

Die IODA Architektur im
Vergleich

Ralf Westphal und dotnetpro

Dieses Buch wird verkauft unter
http://leanpub.com/ioda-architektur-im-vergleich-dnp

Diese Version wurde veröffentlicht am 2020-12-27

Dies ist ein Leanpub-Buch. Leanpub bietet Autoren und Verlagen, mit
Hilfe von Lean-Publishing, neue Möglichkeiten des Publizierens. Lean
Publishing bedeutet die wiederholte Veröffentlichung neuer
Beta-Versionen eines eBooks unter der Zuhilfenahme schlanker
Werkzeuge. Das Feedback der Erstleser hilft dem Autor bei der
Finalisierung und der anschließenden Vermarktung des Buches. Lean
Publishing unterstützt den Autor darin ein Buch zu schreiben, das auch
gelesen wird.

© 2018-2020 dotnetpro und Ralf Westphal

http://leanpub.com/ioda-architektur-im-vergleich-dnp
http://leanpub.com/
http://leanpub.com/manifesto
http://leanpub.com/manifesto

Ebenfalls von Ralf Westphal
Test-first Codierung

Softwareentwurf mit Flow-Design

Software Anforderungsanalyse mit Slicing

http://leanpub.com/u/ralfw
http://leanpub.com/test-first-codierung
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/software-anforderungsanalyse-mit-slicing

Inhaltsverzeichnis

Vorwort . 1

1 - Eine Kritik bisheriger Architekturmodelle 6
Am Anfang war der Monolith 7
Den Monolithen in Schichten spalten 12
Schichten entkoppeln . 16
Schichten in Schale werfen . 20
Reflexion . 21

2 - Das IODA Architekturmodell 24
Funktionale Abhängigkeiten als Wurzelproblem 24
Auflösung funktionaler Abhängigkeiten 24
Operationen verbinden . 24
Verbindung zur Außenwelt . 24
Ein neues Architekturmuster 25
Echt abstrakt . 25

3 - IODA am Beispiel . 26
Struktur fraktal . 26
Zusammenfassung . 26

Update 2020 . 27
Logik frisch definiert . 27
Integrationen konsequent benannt 27

Interactor . 27
Processor . 27
Interactor-Varianten . 27

Reflexion . 28

Vorwort
Seit Ende der 1990er befasse ich mich mit Softwarearchitektur explizit.
Vorher hatte ich Software einfach “irgendwie zusammengeschraubt”, glau-
be ich. Das hatte genügend gut geklappt, so dass ich damit Geld verdienen
konnte; die Kunden der Firma, die ich mit meinem Geschäftspartner hatte,
waren zufrieden mit unserer Software.

Doch dann irgendwann war das nicht mehr genug. In die Microsoft-
Bubble, in der ich mich damals befand, drang etwas Neues ein. Entwurfs-
muster für die Objektorientierung waren angesagt und dann kam sogar
Microsoft als Technologiehersteller mit Empfehlungen für die Strukturie-
rung von Software um die Ecke. Ich erinnere mich ans Schichtenmodell,
dann an N-Tier Architecture, dann an Emissaries and Executants (ich
glaube, so hieß das eine Zeit lang)… Auch wenn die Details verschwim-
men, eines habe ich noch im Gefühl: Softwarearchitektur war wichtig
geworden.

Wie es dann so kam, hat mich das Thema nicht wieder verlassen. Ich
war vom Technologieanwender zu einem “Planer” von Technologiean-
wendung geworden.

Allerdings konnte ich schon bald nicht mehr einfach akzeptieren, was
an Architekturmustern empfohlen wurde. Immer fehlte irgendetwas oder
kam mir nicht plausibel vor. Anfang 2005 habe ich dieses Gefühl dann
so ernst genommen, dass ich anfing, an einem eigenen Architekturmodell
zu tüfteln. Die Softwarezelle ward geboren. Hier zwei Bilder aus dieser
Zeit, mit denen ich das Konzept in meinem damaligen Blog erklärt und
entwickelt habe:¹

¹Interessanterweise war ich nicht der einzige, dem da etwas fehlte. Später habe ich
erfahren, dass Alistair Cockburn zur selben Zeit an seiner Hexgonal Architecture gearbeitet
hat. Es lag da also etwas in der Luft…

Vorwort 2

Eine frühe Form der Softwarezelle aus dem April 2005

Softwarezellen im Verbund für eine verteilte Architektur

Damals war mir sehr wichtig, die Geschäftslogik in den Mittelpunkt zu
rücken. Sie schien mir in anderen Architekturmustern zu wenig betont

Vorwort 3

und gerade für verteilte Anwendungen stiefmütterlich behandelt.²

Außerdem fand ich die ganze Herangehensweise an die Strukturierung
von Software zu technisch, zu mechanisch. Wenn Software entwickelt
wird, sich also entwickelt, über lange Zeit entwickelt, geradezu eine Evo-
lution durchläuft… dann, so war mein Gedanke, sollte sie durch ein orga-
nischeres Bild beschrieben werden. Deshalb der Begriff Softwarezelle. Mit
ihr, aus ihr wollte ich Software wachsen sehen.

Vielleicht entstand damals mein Interesse für nachhaltige Softwareent-
wicklung, das später zur Mitgründung der Clean Code Developer Initia-
tive geführt hat. Mein Empfinden war einfach, dass viele Entwickler sich
redlich bemühten, das eine oder andere Architekturmuster anzuwenden,
um nicht zu schnell in die “Unwartbarkeit” zu laufen. Doch dieses Be-
mühen war zu selten von Erfolg gekrönt. Die Anwendung der Muster
funktionierte nicht wie gewünscht, was immer wieder zu Frust geführt
hat und der wiederum zu einer Hoffnung, dass Technologie das Dilemma
doch bitte lösen möge.

