T dotnetpro

Die IODA Architektur im
Vergleich

Ralf Westphal und dotnetpro

Dieses Buch wird verkauft unter
http://leanpub.com/ioda-architektur-im-vergleich-dnp

Diese Version wurde verdffentlicht am 2020-12-27

)

Leanpub

Dies ist ein Leanpub-Buch. Leanpub bietet Autoren und Verlagen, mit
Hilfe von Lean-Publishing, neue Moglichkeiten des Publizierens. Lean
Publishing bedeutet die wiederholte Veréffentlichung neuer
Beta-Versionen eines eBooks unter der Zuhilfenahme schlanker
Werkzeuge. Das Feedback der Erstleser hilft dem Autor bei der
Finalisierung und der anschliefenden Vermarktung des Buches. Lean
Publishing unterstiitzt den Autor darin ein Buch zu schreiben, das auch
gelesen wird.

© 2018-2020 dotnetpro und Ralf Westphal

http://leanpub.com/ioda-architektur-im-vergleich-dnp
http://leanpub.com/
http://leanpub.com/manifesto
http://leanpub.com/manifesto

Ebenfalls von Ralf Westphal

Test-first Codierung
Softwareentwurf mit Flow-Design

Software Anforderungsanalyse mit Slicing

http://leanpub.com/u/ralfw
http://leanpub.com/test-first-codierung
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/software-anforderungsanalyse-mit-slicing

Inhaltsverzeichnis

Vorwort. 1
1 - Eine Kritik bisheriger Architekturmodelle 6
Am Anfang war der Monolith 7
Den Monolithen in Schichten spalten 12
Schichten entkoppeln L. 16
Schichten in Schalewerfen. 20
Reflexion 21

2 - Das IODA Architekturmodell 24
Funktionale Abhéngigkeiten als Wurzelproblem 24
Auflosung funktionaler Abhéngigkeiten 24
Operationen verbinden 24
Verbindung zur Auflenwelt 24
Ein neues Architekturmuster 25
Echtabstrakt 25
3-10DA am Beispiel 26
Struktur fraktal Lo o o 26
Zusammenfassung 26
Update 2020 27
Logik frisch definiert 27
Integrationen konsequent benannt 27
Interactor Lo o 27
Processor 27
Interactor-Varianten 27

Reflexion 28

Vorwort

Seit Ende der 1990er befasse ich mich mit Softwarearchitektur explizit.
Vorher hatte ich Software einfach “irgendwie zusammengeschraubt”, glau-
be ich. Das hatte geniigend gut geklappt, so dass ich damit Geld verdienen
konnte; die Kunden der Firma, die ich mit meinem Geschéftspartner hatte,
waren zufrieden mit unserer Software.

Doch dann irgendwann war das nicht mehr genug. In die Microsoft-
Bubble, in der ich mich damals befand, drang etwas Neues ein. Entwurfs-
muster fiir die Objektorientierung waren angesagt und dann kam sogar
Microsoft als Technologiehersteller mit Empfehlungen fiir die Strukturie-
rung von Software um die Ecke. Ich erinnere mich ans Schichtenmodell,
dann an N-Tier Architecture, dann an Emissaries and Executants (ich
glaube, so hief§ das eine Zeit lang)... Auch wenn die Details verschwim-
men, eines habe ich noch im Gefiihl: Softwarearchitektur war wichtig
geworden.

Wie es dann so kam, hat mich das Thema nicht wieder verlassen. Ich
war vom Technologieanwender zu einem “Planer” von Technologiean-
wendung geworden.

Allerdings konnte ich schon bald nicht mehr einfach akzeptieren, was
an Architekturmustern empfohlen wurde. Immer fehlte irgendetwas oder
kam mir nicht plausibel vor. Anfang 2005 habe ich dieses Gefiihl dann
so ernst genommen, dass ich anfing, an einem eigenen Architekturmodell
zu tifteln. Die Softwarezelle ward geboren. Hier zwei Bilder aus dieser
Zeit, mit denen ich das Konzept in meinem damaligen Blog erklart und
entwickelt habe:'

'Interessanterweise war ich nicht der einzige, dem da etwas fehlte. Spater habe ich
erfahren, dass Alistair Cockburn zur selben Zeit an seiner Hexgonal Architecture gearbeitet
hat. Es lag da also etwas in der Luft...

