and
allowing that to be acted upon (I.e. CRUD related operations, importing/exporting
data and performing searches).

Databases come in a variety of models (and often implement schemas).

Models and schemas
A database model determines the logical structure of a database including the
relationships and constraints of how data is able to be stored and accessed.

Common database models include:

• Hierarchical
• Relational (aka Relational Database Management System [RDBMS] or SQL
database)

• Non-relational (NoSQL)
• Object-oriented
• Network

Of these the Relational and Non-relational (NoSQL) database models are the most
commonly used - at least as far as most organisations/developers are concerned.

A database schema refers to the logical grouping, organisation and structure of
objects that are used within the database (such as tables, views, indexes, stored
procedures etc).

For example, a database model may define the overall structure of the database and
how data is stored/accessed (i.e. relational or NoSQL) yet there may be one or more
schemas defining the structure, organisation and relationships between certain parts
of that database system (i.e. accounting schemas, auditing schemas, reporting
schemas etc)

Models and schemas can often be confusing to define as they are sometimes used
interchangeably or given slightly different meanings with some database systems.

Mastering Ionic: Working with Cloud Firestore

17

Relational databases
A relational database model structures, groups and organises data using:

• Tables (structures that impose a schema on the records that they contain)
• Rows (the individual records that are stored within a table)
• Columns (the distinct fields that data is stored under for each record)

Fields come in many different data types (with potential constraints and additional
flags depending on the data type being supported) which may include - for example:

• integer
• float
• text
• date
• boolean

Relationships
Tables can establish relationships with one another through the use of keys:

• Primary key - A table column where each record has a unique value
• Foreign key - A table column whose values references the primary key of

another table

Within an RDBMS there are 3 possible types of relationships between tables.

A One-to-one relationship consists of a single record on each side - for example, the
relationship between a country and its capital city (as a country will only ever have
one capital):

country

country_id

capital_id

capitals

capital_id

name

Databases - A short summary

18

A Many-to-many relationship consists of multiple entries on both sides of the
relationship. This could be represented in a movies database for example where a
single movie can feature many cast members and a cast member can feature in
many movies:

departments

department_id

name

staff

staff_id

department_id

name

films

film_id

name

cast

cast_id

name

film_cast

film_id

cast_id

A One-to-many relationship consist of a single record on one side and many records
on the other side. This could occur, for example, in a company where an employee
belongs to a single department but a department can have many employees:

Normalisation
When designing the data architecture for a SQL database system (I.e. determining
the quantity, types and nomenclature of fields used within the different tables and the
purpose of each table) it’s important to minimise data duplication to make data entry
more efficient and easier.

Mastering Ionic: Working with Cloud Firestore

19

For example if there are two or more tables that contain a product name column it
would make more sense to link these together so that data only needs to be entered
once and not multiple times for the same item.

This process of reducing data duplication to make a maximally efficient relational
database system is known as normalisation.

The use of normal forms - a guiding set of stages for which a database achieves
ever greater levels of normalisation - was introduced by computer scientist Edgar
Frank Codd in the early 1970’s.

These normalisation guidelines consist of six normal forms although, typically, if a
database is in Third Normal Form (3NF) it is generally considered to be normalised.

You can read more about database normalisation here.

SQL Queries
Users can query data within a relational database management system using SQL
(Structured Query Language) which can be simple in its instruction or increasingly
complex depending on the requirements and granularity of the query (which is where
normalisation helps by making the system more performant).

A simple query such as retrieving all book records from a single books table in
descending order of entry (i.e. most recent first) might be written as follows:

SELECT * FROM books ORDER BY book_id DESC

The SQL syntax is relatively simple and intuitive so that even to a non-database
specialist the purpose of the query would be relatively self-explanatory.

A more complex SQL query - say retrieving a list of all films, their cast members and
the studio responsible for producing that film where ticket sales grossed over $25
million dollars might look something like the following:

Databases - A short summary

20

https://en.wikipedia.org/wiki/Edgar_F._Codd
https://en.wikipedia.org/wiki/Edgar_F._Codd
https://en.wikipedia.org/wiki/Database_normalization

As you can see even with more complex queries SQL is relatively intuitive and easy
to grasp (although some of the more complex query logic can take time to mentally
parse - especially when working with different types of JOIN statements to draw data
from multiple tables).