Doch Technologie nimmt uns in der Softwareentwicklung das Nachden-
ken nicht ab - außer vielleicht in Sonderfällen. Wir müssen weiterhin
verstehen und entscheiden. Und für das Entscheiden brauchen wir Heu-
ristiken, Prinzipien, Konzepte.

Seitdem hat mich das Thema Softwarearchitektur also nicht losgelassen.
Bei aller trivialen Korrektheit des Beraterspruchs “Es kommt darauf an…”
glaube ich, dass es einen Rahmen gibt, in dem sich Softwarearchitektur
bewegen sollte. Die konkrete Architektur eines Softwaresystems orien-
tiert sich nur daran, sie prägt ihn individuell im Hinblick auf die nicht-
funktionalen Anforderungen aus. Dabei kommt es natürlich darauf an,
wie man das tut.

Doch es kommt eben nicht darauf an, dassman es tut. Softwarearchitektur
ausgehend von Prinzipien und Mustern nicht explizit zu betreiben, halte
ich für keine Option.

Aber welche Prinzipien und Muster? Darüber habe ich lange nachgedacht.
Die Beschäftigung mit dem Clean Code Development hat mir dabei ge-

²In Abbildung 31 finden Sie die Softwarezelle auch heute noch wieder, selbst wenn ich
sie in der Artikelreihe nicht so genannt habe. Ich wollte das Neue der IODA Architektur
nicht noch mit einem solchen Begriff überladen, allemal, da ich auf die Konsequenzen für
die Verteilung nicht eingegangen bin.

Vorwort 4

holfen. Das eine hat das andere befruchtet. Deshalb spreche ich heute
auchweniger von Clean Code; meine Trainings laufen unter einer anderen
Überschrift, um den Bogen weit genug spannen zu können. Denn worum
geht es? Um langfristig hohe Produktivität.

Softwarearchitektur ist einAspekt desWunsches, Software übermöglichst
lange Zeit möglichst anpassungsfähig (wandelbar) zu halten. Andere As-
pekte gehören auch dazu: konsequente test-first Codierung, inkrementelle
Anforderungsanalyse und Umsetzung, Zurückhaltung bei der Verände-
rung von Produktionscode, Verzicht auf die Aufwandsschätzung zuguns-
ten von Vorhersagen usw.

Clean Code hat Appeal für Entwickler, nicht für Manager. Es ist damit ein
zu techschnischer Begriff für das, worum es geht. Programming with Ease
hingegen spannt für mich einen Bogen, der einerseits weit genug ist und
andererseits spezifisch genug. Ich möchte die Programmierung rundum
erleichtern. Dazu gehört auch, die grobe Strukturierung von Code. Denn
wer keine grundlegende Vorstellung von der Anatomie von Software
hat, von ihren wiederkehrenden Funktionsbausteinkategorien und deren
Zusammenhänge, der tut sich von Anfang an schwer mit jedem Software-
projekt. Und dabei geht es noch nicht einmal um die Erfüllung spezieller
nicht-funktionaler Anforderungen. Nein, es reicht schlicht Testbarkeit und
Wandelbarkeit auch bei einem Monolithen, d.h. nicht verteilter Software,
hoch halten zu wollen. Das ist Problem genug, um stets nach besseren
Ansätzen zu suchen.

Das habe ich getan und tue es noch mit der IODA Architektur. Mit ihr
stelle ich das, was mit Softwarezellen begonnen hat, auf ein Prinzipienfun-
dament. Die Hexagonal Architecture und die Clean Architecture basieren
auf den Prinzipien DIP/IoC. Die IODA Architektur basiert auf IOSP und
PoMO als Ergebnisse einer Analyse der ursprünglichen Objektorientie-
rung, wie sie Alan Kay 1968 gedacht hatte.³

Ich habe nichts gegen DIP/IoC. Im Gegenteil! Aber für mich ist da eben
nicht Schluss. Für testbarere und wandelbarere Software brauchen wir ein
Architekturmuster, das darüber hinaus geht.

Mir scheint, dass ich 2015 das erste Mal den Begriff IODA Architektur in

³Für eine ausführliche Herleitung siehe meine Artikelserie OOP as if you meant it bzw.
den Band Softwareentwurf mit Flow-Design aus meiner Programming with Ease Reihe.

http://geekswithblogs.net/theArchitectsNapkin/archive/2015/04/29/the-ioda-architecture.aspx
http://geekswithblogs.net/theArchitectsNapkin/archive/2015/04/29/the-ioda-architecture.aspx
https://leanpub.com/softwareentwurf-mit-flow-design

Vorwort 5

einem Blogartikel⁴ benutzt hatte. 2018 habe ich den aktuellen Stand dazu
dann in drei Artikeln in der dotnetpro zusammengefasst. Diese Artikel
sind in diesem kleinen Buch zusammengefasst, um die Lektüre einfacher
und unabhängig von einemAbonnement der dotnetpro zumachen. Vielen
Dank an Chefrefakteur Tilman Börner und die Ebner Media Group, eine
solche herausgelöste Veröffentlichung zu ermöglichen. Natürlich habe
ich diese Gelegenheit genutzt, die Artikel durchzusehen, hier und da zu
ergänzen und am Ende noch ein Update hinzuzufügen, das einzuarbeiten
schwierig gewesen wäre. Ich hoffe, auf diese Weise diese Perspektive auf
Softwarearchitekturmuster einem größeren Interessentenkreis zugänglich
zu machen.

Viel Spaß bei der Lektüre!