Vorwort 2

Controlling/data flowing
out to another application

Resource

Application Adapter

Resource Adapter

\{ Application Portal

Control/data flowing in
from another application

v

Eine friihe Form der Softwarezelle aus dem April 2005

Presentation Layer

Business Logic Layer

Data Access Layer |

Softwarezellen im Verbund fiir eine verteilte Architektur

Damals war mir sehr wichtig, die Geschéftslogik in den Mittelpunkt zu
ricken. Sie schien mir in anderen Architekturmustern zu wenig betont

Vorwort 3

und gerade fiir verteilte Anwendungen stiefmitterlich behandelt.?

Auferdem fand ich die ganze Herangehensweise an die Strukturierung
von Software zu technisch, zu mechanisch. Wenn Software entwickelt
wird, sich also entwickelt, tiber lange Zeit entwickelt, geradezu eine Evo-
lution durchlauft... dann, so war mein Gedanke, sollte sie durch ein orga-
nischeres Bild beschrieben werden. Deshalb der Begriff Softwarezelle. Mit
ihr, aus ihr wollte ich Software wachsen sehen.

Vielleicht entstand damals mein Interesse fiir nachhaltige Softwareent-
wicklung, das spiter zur Mitgrindung der Clean Code Developer Initia-
tive gefithrt hat. Mein Empfinden war einfach, dass viele Entwickler sich
redlich bemiihten, das eine oder andere Architekturmuster anzuwenden,
um nicht zu schnell in die “Unwartbarkeit” zu laufen. Doch dieses Be-
mithen war zu selten von Erfolg gekront. Die Anwendung der Muster
funktionierte nicht wie gewtnscht, was immer wieder zu Frust gefiihrt
hat und der wiederum zu einer Hoffnung, dass Technologie das Dilemma
doch bitte 16sen moge.

Doch Technologie nimmt uns in der Softwareentwicklung das Nachden-
ken nicht ab - aufler vielleicht in Sonderfallen. Wir miissen weiterhin
verstehen und entscheiden. Und fiir das Entscheiden brauchen wir Heu-
ristiken, Prinzipien, Konzepte.

Seitdem hat mich das Thema Softwarearchitektur also nicht losgelassen.
Bei aller trivialen Korrektheit des Beraterspruchs “Es kommt darauf an...”
glaube ich, dass es einen Rahmen gibt, in dem sich Softwarearchitektur
bewegen sollte. Die konkrete Architektur eines Softwaresystems orien-
tiert sich nur daran, sie pragt ihn individuell im Hinblick auf die nicht-
funktionalen Anforderungen aus. Dabei kommt es natiirlich darauf an,
wie man das tut.

Doch es kommt eben nicht darauf an, dass man es tut. Softwarearchitektur
ausgehend von Prinzipien und Mustern nicht explizit zu betreiben, halte
ich fiir keine Option.

Aber welche Prinzipien und Muster? Dariiber habe ich lange nachgedacht.
Die Beschaftigung mit dem Clean Code Development hat mir dabei ge-

’In Abbildung 31 finden Sie die Softwarezelle auch heute noch wieder, selbst wenn ich
sie in der Artikelreihe nicht so genannt habe. Ich wollte das Neue der IODA Architektur
nicht noch mit einem solchen Begriff tiberladen, allemal, da ich auf die Konsequenzen fir
die Verteilung nicht eingegangen bin.

Vorwort 4

holfen. Das eine hat das andere befruchtet. Deshalb spreche ich heute
auch weniger von Clean Code; meine Trainings laufen unter einer anderen
Uberschrift, um den Bogen weit genug spannen zu kénnen. Denn worum
geht es? Um langfristig hohe Produktivitat.

Softwarearchitektur ist ein Aspekt des Wunsches, Software tiber moglichst
lange Zeit moglichst anpassungsfahig (wandelbar) zu halten. Andere As-
pekte gehoren auch dazu: konsequente test-first Codierung, inkrementelle
Anforderungsanalyse und Umsetzung, Zuriickhaltung bei der Verdnde-
rung von Produktionscode, Verzicht auf die Aufwandsschétzung zuguns-
ten von Vorhersagen usw.

Clean Code hat Appeal fiir Entwickler, nicht fiir Manager. Es ist damit ein
zu techschnischer Begriff fiir das, worum es geht. Programming with Ease
hingegen spannt fiir mich einen Bogen, der einerseits weit genug ist und
andererseits spezifisch genug. Ich méchte die Programmierung rundum
erleichtern. Dazu gehort auch, die grobe Strukturierung von Code. Denn
wer keine grundlegende Vorstellung von der Anatomie von Software
hat, von ihren wiederkehrenden Funktionsbausteinkategorien und deren
Zusammenhange, der tut sich von Anfang an schwer mit jedem Software-
projekt. Und dabei geht es noch nicht einmal um die Erfilllung spezieller
nicht-funktionaler Anforderungen. Nein, es reicht schlicht Testbarkeit und
Wandelbarkeit auch bei einem Monolithen, d.h. nicht verteilter Software,
hoch halten zu wollen. Das ist Problem genug, um stets nach besseren
Ansitzen zu suchen.