To learn more about SQL visit this online resource.

ACID
Databases that perform transactions in a timely, reliable and efficient manner are
said to be ACID complaint.

ACID is an acronym for:

• Atomicity (all parts of a database transaction work as expected)
• Consistency (database transactions are performed as expected with no deviation

in behaviour)
• Isolation (multiple transactions can be performed concurrently without affecting

one another)
• Durability (data is saved with successful transactions even if a system failure or

power outage occurs)

Relational database systems are widely trusted due to their ACID compliance.

Real world usage
Unsurprisingly many developers and organisations make use of relational databases
to deliver their products/services (and you may likely have worked with such
databases in an educational and/or professional context).

SELECT movies.id, movies.title, cast.id, cast.name, studio.id, studio.name
FROM movies INNER JOIN cast ON cast.movieId = movies.id INNER JOIN
studio ON studio.id = movies.studioId WHERE movies.id IN (SELECT movieId
FROM movies GROUP BY sales HAVING COUNT(*) > 25000000)

Mastering Ionic: Working with Cloud Firestore

21

https://www.learnsqlonline.org

Relational database overview

Pros Cons

ACID (Atomicity, Consistency, Isolation &
Durability) compliant - ensures that a
database transaction is completed
accurately and in a timely fashion

More time-consuming and difficult to modify
pre-existing database architecture due to
constraints in the database model

Support for table joins High volume transactions can result in
decreases in performance

Ability to perform complex queries Difficult to scale with large amounts of data

Rigid, predictable structure for data Does not work well with unstructured data

Allows for many different data types Data normalisation can result in
performance penalties

Such widely used SQL databases include (but are not limited to):

• MySQL
• PostgreSQL
• MariaDB
• SQLite
• Oracle
• Microsoft SQL Server

If you’ve ever developed applications using PHP then MySQL (and possibly
PostgreSQL and MariaDB - a fork of MySQL) will likely be somewhat familiar to you.

To summarise then:

That concludes our brief and very basic introduction/overview of relational databases
(and there’s a lot more to learn…but for this book I want to keep things relatively
simple and focus only on what we need to know for working with Ionic) so we’ll now
perform a similar walkthrough with NoSQL databases.

Databases - A short summary

22

Non-relational databases
Ironically one of the strengths of relational databases is also experienced by many
organisations and developers as one of its significant weaknesses: a rigid
database architecture.

This rigid structure can be time-consuming, expensive and difficult to subsequently
modify should even minor changes in data architecture be required (such as, for
example, the addition of further fields or a change in the data types for existing
fields).

Given that modern applications consume vast amounts of data (often supplied
through third-party APIs) in the form of JSON objects SQL databases are not best
suited for storage of, nor scaling with, such data formats.

Non-relational, more popularly known as NoSQL, databases were developed to
address and meet these particular needs (amongst others).

Types of NoSQL
Instead of using tables non-relational databases store data using different models:

• Column-based (data is stored by column not row)
• Document (data is stored, often similar to JSON objects, in documents)
• Graph (data sets are represented as nodes, edges and properties with

relationships represented as edges - or lines - between nodes)
• Key-Value (items of data are stored as key-value pairs within the database)

Data is typically stored as JSON, BSON (Binary JSON) or XML depending on the
type of NoSQL database and the schema(s) that are supported.

In subsequent projects we will be working with document oriented NoSQL databases
and will explore their data storage model that uses collections, documents and fields.

Mastering Ionic: Working with Cloud Firestore

23

As there are a variety of NoSQL database models there is no one uniform language
(unlike SQL with relational database systems) that can be used to perform queries
across different systems.

For example Neo4J uses its own SQL inspired language called Cypher Query
Language which is designed to work with its graphing NoSQL database model.

Using Cypher Query Language we could (in a hypothetical Neo4J database), for
example, run the following query to retrieve all movies starring Keanu Reeves:

db.users.insert({
id: "aebd4fs001",
surname: "Bloggs",
first_name: "Joe",
email: "joe.bloggs@joebloggs.com",
age: 25,
status: "Active"
})

MATCH (keanu:Person {name: 'Keanu Reeves'})-[r:ACTED_IN]->(movie:Movie)
RETURN keanu, r, movie

Looks somewhat similar to SQL doesn’t it?