-Ralf Westphal, Bansko/Bulgarien im Dezember 2020

⁴http://geekswithblogs.net/theArchitectsNapkin/archive/2015/04/29/the-ioda-
architecture.aspx

http://geekswithblogs.net/theArchitectsNapkin/archive/2015/04/29/the-ioda-architecture.aspx
http://geekswithblogs.net/theArchitectsNapkin/archive/2015/04/29/the-ioda-architecture.aspx

1 - Eine Kritik bisheriger
Architekturmodelle
Ich kann sie nicht mehr hören die Anpreisungen des Architekturmusters
„Schichtenmodell“. In der dotnetpro wie anderswo spukt es immer wieder
als klassische und deshalb gute Organisation von Code herum.Mir scheint
das inzwischen ein Fall vonCargo Kult⁵: Irgendwer hat irgendwann seinen
Code so strukturiert und damit einen Vorteil erlangt – und nun folgen dem
Generationen von Entwicklern blind.

Was aber, wenn sich die Welt weitergedreht hat? Was, wenn man da
etwas mechanisch tut, ohne wirklich konsequent über die ursprünglichen
Beweggründe nachzudenken? Das Ergebnis ist dann immer gleich: Es
entsteht Unwohlsein, die Dinge werden schwierig – doch man weiß nicht
so recht, woher das kommt. Man macht doch alles richtig, oder? Eher
wohl nicht; vielleicht muss man sich einfach noch mehr bemühen. Also
die Anstrengungen verdoppeln, das Muster einzuhalten. Und so entsteht
dann noch mehr Unwohlsein.

„Been there, done that, got the t-shirt“, kann ich dazu sagen. Einst war ich
auch Anhänger des Schichtenmodells und anderer seiner mustergültigen
Geschwister. Doch irgendwann habe ich für mich realisiert: der Schmerz
ist größer als der Nutzen. Ich muss die Muster nicht besser anwenden,
sondern einen anderen Weg suchen, meine Software zu strukturieren.

Worauf ist dann gestoßen bin, davon möchte ich Ihnen im Folgenden
berichten. Es ist eine Geschichte der Erleichterung. Softwareentwicklung
macht mir jetzt wieder Spaß. Ich kann mich viel mehr auf die Lösung
der Probleme konzentrieren, weil die Struktur mich nicht mehr in ein
hinderliches Korsett zwängt.

Aber der Reihe nach. Lassen Sie mich noch vor dem “Musterspuk” begin-
nen.

⁵https://en.wikipedia.org/wiki/Cargo_cult

https://en.wikipedia.org/wiki/Cargo_cult
https://en.wikipedia.org/wiki/Cargo_cult

1 - Eine Kritik bisheriger Architekturmodelle 7

Am Anfang war der Monolith

Hier ist eine Challenge:

Schreiben Sie ein Programm, das die Gesamtzahl der Worte sowie die
Zahl der verschiedenen Worte in einem Text unter Berücksichtigung
einer Stoppwortliste bestimmt. Der Text wird entweder vom Benutzer
eingegeben oder aus einer Datei gelesen, die der Benutzer bei Pro-
grammstart angibt.

Das ist eine simple Aufgabe, denke ich. Dennoch ist da alles drin, was eine
Software ausmacht: ein bisschen Benutzerschnittstelle, ein bisschen Fach-
logik, ein bisschen Datenzugriff. Genug, um darauf das Schichtenmodell
und andere Strukturierungsideen anzuwenden.

In diesem Beispiel geht es nicht darum, ein Technologiefeuerwerk abzu-
brennen. Eine Konsolenanwendung reicht völlig aus. Deren Anwendung
könnte so aussehen:

1 $ wordcount.exe
2 Text eingeben: Es blaut die Nacht, die Sternlein blinken
3 6 Worte, davon 5 verschieden
4 $ wordcount.exe gedichtanfang.txt
5 6 Worte, davon 5 verschieden
6 $

Der eingegebene Text hat zwar 7 Worte, doch das Wort „es“ steht in der
Datei mit den Stoppworten und wird deshalb nicht gezählt. Außerdem
steht „die“ im Text zweimal, daher unterscheidet sich die Zahl der Worte
von der der verschiedenen.

Sie können ja mal als Fingerübung selbst für die Challenge ein Programm
schreiben. Beobachten Sie sich dabei: Wie gehen Sie vor? Wie strukturie-
ren Sie den Code und warum?

Wenn Sie mitmachen und später vergleichen möchten, dann lesen Sie
erstmal nicht weiter. Spoileralarm! Denn ich möchte Ihnen verschiedene
„hoch entwickelte“ Lösungen vorstellen, um daran zu zeigen, warum das
Schichtenmodell und Verwandte keine Option mehr für mich sind.

1 - Eine Kritik bisheriger Architekturmodelle 8

Aber zuerst eine Lösungsvariante, die gar nicht mehr geht. Oder ist sie
eine, die womöglich noch häufig anzutreffen ist? Entscheiden Sie, ob
Ihnen solcher Code wie in Abbildung 1 immer noch über den Weg läuft.

Den Code bezeichne ich als monolithisch: Nicht nur ist er nicht verteilt,
er besteht auch nur aus Logik. Rekombinierbare Strukturelemente wie
Funktionen oder Klassen sind vernachlässigbar. Der Code ist also quasi
strukturlos aus architektonischer Sicht.

Die Anweisungen in der einzigen Funktion Main(), d.h. die Logik, tut
zwar, was sie tun soll: das Programm ist funktional; doch verständlich
oder testbar ist die Logik nicht.

1 - Eine Kritik bisheriger Architekturmodelle 9

Abbildung 1: Eine funktionale Lösung mit unwesentlicher Struktur

Sicher, das sind kaum 50 Zeilen. Die zu verstehen, sollte doch kein Problem
sein. Warum sich hier mehr Aufwand mit mehr Struktur machen?