Das habe ich getan und tue es noch mit der IODA Architektur. Mit ihr
stelle ich das, was mit Softwarezellen begonnen hat, auf ein Prinzipienfun-
dament. Die Hexagonal Architecture und die Clean Architecture basieren
auf den Prinzipien DIP/IoC. Die IODA Architektur basiert auf IOSP und
PoMO als Ergebnisse einer Analyse der urspriinglichen Objektorientie-
rung, wie sie Alan Kay 1968 gedacht hatte.?

Ich habe nichts gegen DIP/IoC. Im Gegenteil! Aber fiir mich ist da eben
nicht Schluss. Fiir testbarere und wandelbarere Software brauchen wir ein
Architekturmuster, das dariiber hinaus geht.

Mir scheint, dass ich 2015 das erste Mal den Begriff IODA Architektur in

*Fir eine ausfiihrliche Herleitung siehe meine Artikelserie OOP as if you meant it bzw.
den Band Softwareentwurf mit Flow-Design aus meiner Programming with Ease Reihe.

http://geekswithblogs.net/theArchitectsNapkin/archive/2015/04/29/the-ioda-architecture.aspx
http://geekswithblogs.net/theArchitectsNapkin/archive/2015/04/29/the-ioda-architecture.aspx
https://leanpub.com/softwareentwurf-mit-flow-design

Vorwort 5

einem Blogartikel* benutzt hatte. 2018 habe ich den aktuellen Stand dazu
dann in drei Artikeln in der dotnetpro zusammengefasst. Diese Artikel
sind in diesem kleinen Buch zusammengefasst, um die Lektiire einfacher
und unabhéangig von einem Abonnement der dotnetpro zu machen. Vielen
Dank an Chefrefakteur Tilman Boérner und die Ebner Media Group, eine
solche herausgeloste Veroffentlichung zu erméglichen. Natirlich habe
ich diese Gelegenheit genutzt, die Artikel durchzusehen, hier und da zu
erganzen und am Ende noch ein Update hinzuzufiigen, das einzuarbeiten
schwierig gewesen wére. Ich hoffe, auf diese Weise diese Perspektive auf
Softwarearchitekturmuster einem grofieren Interessentenkreis zuganglich
zu machen.

Viel Spaf3 bei der Lektiire!

-Ralf Westphal, Bansko/Bulgarien im Dezember 2020

*http://geekswithblogs.net/theArchitectsNapkin/archive/2015/04/29/the-ioda-
architecture.aspx

http://geekswithblogs.net/theArchitectsNapkin/archive/2015/04/29/the-ioda-architecture.aspx
http://geekswithblogs.net/theArchitectsNapkin/archive/2015/04/29/the-ioda-architecture.aspx

1 - Eine Kritik bisheriger
Architekturmodelle

Ich kann sie nicht mehr horen die Anpreisungen des Architekturmusters
~Schichtenmodell®. In der dotnetpro wie anderswo spukt es immer wieder
als klassische und deshalb gute Organisation von Code herum. Mir scheint
das inzwischen ein Fall von Cargo Kult®: Irgendwer hat irgendwann seinen
Code so strukturiert und damit einen Vorteil erlangt — und nun folgen dem
Generationen von Entwicklern blind.

Was aber, wenn sich die Welt weitergedreht hat? Was, wenn man da
etwas mechanisch tut, ohne wirklich konsequent iiber die urspriinglichen
Beweggriinde nachzudenken? Das Ergebnis ist dann immer gleich: Es
entsteht Unwohlsein, die Dinge werden schwierig — doch man weify nicht
so recht, woher das kommt. Man macht doch alles richtig, oder? Eher
wohl nicht; vielleicht muss man sich einfach noch mehr bemuhen. Also
die Anstrengungen verdoppeln, das Muster einzuhalten. Und so entsteht
dann noch mehr Unwohlsein.

,Been there, done that, got the t-shirt, kann ich dazu sagen. Einst war ich
auch Anhénger des Schichtenmodells und anderer seiner mustergiiltigen
Geschwister. Doch irgendwann habe ich fiir mich realisiert: der Schmerz
ist grofler als der Nutzen. Ich muss die Muster nicht besser anwenden,
sondern einen anderen Weg suchen, meine Software zu strukturieren.