If we are using NoSQL document-oriented database MongoDB however we would
perform queries (in this case adding a new document to an hypothetical users
database collection) using Mongo Query language (MQL) like so:

Notice how even though this is called a query language it looks nothing like
traditional SQL or Cypher but shares the same dot syntax approach as working with
JavaScript?

Unlike relational databases it is more difficult to port data between different NoSQL
databases due to the different models that are used (document, graph, key-value
and column).

Databases - A short summary

24

Dropping ACID?
Many NoSQL databases sacrifice atomicity (where the integrity of the entire
database transaction is guaranteed - not just a certain part of the transaction) or
consistency (where database transactions are only successful where they meet
certain database rules) in order to achieve high performance/scalability.

Although these features make SQL databases highly reliable they can present
performance problems with high data/traffic usage as well as scaling issues - both of
which NoSQL databases are adept in addressing and overcoming.

Typically, in lieu of ACID compliance, many NoSQL databases offer BASE
properties:

• Basically Available - In the event of failure the system is guaranteed to be
available

• Soft state - Data state could change without user interaction due to eventual
consistency

• Eventual consistency - Consistency is not guaranteed at the transaction level but,
after application data input, the system will be eventually consistent once data
has replicated to all database nodes

Although BASE offers less assurances than ACID it effectively handles rapid data
changes and scales well.

Not all NoSQL databases are non-ACID compliant but this may be an issue with
organisations who require ACID compliant database in their day-to-day operations.

Advantages of NoSQL
• Can accommodate flexible data structures
• Designed to efficiently handle larger volumes of data
• Designed with an architecture to allow scaling for greater traffic
• Can be faster to develop with as the data structure allows for changes in response

to modern agile development practices (with sprints, iterations and more frequent
code changes)

Mastering Ionic: Working with Cloud Firestore

25

• NoSQL data tends to integrate more easily, due to its structure/syntax, with
JavaScript in modern cross-platform applications

• Polyglot persistence - allows for use of multiple data storage models within an
application (i.e. using document and graph databases for separate areas of an
application that require different data models)

• Minimises impedance mismatch - a term used to describe the difference between
the relational model of the database and the structure of the data that is being
saved (for example graphing data being saved in a tabular format - as in relational
database systems)

Disadvantages of NoSQL
• Difficulty in porting data between different types of NoSQL database
• Many NoSQL databases do not offer ACID compliance
• Schema-less architecture can be off-putting to some developers concerned with

maintaining data integrity
• Data is denormalised which requires mass updating (I.e. when changing a product

image)
• No standardised query language across different database models

Real world usage
Given the flexibility of architecting data structures, increased data scalability,
integration with modern web applications using JavaScript and performance it’s not
surprising that NoSQL databases have grown in popularity in recent years.

Some of the more widely used NoSQL databases include (but are not limited to):

• MongoDB
• Cloud Firestore
• Redis
• DynamoDB
• Apache Cassandra
• Neo4J
• PouchDB

Databases - A short summary

26

This then concludes our brief and very basic introduction/overview of Non-relational
(or NoSQL) databases.

Unfortunately we are simply not able to cover each NoSQL database model in this
book (graph, key-value, column and document - due to the volume of concepts
and resources that would need to be covered).

As a result of this I have deliberately focussed on document oriented solutions as
these are the most widely used NoSQL database model for many developers.

Mastering Ionic: Working with Cloud Firestore

27

Non-relational database overview

Pros Cons

Handles structured, semi-structured and
unstructured data efficiently

Schema-less architecture (data integrity
enforced from application not database)

Scales well with massive data storage Not always ACID compliant

Scales well with cloud computing
architecture

Difficult to port data between different
NoSQL database models

Allows for multiple different types of data
structures to be implemented

No standardised query language

API/data structure integrates well with
JavaScript in modern cross-platform apps

Reduced query times due to data
architecture

MongoDB and Cloud Firestore are largely familiar with many frontend/mobile app
developers due to their strong integration with JavaScript based technology stacks
(and these, as you may remember from the contents page, along with PouchDB will
be the NoSQL databases that we’ll be working with in the pages of this ebook).