Erstens ist das hier ein Beispiel mit überschaubarer Funktionalität (und
auch noch eigentlich geradliniger Logik), um eben Strukturierungsansätze
zu demonstrieren. Selbst wenn das später ein bisschen künstlich und
overengineert aussehen sollte, wird es hoffentlich die wesentlichen Punkte
illustrieren helfen, um die es mir geht.

Zweitens glaube ich, dass wir viel sensibler sein sollten, was die Strukturie-
rung angeht. Wir sollten uns nicht überschätzen in der Fähigkeit, Code zu
verstehen. Die Zeit für einen Bugfix oder zum Einbau einer Erweiterung

1 - Eine Kritik bisheriger Architekturmodelle 10

ist immer knapp. Jede Minute, die wir beim Verstehen von Code sparen
können, bevor wir ihn verändern, ist wichtig. Dafür aber müssen wir
vorher, schon beim Schreiben etwas tun. Der Code-Autor muss an den
späteren Code-Leser denken.

“Programs must be written for people to read, and only inci-
dentally for machines to execute.”, Harold Abelson & Gerald
Jay Sussman

Was macht den Code in Abbildung 1 aber so schwer zu verstehen? Es ist
die kunterbunte Vermischung von Verantwortlichkeiten.

In Abbildung 2 habe ich die wesentlichen Verantwortlichkeiten farblich
hervorgehoben. Sie sehen, das ist ein Flickenteppich. Verantwortlichkeiten
sind verstreut über die Logik. Verantwortlichkeiten werden mit Kontroll-
strukturen „geöffnet“, um dann andere dazwischen zu schieben und sie
erst später zu „schließen“.

1 - Eine Kritik bisheriger Architekturmodelle 11

Abbildung 2: Unstrukturierter Code ist ein Flickenteppich aus Verantwortlichkeiten

So kann kein Fluss des Verständnisses entstehen. Der Code „erzählt keine
Story“, in der etwas entlang einer Kausalkette passiert. Es fehlen Bedeu-
tungseinheiten, die Sie auf einen Blick erfassen können. Alles müssen Sie
sich durch Simulation der Ausführung der Anweisungen erst erschließen.

Das ist gruselig aufwändig und fehlerträchtig. Und ob der Code wirklich
korrekt ist, lässt sich nicht ermitteln, ohne ihnmanuell auszuführen. Keine
der Verantwortlichkeiten kann gezielt mit automatisierten Tests überprüft
werden. So lässt sich nicht zügig feststellen, ob der Code schon reif zur
Auslieferung ist oder nach einer Änderung immer noch korrekt, also
regressionsfrei.

1 - Eine Kritik bisheriger Architekturmodelle 12

So geht’s nicht. Da sind wir uns einig, hoffe ich.

Aber das war die Situation zumindest früher auch nach Einführung der
Strukturierten Programmierung. Vor diesem Hintergrund sind die ersten
Architekturmuster entstanden. Zunächst Model-View-Controller (MVC)⁶,
dann das Schichtenmodell. Was für ein Sonnenaufgang über dem Mono-
lithen.

Den Monolithen in Schichten spalten

MVC, Schichtenmodell, Hexagonale Architektur⁷ und auch die Clean Ar-
chitecture⁸ verfolgen alle denselben Ansatz:

1. Sie definieren einen Kanon von Verantwortlichkeiten und verord-
nen die Spaltung der Logik nach diesen Verantwortlichkeiten in
Module.

2. Sie geben genau vor, wie die Module in Beziehung stehen, d.h.
einander kennen und nutzen dürfen.

Die Beliebtheit des Schichtenmodells scheint mir hierbei in einer Kom-
bination aus leicht zu verstehenden Verantwortlichkeiten in angenehmer
Granularität und sehr klaren Beziehungen zu bestehen (Abbildung 3).

⁶https://de.wikipedia.org/wiki/Model_View_Controller
⁷https://en.wikipedia.org/wiki/Hexagonal_architecture_%28software%29
⁸https://8thlight.com/blog/uncle-bob/2012/08/13/the-clean-architecture.html

https://de.wikipedia.org/wiki/Model_View_Controller
https://en.wikipedia.org/wiki/Hexagonal_architecture_(software)
https://8thlight.com/blog/uncle-bob/2012/08/13/the-clean-architecture.html
https://8thlight.com/blog/uncle-bob/2012/08/13/the-clean-architecture.html
https://de.wikipedia.org/wiki/Model_View_Controller
https://en.wikipedia.org/wiki/Hexagonal_architecture_(software)
https://8thlight.com/blog/uncle-bob/2012/08/13/the-clean-architecture.html

1 - Eine Kritik bisheriger Architekturmodelle 13

Abbildung 3: Das Schichtenmodell definiert verständliche Verantwortlichkeiten in klaren
Beziehungen

Wenn ich dieses Muster auf den bisherigen Code zur Lösung der obigen
Challenge anwende, dann ist damit tatsächlich etwas gewonnen: Verständ-
lichkeit. Die Logik liegt nicht mehr auf einem Haufen, sondern ist verteilt
auf Klassen als Module, so dass sich schon beim Betrachten des Projektes
eine gewisse Übersicht einstellt (Abbildung 4).

Abbildung 4: Schichten steigern die Übersichtlichkeit

Wer mit dem Schichtenmodell vertraut ist, sieht hier erstens Verantwort-
lichkeiten, unter denen er sich etwas vorstellen kann. Zweitens sind dem
Betrachter sofort die grundsätzlichen Beziehungen klar. Das ist ja auch
der Sinn der Einhaltung eines solchen Musters. Sie müssen kein Rad neu
erfinden, sondern können sich darauf verlassen, dass Sie nichts grob falsch
machen, wenn Sie nach dem Schema strukturieren. Mit einem Architek-

1 - Eine Kritik bisheriger Architekturmodelle 14

turmuster setzen Sie eine Brille auf, durch die Sie die Logik analysieren
können; was Sie dabei identifizieren, stecken Sie in die kanonischen Mo-
dule. Und Sie können auch noch annehmen, dass ein anderer Entwickler,
der auch das Muster kennt, ihre Struktur versteht; er findet sich darin also
von vornherein leicht(er) zurecht.