Worauf ist dann gestoflen bin, davon méchte ich Thnen im Folgenden
berichten. Es ist eine Geschichte der Erleichterung. Softwareentwicklung
macht mir jetzt wieder Spafi. Ich kann mich viel mehr auf die Losung
der Probleme konzentrieren, weil die Struktur mich nicht mehr in ein
hinderliches Korsett zwéngt.

Aber der Reihe nach. Lassen Sie mich noch vor dem “Musterspuk” begin-
nen.

*https://en.wikipedia.org/wiki/Cargo_cult

https://en.wikipedia.org/wiki/Cargo_cult
https://en.wikipedia.org/wiki/Cargo_cult

O UAWNR

1 - Eine Kritik bisheriger Architekturmodelle 7

Am Anfang war der Monolith

Hier ist eine Challenge:

Schreiben Sie ein Programm, das die Gesamtzahl der Worte sowie die
Zahl der verschiedenen Worte in einem Text unter Beriicksichtigung
einer Stoppwortliste bestimmt. Der Text wird entweder vom Benutzer
eingegeben oder aus einer Datei gelesen, die der Benutzer bei Pro-
grammstart angibt.

Das ist eine simple Aufgabe, denke ich. Dennoch ist da alles drin, was eine
Software ausmacht: ein bisschen Benutzerschnittstelle, ein bisschen Fach-
logik, ein bisschen Datenzugriff. Genug, um darauf das Schichtenmodell
und andere Strukturierungsideen anzuwenden.

In diesem Beispiel geht es nicht darum, ein Technologiefeuerwerk abzu-
brennen. Eine Konsolenanwendung reicht véllig aus. Deren Anwendung
kénnte so aussehen:

$ wordcount.exe

Text eingeben: Es blaut die Nacht, die Sternlein blinken
6 Worte, davon 5 verschieden

$ wordcount.exe gedichtanfang.txt

6 Worte, davon 5 verschieden

Der eingegebene Text hat zwar 7 Worte, doch das Wort ,es” steht in der
Datei mit den Stoppworten und wird deshalb nicht gezihlt. Auflerdem
steht ,die” im Text zweimal, daher unterscheidet sich die Zahl der Worte
von der der verschiedenen.

Sie konnen ja mal als Fingertibung selbst fiir die Challenge ein Programm
schreiben. Beobachten Sie sich dabei: Wie gehen Sie vor? Wie strukturie-
ren Sie den Code und warum?

Wenn Sie mitmachen und spater vergleichen mochten, dann lesen Sie
erstmal nicht weiter. Spoileralarm! Denn ich méchte Thnen verschiedene
»hoch entwickelte® Losungen vorstellen, um daran zu zeigen, warum das
Schichtenmodell und Verwandte keine Option mehr fiir mich sind.

1 - Eine Kritik bisheriger Architekturmodelle 8

Aber zuerst eine Losungsvariante, die gar nicht mehr geht. Oder ist sie
eine, die womdglich noch héufig anzutreffen ist? Entscheiden Sie, ob
Ihnen solcher Code wie in Abbildung 1 immer noch iiber den Weg lauft.

Den Code bezeichne ich als monolithisch: Nicht nur ist er nicht verteilt,
er besteht auch nur aus Logik. Rekombinierbare Strukturelemente wie
Funktionen oder Klassen sind vernachléssigbar. Der Code ist also quasi
strukturlos aus architektonischer Sicht.

Die Anweisungen in der einzigen Funktion Main(), d.h. die Logik, tut
zwar, was sie tun soll: das Programm ist funktional; doch verstidndlich
oder testbar ist die Logik nicht.

1 - Eine Kritik bisheriger Architekturmodelle 9

internal class Program
{
public static void Main(string[] args) {
var stopwords = new string[e@];
if (File.Exists("stopwords.txt"))
stopwords = File.ReadAllLines("stopwords.txt");

var text H
if (args.Length > @)
text = File.ReadAllText(args[@]);
else {
Console.Write("Text eingeben: ");
text = Console.ReadLine();
if (string.IsNullOrWhiteSpace(text)) return;

var candidateWords = text.Split(new[] {' ', '\t', '\n', '\r'},
StringSplitOptions.RemoveEmptyEntries);

var countTotal = @;
var countDistinct = @;
var stopwordsDirectory = new HashSet<string>(stopwords);
var distinctWords = new HashSet<string>();
foreach (var wortkandidat in candidateWords) {

foreach(var m in Regex.Matches(wortkandidat, @"[\w\-]*"))

if (!string.IsNullOrWhiteSpace(m.ToString())) {
var word = m.ToString();

if (!stopwordsDirectory.Contains(word)) {
countTotal++;

if (!distinctWords.Contains(word)) {
distinctWords.Add(word);
countDistinct++;

}

Console.WriteLine($"{countTotal} Worte, davon {countDistinct} verschieden");

Abbildung 1: Eine funktionale Losung mit unwesentlicher Struktur

Sicher, das sind kaum 50 Zeilen. Die zu verstehen, sollte doch kein Problem
sein. Warum sich hier mehr Aufwand mit mehr Struktur machen?