To summarise then:

Databases - A short summary

28

Resources
There’s a lot more to learn about databases where SQL and NoSQL are concerned,
and we’ve only scratched the surface covering the basics with this brief chapter.

Further database resources can be explored here:

• Structured Query Language
• Types of databases
• NoSQL

https://en.wikipedia.org/wiki/SQL
https://www.mongodb.com/databases/types
https://en.wikipedia.org/wiki/NoSQL

Firestore
Building a Kanban Board

Firebase is one of the most popular, widely used and well established Baas
(Backend as a service) platforms used by both developers and organisations all over
the world.

Firebase is often a de-facto choice for application development due to its rich and
user friendly features such as:

• Feature rich API (accompanied with extensive online documentation)
• Platform specific SDKs (iOS, Android, Web, C++ & Unity)
• Framework libraries (AngularFire, VueFire, ReactFire etc)
• Command Line tools for project creation, hosting deployment etc
• Multiple services (Authentication, Storage, NoSQL database, hosting,

Analytics etc)

An additional benefit for developers working with the web SDK is the smooth
integration and flow between writing JavaScript/TypeScript in their applications and
implementing the firebase javascript API to interact with services such as
authentication, storage and reading from/writing to NoSQL databases.

There’s no split responsibility between using different languages to manage the
frontend and backend of an application which makes working with Firebase quite an
attractive proposition for many developers in terms of ease of use, integration with
existing code and not needing to switch between different languages (such as
JavaScript, PHP and MySQL for example).

Having to switch between multiple languages/tools (and navigate their respective
features and quirks) can quickly add layers of complexity and integration issues to a
project (as well as the potential learning curves that can also be involved).

Firebase nicely eliminates all of that for us with its unified API.

The firebase admin console also allows developers/organisations to perform a wide
variety of tasks such as create projects (and their applications), manage billing,
monitor application performance/usage, implement security rules, handle
configuration settings, perform A/B testing and engage users with targeted
contextual messaging…to name but a few services/options that are available.

Mastering Ionic: Working with Cloud Firestore

30

Firestore - Building a Kanban board

31

If you’re not familiar with Firebase and not yet sold on its benefits you should be by
the end of this chapter!

We’ll be using a very, very small subset of the Firebase platform (in subsequent
conjunction with an Ionic frontend) to perform the following tasks:

• Create a project
• Integrate the Web SDK for Firebase API usage within Ionic
• Create a Firestore database and manage that data with CRUD

operations

What we’ll be creating
Our project will produce a simple data-driven Kanban board To Do application with
drag-and-drop capabilities.

In case you didn’t already know a Kanban Board is a visual tool typically used within
organisations to depict work at various stages of a process using columns that
represent each stage of that process. Trello and Jira being two examples of popular
project management tools that implement this approach.

In prior contracts that I have undertaken Kanban boards have been used by teams
to track the progress of particular tasks in a certain iteration of the project lifecycle
and may, for example, consist of the following stages (columns): prototyping,
development, testing, QA and deployment (with tasks assigned to each column
depending on progress - which means they can move forward OR backward!).

To develop our own Kanban board we’ll make use of the following tools/libraries:

• Ionic/Angular
• Angular Material/animations
• Firebase storage

By the end of this chapter you should have a fully functioning Kanban board
application where you can create, update, read and delete entries as demonstrated
below (your content will, of course, differ to mine!)

Our Kanban board consists of three columns: To Do, In Progress and Completed.

In each of these columns users can create, update and delete entries and
subsequently drag existing entries between the different columns.

Mastering Ionic: Working with Cloud Firestore

32

Firestore - Building a Kanban board

33

Dragging and dropping between columns is made possible and aided with the
Angular Material and Animations libraries:

Users are immediately informed of the state of a card being created, updated or
removed with an Ionic AlertController window, The kanban columns are then
updated to display the cards after this state has been completed (i.e. totals in column
headers are changed and columns shrink/grow accordingly):

Mastering Ionic: Working with Cloud Firestore

34

Pretty simple right?

Let’s get started then!

Settings the foundations
There are two key aspects to the project that we need to put in place:

• The Ionic application
• The Firebase project

We’ll start with generating the basic structure for our Ionic application and, once this
is completed, move onto setting the foundations for our Firebase project.