Die nächste Abbildung zeigt konkret die Schichtung der Klassen der Um-
setzung aus Abbildung 4. Ordentlich, oder? Eine so organisierte Codebasis
macht Freude. Alles hat seinen Platz. Da wissen Sie genau, wo was pas-
siert.

Abbildung 5: Konkrete Schichtung der Anwendungslogik

Ja, damit ist etwas gewonnen. Es ist besser als vorher, aber noch nicht
wirklich gut. Denn schauen Sie sich einmal den Code der Businesslogik
an:

1 - Eine Kritik bisheriger Architekturmodelle 15

Abbildung 6: Schlecht testbare Logik trotz Schichtung

Die groben Verantwortlichkeiten sind grundsätzlich hübsch getrennt, die
Abhängigkeiten sind sauber ausgerichtet – doch gut testbar ist deshalb die
eigentliche Businesslogik immer noch nicht. Denn die Businesslogik hängt
immer noch von der Datenzugriffslogik ab. Es besteht eine funktionale
Abhängigkeit : Logik in einer Methode ruft eine andere Methode auf, um
zwischendurch deren Logik auszuführen.

Das hört sich normal an und findet sich bestimmt in Ihrem Code auch
allerorten. Doch das macht es nicht besser. Solche funktional abhängige
Logik ist schlicht nicht für sich allein testbar.

Natürlich ist die Logik in Abbildung 6 auch in anderer Hinsicht noch
suboptimal. Doch das ist sekundär für den Punkt, um den es mir hier
im Augenblick geht. Ich habe nur das minimal Nötige getan, um den
monolithischen Code nach dem Schichtenmodell zu strukturieren. Das
fundamentale Problem des Schichtenmodells geht nicht weg, wenn ich die
Wortzählungslogik noch weiter refaktorisiere. Der Klumpen in Count_-
words() dient also der Unterstreichung des grundsätzlich zu lösenden
Problems der funktionalen Abhängigkeiten.

1 - Eine Kritik bisheriger Architekturmodelle 16

Wer die Businesslogik testen will, der kann das im Moment trotz oder
wegen Schichtenmodell nur tun, indem er ebenfalls die Logik der Daten-
zugriffsschicht ausführt. Das macht einen Businesslogik-Test langsamer
und/oder umständlicher, weil eine Datei als Ressource bereitgestellt wer-
den muss.

Nicht wirklich dramatisch in diesem trivialen Beispiel, doch wenn Sie sich
das Szenario umfangreicher denken… dann kommt schon etwas zusam-
men an Overhead.

Wenn Abbildung 1 den Bewusstseinsstand in Sachen Anwendungsarchi-
tektur bis Mitte der 1990er in vielen Projekten widerspiegelt, dann steht
Abbildung 6 für den Ende der 1990er.

Schichten entkoppeln

In einer Co-Evolution mit bewussterer Anwendungsstrukturierung be-
fand sich ab Ende der 1990er das Thema Testen. Die ersten Unit Testing
Frameworks kamen auf.

Wo klare Verantwortlichkeiten in Modulen freigestellt waren, konnten
überhaupt erst automatisierte Tests feingranular ansetzen. Aber um in
einer sauberen Hierarchie automatisierte Tests punkgenau nur gewisse
Logik testen lassen zu können, brauchte es Entkopplung der Verantwort-
lichkeiten.

Auftritt DIP: Mit dem Dependency Inversion Principle⁹ wurde es möglich,
Tests auf eine Schicht zu fokussieren.

Der Trick besteht darin, Compilezeitabhängigkeiten von Laufzeitabhän-
gigkeiten zu trennen. Zur Compilezeit besteht nach DIP keine direkte
funktionale Abhängigkeit von Logik einer Schicht zu Logik einer anderen.
Eine obere Schicht hängt nicht von einer konkreten unteren ab, sondern
lediglich von einer Abstraktion:

⁹https://de.wikipedia.org/wiki/Dependency-Inversion-Prinzip

https://de.wikipedia.org/wiki/Dependency-Inversion-Prinzip
https://de.wikipedia.org/wiki/Dependency-Inversion-Prinzip

1 - Eine Kritik bisheriger Architekturmodelle 17

Abbildung 7: Mit dem DIP werden Schichten entkoppelt

Abstraktionen sind gewöhnlich Interfaces oder abstrakte Klassen. Die
können von der niedrigen Schicht implementiert werden – aber man kann
auch eine Attrappe für eine niedrige Schicht so aussehen lassen. Doch eins
nach dem anderen.

Zuerst die Anwendung mit verbesserter Schichtenarchitektur in im Über-
blick. Hinzugekommen sind die Interfaces für die Module der bisherigen
Schichten:

Abbildung 8: Eine Schichtenarchitektur mit DIP

Der geübte Softwerker lässt beim Anblick dieser Module sogleich vor
seinem geistigen Auge ein Beziehungsgeflecht wie entstehen und weiß:
alles hübsch entkoppelt und testbar.

1 - Eine Kritik bisheriger Architekturmodelle 18

Abbildung 9: Über Interfaces entkoppelte Schichten

Und was ist der Nutzen des ganzen Aufwands? Im nächsten Codeaus-
schnitt sehen Sie, wie nun mit einer Attrappe die Businesslogik unabhän-
gig von darunterliegenden Details getestet werden kann. Die Implementa-
tion der aufrufenden Logik ist von der aufgerufenen durch das Interface
entkoppelt; erst zur Laufzeit wird bestimmt, wer aufgerufen wird.