Erstens ist das hier ein Beispiel mit Giberschaubarer Funktionalitat (und
auch noch eigentlich geradliniger Logik), um eben Strukturierungsansatze
zu demonstrieren. Selbst wenn das spater ein bisschen kiinstlich und
overengineert aussehen sollte, wird es hoffentlich die wesentlichen Punkte
illustrieren helfen, um die es mir geht.

Zweitens glaube ich, dass wir viel sensibler sein sollten, was die Strukturie-
rung angeht. Wir sollten uns nicht iiberschatzen in der Fahigkeit, Code zu
verstehen. Die Zeit fir einen Bugfix oder zum Einbau einer Erweiterung

1 - Eine Kritik bisheriger Architekturmodelle 10

ist immer knapp. Jede Minute, die wir beim Verstehen von Code sparen
konnen, bevor wir ihn verdndern, ist wichtig. Dafiir aber missen wir
vorher, schon beim Schreiben etwas tun. Der Code-Autor muss an den
spateren Code-Leser denken.

“Programs must be written for people to read, and only inci-
dentally for machines to execute.”, Harold Abelson & Gerald
Jay Sussman

Was macht den Code in Abbildung 1 aber so schwer zu verstehen? Es ist
die kunterbunte Vermischung von Verantwortlichkeiten.

In Abbildung 2 habe ich die wesentlichen Verantwortlichkeiten farblich
hervorgehoben. Sie sehen, das ist ein Flickenteppich. Verantwortlichkeiten
sind verstreut iiber die Logik. Verantwortlichkeiten werden mit Kontroll-
strukturen ,geoffnet”, um dann andere dazwischen zu schieben und sie
erst spéter zu ,schlieflen®.

1 - Eine Kritik bisheriger Architekturmodelle 11

internal class Program
{
public static void Main(string[] args) {
var stopwords = new string[@];
if (.Exists("stopwords.txt"))
stopwords = .ReadAllLines("stopwords.txt");

var text H
if (args.Length > @)
text = .ReadAllText(args[@]);
else {
.Write("Text eingeben: ");
text = .ReadLine();
if (string.IsNullOrWhiteSpace(text)) return;

var candidateWords = text.Split(new[] {' ', '\t', '\n', '\r'},
StringSplitOptions.RemoveEmptyEntries);

var countTotal = @;
var countDistinct = @;
var stopwordsDirectory = new <string>(stopwords);
var distinctWords = new HashSet<string>();
foreach (var wortkandidat in candidateWords) {

foreach(var m in Regex.Matches(wortkandidat, @"[\w\-]1*"))

if (!string.IsNullOrWhiteSpace(m.ToString())) {
var word = m.ToString();

if (!stopwordsDirectory.Contains(word)) {
countTotal++;

if (!distinctWords.Contains(word)) {
distinctWords.Add(word);
countDistinct++;

.WriteLine($"{countTotal} Worte, davon {countDistinct} verschieden");

Abbildung 2: Unstrukturierter Code ist ein Flickenteppich aus Verantwortlichkeiten

So kann kein Fluss des Verstidndnisses entstehen. Der Code ,erzéhlt keine
Story®, in der etwas entlang einer Kausalkette passiert. Es fehlen Bedeu-
tungseinheiten, die Sie auf einen Blick erfassen konnen. Alles missen Sie
sich durch Simulation der Ausfithrung der Anweisungen erst erschliefen.

Das ist gruselig aufwéndig und fehlertrachtig. Und ob der Code wirklich
korrekt ist, lasst sich nicht ermitteln, ohne ihn manuell auszufithren. Keine
der Verantwortlichkeiten kann gezielt mit automatisierten Tests tiberpriift
werden. So lasst sich nicht zugig feststellen, ob der Code schon reif zur
Auslieferung ist oder nach einer Anderung immer noch korrekt, also
regressionsfrei.

1 - Eine Kritik bisheriger Architekturmodelle 12

So geht’s nicht. Da sind wir uns einig, hoffe ich.