Open up your command line terminal of choice, navigate to a preferred location on
your computer and create a new ionic project named ionic-firestore-kanban and,
once completed, generate the necessary Angular services & custom components
before finishing off with installing the required npm packages:

ionic start ionic-firestore-kanban blank --type=angular
// Select NgModules from the menu options prompt
cd ./ionic-firestore-kanban
ionic generate component components/kanban-column
ionic generate component components/kanban-card
ionic generate component components/kanban-editor
ionic generate module components/shared-components
ionic generate service services/data-change-listener
ionic generate service services/database
ionic generate service services/utilities
npm i firebase --save
npm i @angular/cdk @angular/material @angular/animations --save

Before we move onto creating our Firebase project (that we’ll subsequently integrate
with our newly created Ionic Firestore Kanban application) let’s quickly cover the
components and services we generated so that we understand their purpose.

Our custom Angular components (within the app/components directory) are:

• KanbanColumnComponent - As the name suggests this component serves as
the representation for each stage displayed in the Kanban board (the columns To
Do, In Progress and Completed)

• KanbanCardComponent - This provides the functionality, templating & styling for
each work item displayed in the KanbanColumnComponent (when rendered as
the columns representing the different stages of the Kanban process)

• KanbanEditorComponent - This provides the form functionality to create/update
a Kanban board card for the selected column/stage of the process

Within the app/components/shared-components directory we also declare an
Angular feature module to allow our custom components to be exported for use
throughout different areas of the application:

• SharedComponentsModule - Angular module that exports the Kanban board
components allowing them to be imported into other application modules where
requested (and not imported across ALL of the application - as they would be if
imported within the application root module - making this a more optimised
approach to managing component usage)

Finally, within the app/services directory, we have the following services:

• DataChangeListenerService - Uses the rxJS library BehaviorSubject for cross
component communication where data changes need to be subscribed (and
responded) to

• DatabaseService - Uses Firestore API to manage CRUD operations for Kanban
board

• UtilitiesService - Provides “helper” methods used by the application such as
generating date values and determining column functionality

We’ll cover these in more depth shortly but first let’s turn our attention to creating the
Firebase project that will be integrated with the Ionic Firestore Kanban application
(otherwise our Kanban Board will have no data persistence…and that’s kind of
important for our application to function effectively!)

35

Firestore - Building a Kanban board

36

Mastering Ionic: Working with Cloud Firestore

Implementing our Firebase project
If you don’t already have a Firebase account head over to firebase.com and sign in
using your Google account - assuming you have one…and if you don’t, you’ll need to
create one for this project! :)

If you already have a Firebase account login at firebase.com, head to your console
and select the Add project button featured at the start of your Recent projects list:

On the Create a project screen that we transition to the first step requires entering a
name for the project (simply enter firestore-kanban as shown in the screen capture
below):

https://firebase.com
https://firebase.com

37

Firestore - Building a Kanban board

The second step for this process allows us to enable Google Analytics for our project
(this won’t be needed for the Ionic application so ensure this is deselected):

Click on the Create project button and wait for the project to be generated:

Once created click on the Continue button that is displayed and you will be directed
to a screen displaying a Get started by adding Firebase to your app heading.

38

Mastering Ionic: Working with Cloud Firestore

A firebase project (the firestore-kanban project that we just created) is simply a
container within which iOS, Android and Web applications can be assigned to.

Here you will need to select the Web Icon (the HTML tag displaying a forward slash)
after which you are presented with an Add Firebase to your web app wizard whose
first step invites you to Register app (enter the name firestore-kanban and select
Firebase Hosting (which automatically assigns firestore-kanban as the app value:

39

Firestore - Building a Kanban board

Click on the Register app button once completed.

The second step of the wizard prompts you to Add Firebase SDK (which we can
safely skip as this was previously added during the creation of our Ionic application
earlier in this chapter).

We are also presented with a block of initialisation code which needs to be added to
our Ionic application. This initialisation code allows our app to “speak” with Firebase
and use its API across various services such as Authentication, Cloud Firestore and
Cloud Storage (to name but a few that are available for the Firebase Web app).