Statt einen Datenzugriff konkret zu durchlaufen, werden die Stoppworte
im Test hart verdrahtet. Das ist trivial in puncto Laufzeit und Komplexität
und einfacher, als eine Stoppwortdatei zu benutzen.

Abbildung 10: Mit einer Attrappe wird das Testen von abhängiger Logik einfach

Dass der Businesslogik aber überhaupt eine Attrappe untergeschoben
werden kann, ist der Anwendung des Inversion of Control (IoC)¹⁰ Prin-
zips geschuldet. Dessen Manifestation besteht hier im Hineinreichen der
Laufzeitabhängigkeit in die Businesslogik durch ihren Konstruktor (*con-
structor injection).

¹⁰https://de.wikipedia.org/wiki/Inversion_of_Control

https://de.wikipedia.org/wiki/Inversion_of_Control
https://de.wikipedia.org/wiki/Inversion_of_Control

1 - Eine Kritik bisheriger Architekturmodelle 19

Abbildung 11: Injizieren der konkreten Implementation einer abstrakten Abhängigkeit zur
Laufzeit

Die Abhängigkeit vom Interface IDataaccess zur Compilezeit wird zur
Laufzeit durch die Injektion einer Implementation des Interfaces befrie-
digt. Nachfolgende sind die Compilezeit- und Laufzeitabhängigkeiten zu-
sammen visualisiert.

Abbildung 12: Mit DIP unterscheiden sich die Abhängigkeiten zu Compilezeit und Laufzeit

Das sieht jetzt schon nicht mehr so einfach aus wie das ursprüngliche
Schichtenmodell, würde ich sagen. Logik ist auch im Schichtenmodell bei
vortrefflicher Ausrichtung der Beziehungen immer noch funktional ab-
hängig. Um trotz dieser Abhängigkeiten Testbarkeit zu erlangen, müssen
zusätzliche Elemente eingeführt werden: Abstraktionen (hier: Interfaces).
Und aus einer Menge unidirektionaler Abhängigkeiten werden zwei Men-
gen, von denen eine auch noch gegenläufige Abhängigkeiten enthält.

1 - Eine Kritik bisheriger Architekturmodelle 20

Das scheint der Preis der Wandelbarkeit zu sein. Verständlichkeit entsteht
durch Trennung von Verantwortlichkeiten und klare Beziehungen. Test-
barkeit entsteht durch DIP und IoC. Ist halt so. Da müssen wir durch.

Um das Leben nunwenigstens aber ein wenig einfacher zumachen, gibt es
Mock-Frameworks wieMoq¹¹ (in Abbildung 10 benutzt) und Dependency-
Injection-Frameworks wie Simple Injector¹² oder Unity¹³.

Jetzt ist es nur noch eine Sache konsequenter Anwendung von Prinzipien
und Werkzeugen, um sauberen Code zu schreiben. Alles scheint gesagt
zur grundlegenden Strukturierung von Logik.

Das ist zumindest der Stand des Bewusstseins, den ich bei Clean Code
Development Trainings¹⁴. Wenn ein Architekturmuster bekannt ist, dann
ist es MVC oder das Schichtenmodell. Zusätzlich wird dann noch die
Fahne der SOLID-Prinzipien¹⁵ hochgehalten, zu denen das DIP gehört wie
auch das SRP (Single Responsibility Principle), das sichmit Verantwortlich-
keitstrennung befasst.

Nur leider sehe ich ebenfalls bei den Teams, die Code SOLIDe in Schichten
strukturieren keine entspannten und freudvollen Gesichter. Der Code ist
immer noch schwer zu wandeln. Sonst würde man mit mir ja auch nicht
über Clean Code Development sprechen wollen.

Wie kann das aber sein? Trotz sauberer Schichtung immer noch nicht
sauber? Merkwürdig, oder?

Schichten in Schale werfen

This content is not available in the sample book. The book can be purcha-
sed on Leanpub at http://leanpub.com/ioda-architektur-im-vergleich-dnp.

¹¹https://github.com/Moq/moq4
¹²https://simpleinjector.org/index.html
¹³https://github.com/unitycontainer/unity
¹⁴https://ralfw.de/trainings/training-products/
¹⁵https://en.wikipedia.org/wiki/SOLID_(object-oriented_design)

https://github.com/Moq/moq4
https://simpleinjector.org/index.html
https://github.com/unitycontainer/unity
https://ralfw.de/trainings/training-products/
https://ralfw.de/trainings/training-products/
https://en.wikipedia.org/wiki/SOLID_(object-oriented_design)
http://leanpub.com/ioda-architektur-im-vergleich-dnp
https://github.com/Moq/moq4
https://simpleinjector.org/index.html
https://github.com/unitycontainer/unity
https://ralfw.de/trainings/training-products/
https://en.wikipedia.org/wiki/SOLID_(object-oriented_design)

1 - Eine Kritik bisheriger Architekturmodelle 21

Reflexion

Früher war nicht alles besser. Codezustände wie in Abbildung 1 will
niemand (wieder) haben.

Die erste Variante des Schichtenmodells jedoch, die war gar nicht so
schlecht. Die klare Trennung von Verantwortlichkeiten kombiniert mit
einer konsequenten Ausrichtung der Abhängigkeiten hat die Verständlich-
keit deutlich gesteigert (Abbildungen 4 und 5).

Für gute Wandelbarkeit war das allerdings noch nicht genug. Die braucht
nicht nur Verständlichkeit, sondern auch Testbarkeit. Die war in der ers-
ten Schichtenvariante noch begrenzt. Lediglich die Logik der untersten
Schicht war gut testbar, weil sie für sich stand. Die Logik in den darüber
liegenden Schichten konnte zwar grundsätzlich schon gezielt angespro-
chen werden, nur musste dann auch immer die Logik darunter liegender
Schichten beim Test mit durchlaufen werden. Das kostet Zeit und das
macht es nicht leicht, einen Bug zu lokalisieren.