Aber das war die Situation zumindest frither auch nach Einfithrung der
Strukturierten Programmierung. Vor diesem Hintergrund sind die ersten
Architekturmuster entstanden. Zunachst Model-View-Controller (MVC)®,
dann das Schichtenmodell. Was fiir ein Sonnenaufgang tiber dem Mono-
lithen.

Den Monolithen in Schichten spalten

MVC, Schichtenmodell, Hexagonale Architektur’ und auch die Clean Ar-
chitecture® verfolgen alle denselben Ansatz:

1. Sie definieren einen Kanon von Verantwortlichkeiten und verord-
nen die Spaltung der Logik nach diesen Verantwortlichkeiten in
Module.

2. Sie geben genau vor, wie die Module in Beziehung stehen, d.h.
einander kennen und nutzen diirfen.

Die Beliebtheit des Schichtenmodells scheint mir hierbei in einer Kom-
bination aus leicht zu verstehenden Verantwortlichkeiten in angenehmer
Granularitit und sehr klaren Beziehungen zu bestehen (Abbildung 3).

“https://de.wikipedia.org/wiki/Model_View_Controller
"https://en.wikipedia.org/wiki/Hexagonal_architecture_%28software%29
*https://8thlight.com/blog/uncle-bob/2012/08/13/the- clean-architecture.html

https://de.wikipedia.org/wiki/Model_View_Controller
https://en.wikipedia.org/wiki/Hexagonal_architecture_(software)
https://8thlight.com/blog/uncle-bob/2012/08/13/the-clean-architecture.html
https://8thlight.com/blog/uncle-bob/2012/08/13/the-clean-architecture.html
https://de.wikipedia.org/wiki/Model_View_Controller
https://en.wikipedia.org/wiki/Hexagonal_architecture_(software)
https://8thlight.com/blog/uncle-bob/2012/08/13/the-clean-architecture.html

1 - Eine Kritik bisheriger Architekturmodelle 13

Benutzerschnittstelle
(Presentation Layer)

Fachliche Logik
(Business Logic Layer)

Datenzugriff fern und nah
(Data Access Layer)

Abbildung 3: Das Schichtenmodell definiert verstindliche Verantwortlichkeiten in klaren
Beziehungen

Wenn ich dieses Muster auf den bisherigen Code zur Losung der obigen
Challenge anwende, dann ist damit tatséchlich etwas gewonnen: Verstdand-
lichkeit. Die Logik liegt nicht mehr auf einem Haufen, sondern ist verteilt
auf Klassen als Module, so dass sich schon beim Betrachten des Projektes
eine gewisse Ubersicht einstellt (Abbildung 4).

S layered1
S References
M Properties
I\ BusinesslogiclLayer.cs
I\ DataacessLayer.cs
I\ PresentationLayer.cs
I\ Program.cs

Abbildung 4: Schichten steigern die Ubersichtlichkeit

Wer mit dem Schichtenmodell vertraut ist, sieht hier erstens Verantwort-
lichkeiten, unter denen er sich etwas vorstellen kann. Zweitens sind dem
Betrachter sofort die grundsatzlichen Beziehungen klar. Das ist ja auch
der Sinn der Einhaltung eines solchen Musters. Sie miissen kein Rad neu
erfinden, sondern kénnen sich darauf verlassen, dass Sie nichts grob falsch
machen, wenn Sie nach dem Schema strukturieren. Mit einem Architek-

1 - Eine Kritik bisheriger Architekturmodelle 14

turmuster setzen Sie eine Brille auf, durch die Sie die Logik analysieren
konnen; was Sie dabei identifizieren, stecken Sie in die kanonischen Mo-
dule. Und Sie koénnen auch noch annehmen, dass ein anderer Entwickler,
der auch das Muster kennt, ihre Struktur versteht; er findet sich darin also
von vornherein leicht(er) zurecht.

Die néchste Abbildung zeigt konkret die Schichtung der Klassen der Um-
setzung aus Abbildung 4. Ordentlich, oder? Eine so organisierte Codebasis
macht Freude. Alles hat seinen Platz. Da wissen Sie genau, wo was pas-
siert.