Copy this initialisation code and paste into a temporary text file - we’ll come back to
this later when we return to working on the Ionic application codebase - and click the
Next button to advance to the third stage of the wizard.

Here we are prompted to install the Firebase CLI which allows developers to deploy
their projects to Firebase Hosting from the command line.

Copy the displayed npm command and run this in your system software terminal
before proceeding with the remainder of the wizard.

Mastering Ionic: Working with Cloud Firestore

40

The fourth and final stage of the wizard provides us with the necessary command
line instructions and information required to deploy our project to Firebase Hosting.

We won’t do this right now (as there’s nothing to currently deploy) but we will revisit
this later once development for our ionic application has been completed.

Once completed you are then redirected to the console for the firestore-kanban
project. Notice the button underneath the project title informing you of one application
associated with the project? This is the Web application that we just created.

The Add app button sat to the right of this allows you to add further application
platforms to the firebase project including: iOS, Android, Unity & Flutter.

For our purposes we only need to concentrate on the Web application that we
recently created for our Firebase project.

From the product listings displayed on the console home page click onto the Cloud
Firestore link - this is where we’ll start to configure the project database as well as
associated security rules for data access.

Cloud Firestore is a NoSQL database that stores data using collections (data
containers that store & organise documents) and documents (which represent
individual records) in a JSON-like format.

A document contains key/value mappings which can correspond to any of the
following data types: boolean, number, string, geo point, BLOB (Binary Large
Object), timestamp, arrays & nested objects (aka maps).

As you might guess this wide range of data types gives us quite a lot of flexibility in
terms of what data we can store when creating documents within a Cloud Firestore
database.

From the Cloud Firestore home screen click the Create database button to begin.

41

Firestore - Building a Kanban board

42

The Create database popup window that appears presents 2 steps to be completed:

• Secure rules for Cloud Firestore
• Set Cloud Firestore location

Starting with the secure rules for the database step simply select the Start in test
mode option which will grant default public access to the Cloud Firestore database.

For the purpose of this chapter this will suffice but be aware this is a security risk and
must not be used in a production context. Realistically if you’re using Cloud Firestore
even in a development context you should lock down security but this does require
that Firebase authentication is enabled to allow access.

As we are not enabling/using Firebase authentication we deliberately set the rules for
the database to start in test mode.

Mastering Ionic: Working with Cloud Firestore

43

Firestore - Building a Kanban board

In the final step of the Create database popup window we are asked to set the
location of the Cloud Firestore database.

The default is nam5 (us-central) which we can safely leave as our selected location.

Click the Enable button and wait for the database creation script to complete before
our newly generated Cloud Firestore database is loaded and displayed:

44

Mastering Ionic: Working with Cloud Firestore

With this final step we’ve now concluded our firebase configuration for the Ionic
Firebase Kanban project so let’s now return to the Ionic project codebase and start
building this out.

Integrating Firebase
Remember that Firebase initialisation code I told you to copy and paste into a
temporary text file earlier in this chapter?

Let’s start with adding that code to our Ionic application so we can communicate with
the Firebase service and make API calls.

Open both of the following files:

• ionic-firestore-kanban/src/environments/environment.ts
• ionic-firestore-kanban/src/environments/environment.prod.ts

Within each of these files add the following block of code (using the values from the
Firebase initialisation code that you pasted into that temporary text file) within the
body of the declared environment object:

firebase : {
apiKey: 'YOUR-COPIED-API-KEY-VALUE-PASTED-HERE',
authDomain: 'YOUR-COPIED-AUTHDOMAIN-VALUE-PASTED-HERE',
projectId: 'YOUR-COPIED-PROJECT-ID-VALUE-PASTED-HERE',
storageBucket: 'YOUR-COPIED-BUCKET-VALUE-PASTED-HERE',
messagingSenderId: 'YOUR-COPIED-SENDER-VALUE-PASTED-HERE',
appId: 'YOUR-COPIED-APP-ID-VALUE-PASTED-HERE'
},
collections: {
toDos: 'toDos',
inProgress: 'inProgress',
completed: 'completed'
}

Here we simply declare the Firebase initialisation code within its own self-contained
firebase object and include an additional collections object which provides names
for the database collections that we will be using for our Cloud Firestore database.

45

End of preview

Firestore - Building a Kanban board