Die Testbarkeit ist dann in der zweiten Variante des Schichtenmodells
(Abbildungen 8 und 9) nachgezogen worden. Durch Anwendung von DIP
und IoC können für Tests untere Schichten ausgeblendet werden. Wenn
etwas schiefgeht, dann weiß man, dass der Fehler in der Logik der zu
testenden Schicht steckt.

Allerdings: Dieser Fortschritt in der Testbarkeit hat seinen Preis. Der
wird deutlich in der Clean Architecture Variante (Abbildungen 15 und
19). DIP und IoC addieren Komplexität, die die Verständlichkeit nun –
zumindest nach meinem Empfinden – massiv reduziert. Man ist über das
Ziel hinausgeschossen. „Mehr vom Selben“ (hier: DIP und IoC) hat den
Fortschritt, den die zweite Variante des Schichtenmodells gebracht hat,
nicht vergrößert. Im Gegenteil!

Aber wie kommt das? Ich glaube, es liegt daran, dass man zu sehr auf die
Compilezeitabhängigkeiten gestarrt hat.

Von der Schichtung zur Konzentrik überzugehen hat etwas mit dem Com-
pilezeitabhängigkeiten zu tun. Im Schichtenmodell war das Volatile (oder
Instabile), Robert C. Martins „mechanisms“, nicht konsequent in einer
Position, wo Veränderungen wenig Probleme machen.

1 - Eine Kritik bisheriger Architekturmodelle 22

Relativ problemlos sind Veränderungen nämlich dort, wovon nur wenige
oder keine Codeeinheiten abhängig sind. Im Schichtenmodell ist das nur
für die Präsentationslogik der Fall. Die Datenzugriffslogik hingegen, die
ebenfalls ein „mechanism“ ist, muss wegen der Abhängigkeit anderer von
ihr, Stabilität zusichern.

Das wurde mit der Clean Architecture bewusst verändert. Dort sind nicht
nur die Abhängigkeiten sauber ausgerichtet, sondern auch die Verantwort-
lichkeiten nach Stabilität positioniert: am stabilsten sind ganz allgemeine,
grundlegende Regeln im Kern, am instabilsten die Kommunikation mit
der Umwelt in der äußeren Schale.

Diese Sichtweise gefällt mir – allerdings hat die Implementation eben ei-
nen hohen Preis. Abbildungen 17 und 20 machen es exemplarisch deutlich:
die Verständlichkeit der Zusammenhänge im Code sinkt.

Aber selbst wenn ich einmal über den auch von Robert C. Martin beklag-
ten Mehraufwand hinwegsehe, frage ich mich, was wirklich gewonnen
ist. Denn Abbildung 21 zeigt ein Bild, das sich im Grunde nicht vom
Schichtenmodell unterscheidet. Zur Laufzeit ist eine Businesslogik immer
noch vom Datenzugriff abhängig.

Was soll das? Da mag zur Compilezeit die Abhängigkeit umgekehrt sein
– Adapter außen hängt von Domäne innen ab –, doch zur Laufzeit gehen
die Aufrufe dorthin durch die Domäne in die Tiefe.

Es ist letztlich nichts gewonnen. Die Abstraktion, von der die Businesslo-
gik abhängig ist, ist lediglich verschoben worden. Vorher gehörte sie zur
darunterliegenden Schicht (IDataaccessLayer in Abbildung 9), jetzt gehört
sie zur Businesslogik selbst (siehe IStopwords in Abbildung 19).

Dass nichts gewonnen ist, ist deutlich zu bemerken beim Testen. Das
Architekturbild suggeriert, dass eine innere Schale keine Abhängigkeit hat
zu einer äußeren – doch beim Testen stellt sich das Gegenteil heraus. In
Abbildung 17 ist der Use Case Interactor – also Code der Use-Case-Schale
– zur Laufzeit abhängig vom Presenter in der darüberliegenden Schale.
Dass der Use Case Output Port zur Use-Case-Schale gehört, kaschiert das
nur. Im Test muss trotzdem eine Attrappe gebaut werden.

Sind Sie noch da oder haben Sie schon halb abgeschaltet? Das würde
mich nicht wundern. Bei dem ganzen hin und her der Abhängigkeiten
von Compilezeit und Laufzeit, kann einem schon der Kopf schwirren. Ich

1 - Eine Kritik bisheriger Architekturmodelle 23

jedenfalls verliere bei der Darstellung der vollständigen Abhängigkeiten
der implementierten Clean Architecture den Überblick (Abbildung 22).

So sieht für mich ein Testalbtraum aus. Ganz zu schweigen davon, dass
damit das Rätselraten darum, für welche Klassen ein Interface definiert
werden sollte, weiter angeheizt wird. Im Zweifelsfall lautet dann die
Antwort „Für alle!“ und damit explodiert die Zahl der Dateien in einem
Projekt (wenn man je Klasse und je Interface eine Datei denkt).

Abbildung 22: Das vollständige Abhängigkeitsbild der implementierten Clean Architecture

Das einzig Positive, das ich der Clean Architecture abgesehen vom hüb-
schen Bild abgewinnen kann, ist die Tendenz zur Aufspaltung von Abs-
traktionen. Sie scheint die Anwendung des Interface Seggregation Princip-
le (ISP)¹⁶ nahezulegen. Schmalere Interfaces helfen einfach bei der Ent-
kopplung.

Wo vorher nur eine Präsentationslogikschicht und eine Datenzugriffs-
schicht mit respektiven Abstraktionen waren, sind beide nun zerfallen
in mehrere Teile: Controller und Presenter sind getrennt und es gibt
IPresenter; ebenfalls getrennt sind IText und IStopwords, wo vorher nur
IDataAccessLayer war.