[Presentatoniazer |
ShoeX)

bisrlac_yesal tsO

)

Eusme%wq‘cLao\er
Zoant_coovds_wn_fileQ)
Zoant _coovdsQ)

Y
Waaccc«Lap\er

Read_teat()
Load_st orwarAS()

Abbildung 5: Konkrete Schichtung der Anwendungslogik

Ja, damit ist etwas gewonnen. Es ist besser als vorher, aber noch nicht
wirklich gut. Denn schauen Sie sich einmal den Code der Businesslogik
an:

1 - Eine Kritik bisheriger Architekturmodelle 15

class BusinesslogicLayer

public static (int countTotal, int countDistinct) Count_words_in_file(string filename) {
var text = DataacesslLayer.Read_text(filename);
return Count_words(text);

}

public static (int countTotal, int countDistinct) Count_words
var stopwordsDirectory = DataacesslLayer.Load_stopwords();

var candidateWords = text.Split(new[] {' *, ‘\t', '\n', '\r'},
StringSplitOptions.RemoveEmptyEntries);

var countTotal = 0

var countDistinct

9;
var distinctWords = new HashSet<string>();
foreach (var wordCandidate in candidateWords) {
foreach(var m in Regex.Matches(wordCandidate, @"[\w\-]*"))
if (!string.IsNullOrWhiteSpace(m.ToString())) {
var word = m.ToString();

if (!stopwordsDirectory.Contains(word)) {
countTotal++;

if (!distinctWords.Contains(word)) {

distinctWords.Add(word);
countDistinct++;

}

return (countTotal, countDistinct);

Abbildung 6: Schlecht testbare Logik trotz Schichtung

Die groben Verantwortlichkeiten sind grundsétzlich hiibsch getrennt, die
Abhéngigkeiten sind sauber ausgerichtet — doch gut testbar ist deshalb die
eigentliche Businesslogik immer noch nicht. Denn die Businesslogik hangt
immer noch von der Datenzugriffslogik ab. Es besteht eine funktionale
Abhdngigkeit: Logik in einer Methode ruft eine andere Methode auf, um
zwischendurch deren Logik auszufiihren.

Das hort sich normal an und findet sich bestimmt in Threm Code auch
allerorten. Doch das macht es nicht besser. Solche funktional abhingige
Logik ist schlicht nicht fiir sich allein testbar.

Natirlich ist die Logik in Abbildung 6 auch in anderer Hinsicht noch
suboptimal. Doch das ist sekundér fir den Punkt, um den es mir hier
im Augenblick geht. Ich habe nur das minimal Notige getan, um den
monolithischen Code nach dem Schichtenmodell zu strukturieren. Das
fundamentale Problem des Schichtenmodells geht nicht weg, wenn ich die
Wortzéhlungslogik noch weiter refaktorisiere. Der Klumpen in Count_-
words() dient also der Unterstreichung des grundsatzlich zu lésenden
Problems der funktionalen Abhéngigkeiten.

1 - Eine Kritik bisheriger Architekturmodelle 16

Wer die Businesslogik testen will, der kann das im Moment trotz oder
wegen Schichtenmodell nur tun, indem er ebenfalls die Logik der Daten-
zugriffsschicht ausfithrt. Das macht einen Businesslogik-Test langsamer
und/oder umsténdlicher, weil eine Datei als Ressource bereitgestellt wer-
den muss.

Nicht wirklich dramatisch in diesem trivialen Beispiel, doch wenn Sie sich
das Szenario umfangreicher denken... dann kommt schon etwas zusam-
men an Overhead.

Wenn Abbildung 1 den Bewusstseinsstand in Sachen Anwendungsarchi-
tektur bis Mitte der 1990er in vielen Projekten widerspiegelt, dann steht
Abbildung 6 fiir den Ende der 1990er.

Schichten entkoppeln

In einer Co-Evolution mit bewussterer Anwendungsstrukturierung be-
fand sich ab Ende der 1990er das Thema Testen. Die ersten Unit Testing
Frameworks kamen auf.

Wo klare Verantwortlichkeiten in Modulen freigestellt waren, konnten
iberhaupt erst automatisierte Tests feingranular ansetzen. Aber um in
einer sauberen Hierarchie automatisierte Tests punkgenau nur gewisse
Logik testen lassen zu kénnen, brauchte es Entkopplung der Verantwort-
lichkeiten.

Auftritt DIP: Mit dem Dependency Inversion Principle’ wurde es moglich,
Tests auf eine Schicht zu fokussieren.