Am Ende ist dieser positive Effekt für mich jedoch nicht ausschlaggebend.
Viel wichtiger finde ich das Sinken der Verständlichkeit durch eine ge-
stiegene Artefaktzahl und den weiterhin hohen Testaufwand. Denn jede
Laufzeitabhängigkeit ruft zur Testzeit nach einer Attrappe.

¹⁶https://en.wikipedia.org/wiki/Interface_segregation_principle

https://en.wikipedia.org/wiki/Interface_segregation_principle
https://en.wikipedia.org/wiki/Interface_segregation_principle
https://en.wikipedia.org/wiki/Interface_segregation_principle

2 - Das IODA
Architekturmodell
This content is not available in the sample book. The book can be purcha-
sed on Leanpub at http://leanpub.com/ioda-architektur-im-vergleich-dnp.

Funktionale Abhängigkeiten als
Wurzelproblem

This content is not available in the sample book. The book can be purcha-
sed on Leanpub at http://leanpub.com/ioda-architektur-im-vergleich-dnp.

Auflösung funktionaler Abhängigkeiten

This content is not available in the sample book. The book can be purcha-
sed on Leanpub at http://leanpub.com/ioda-architektur-im-vergleich-dnp.

Operationen verbinden

This content is not available in the sample book. The book can be purcha-
sed on Leanpub at http://leanpub.com/ioda-architektur-im-vergleich-dnp.

Verbindung zur Außenwelt

This content is not available in the sample book. The book can be purcha-
sed on Leanpub at http://leanpub.com/ioda-architektur-im-vergleich-dnp.

http://leanpub.com/ioda-architektur-im-vergleich-dnp
http://leanpub.com/ioda-architektur-im-vergleich-dnp
http://leanpub.com/ioda-architektur-im-vergleich-dnp
http://leanpub.com/ioda-architektur-im-vergleich-dnp
http://leanpub.com/ioda-architektur-im-vergleich-dnp

2 - Das IODA Architekturmodell 25

Ein neues Architekturmuster

This content is not available in the sample book. The book can be purcha-
sed on Leanpub at http://leanpub.com/ioda-architektur-im-vergleich-dnp.

Echt abstrakt

This content is not available in the sample book. The book can be purcha-
sed on Leanpub at http://leanpub.com/ioda-architektur-im-vergleich-dnp.

http://leanpub.com/ioda-architektur-im-vergleich-dnp
http://leanpub.com/ioda-architektur-im-vergleich-dnp

3 - IODA am Beispiel
This content is not available in the sample book. The book can be purcha-
sed on Leanpub at http://leanpub.com/ioda-architektur-im-vergleich-dnp.

Struktur fraktal

This content is not available in the sample book. The book can be purcha-
sed on Leanpub at http://leanpub.com/ioda-architektur-im-vergleich-dnp.

Zusammenfassung

This content is not available in the sample book. The book can be purcha-
sed on Leanpub at http://leanpub.com/ioda-architektur-im-vergleich-dnp.

http://leanpub.com/ioda-architektur-im-vergleich-dnp
http://leanpub.com/ioda-architektur-im-vergleich-dnp
http://leanpub.com/ioda-architektur-im-vergleich-dnp

Update 2020
This content is not available in the sample book. The book can be purcha-
sed on Leanpub at http://leanpub.com/ioda-architektur-im-vergleich-dnp.

Logik frisch definiert

This content is not available in the sample book. The book can be purcha-
sed on Leanpub at http://leanpub.com/ioda-architektur-im-vergleich-dnp.

Integrationen konsequent benannt

This content is not available in the sample book. The book can be purcha-
sed on Leanpub at http://leanpub.com/ioda-architektur-im-vergleich-dnp.

Interactor

This content is not available in the sample book. The book can be purcha-
sed on Leanpub at http://leanpub.com/ioda-architektur-im-vergleich-dnp.

Processor

This content is not available in the sample book. The book can be purcha-
sed on Leanpub at http://leanpub.com/ioda-architektur-im-vergleich-dnp.

Interactor-Varianten

This content is not available in the sample book. The book can be purcha-
sed on Leanpub at http://leanpub.com/ioda-architektur-im-vergleich-dnp.

http://leanpub.com/ioda-architektur-im-vergleich-dnp
http://leanpub.com/ioda-architektur-im-vergleich-dnp
http://leanpub.com/ioda-architektur-im-vergleich-dnp
http://leanpub.com/ioda-architektur-im-vergleich-dnp
http://leanpub.com/ioda-architektur-im-vergleich-dnp
http://leanpub.com/ioda-architektur-im-vergleich-dnp

Update 2020 28

Reflexion

This content is not available in the sample book. The book can be purcha-
sed on Leanpub at http://leanpub.com/ioda-architektur-im-vergleich-dnp.

http://leanpub.com/ioda-architektur-im-vergleich-dnp

	Inhaltsverzeichnis
	Vorwort
	1 - Eine Kritik bisheriger Architekturmodelle
	Am Anfang war der Monolith
	Den Monolithen in Schichten spalten
	Schichten entkoppeln
	Schichten in Schale werfen
	Reflexion

	2 - Das IODA Architekturmodell
	Funktionale Abhängigkeiten als Wurzelproblem
	Auflösung funktionaler Abhängigkeiten
	Operationen verbinden
	Verbindung zur Außenwelt
	Ein neues Architekturmuster
	Echt abstrakt

	3 - IODA am Beispiel
	Struktur fraktal
	Zusammenfassung

	Update 2020
	Logik frisch definiert
	Integrationen konsequent benannt
	Interactor
	Processor
	Interactor-Varianten

	Reflexion