Der Trick besteht darin, Compilezeitabhéngigkeiten von Laufzeitabhén-
gigkeiten zu trennen. Zur Compilezeit besteht nach DIP keine direkte
funktionale Abhéngigkeit von Logik einer Schicht zu Logik einer anderen.
Eine obere Schicht hangt nicht von einer konkreten unteren ab, sondern
lediglich von einer Abstraktion:

*https://de.wikipedia.org/wiki/Dependency-Inversion-Prinzip

https://de.wikipedia.org/wiki/Dependency-Inversion-Prinzip
https://de.wikipedia.org/wiki/Dependency-Inversion-Prinzip

1 - Eine Kritik bisheriger Architekturmodelle 17

Ohne DIP Mit DIP
‘ Higher Layer ‘ Higher Layer
l ‘ Lower Layer Abstraction
‘ Lower Layer ‘ Lower Layer

Abbildung 7: Mit dem DIP werden Schichten entkoppelt

Abstraktionen sind gewohnlich Interfaces oder abstrakte Klassen. Die
konnen von der niedrigen Schicht implementiert werden — aber man kann
auch eine Attrappe fiir eine niedrige Schicht so aussehen lassen. Doch eins
nach dem anderen.

Zuerst die Anwendung mit verbesserter Schichtenarchitektur in im Uber-
blick. Hinzugekommen sind die Interfaces fiir die Module der bisherigen
Schichten:

M layered?2
K, References
M businesslogiclayer
I BusinesslogicLayer.cs
I\ IBusinesslogiclLayer.cs
M dataaccesslayer
I Dataacesslayer.cs
I\ IDataacesslLayer.cs
M presentationlayer
I PresentationLayer.cs
M Properties
I\ Program.cs

Abbildung 8: Eine Schichtenarchitektur mit DIP

Der geiibte Softwerker lasst beim Anblick dieser Module sogleich vor
seinem geistigen Auge ein Beziehungsgeflecht wie entstehen und weif3:
alles hiibsch entkoppelt und testbar.

1 - Eine Kritik bisheriger Architekturmodelle 18

vesent ationager [Basimessiogictager | Safaaccesslaqer
ShoeX) Count_coovds_in_file() Read_text()
Dspl aq_resal*s() Coant_coordsO) Load_stopeoordsO)

RN

Basmessioaclaqer W’raacce%Laqer
Coant_coovds_n_tile() Read_text()
Coant_coovds()) Lm_s*arwm\s()

Abbildung 9: Uber Interfaces entkoppelte Schichten

Und was ist der Nutzen des ganzen Aufwands? Im néchsten Codeaus-
schnitt sehen Sie, wie nun mit einer Attrappe die Businesslogik unabhén-
gig von darunterliegenden Details getestet werden kann. Die Implementa-
tion der aufrufenden Logik ist von der aufgerufenen durch das Interface
entkoppelt; erst zur Laufzeit wird bestimmt, wer aufgerufen wird.

Statt einen Datenzugriff konkret zu durchlaufen, werden die Stoppworte
im Test hart verdrahtet. Das ist trivial in puncto Laufzeit und Komplexitét
und einfacher, als eine Stoppwortdatei zu benutzen.

[TestFixture]
public class Businesslogiclayer_tests
{
[Test]
public void Count_words()
{
var dal = new Mock<IDataacessLayer>();
dal.Setup(x => x.Load_stopwords()).Returns(new HashSet<string>(new[] {"es"}));
var sut = new Businesslogiclayer(dal.Object);

var (countTotal, countDistinct) = sut.Count_words("Es blaut die Nacht, die Sternlein blinken");

Assert.AreEqual(6, countTotal);
Assert.AreEqual(5, countDistinct);

Abbildung 10: Mit einer Attrappe wird das Testen von abhdngiger Logik einfach

Dass der Businesslogik aber iiberhaupt eine Attrappe untergeschoben
werden kann, ist der Anwendung des Inversion of Control (IoC)* Prin-
zips geschuldet. Dessen Manifestation besteht hier im Hineinreichen der
Laufzeitabhéngigkeit in die Businesslogik durch ihren Konstruktor (*con-
structor injection).

*https://de.wikipedia.org/wiki/Inversion_of Control

https://de.wikipedia.org/wiki/Inversion_of_Control
https://de.wikipedia.org/wiki/Inversion_of_Control

1 - Eine Kritik bisheriger Architekturmodelle 19

internal class Program
{

public static void Main(string[] args) {
var dal = new DataacessLayer();
var bl = new Busi icLayer(dal);
var pl = new PresentationLayer(bl);

class Businesslogiclayer : IBusinesslogiclLayer
pl.Show(args); {

private readonly IDataacesslayer _dal;

public Busi

sslogiclayer(IDataacesslayer dal) { _dal = dal; }

public (int countTotal, int countDistinct) Count_words_in_file(string filename) {
var text = _dal.Read_text(filename);
return Count_words(text);

}

public (int countTotal, int countDistinct) Count_words(string text) {
var stopwordsDirectory = _dal.load_stopwords();

Abbildung 11: Injizieren der konkreten Implementation einer abstrakten Abhdngigkeit zur
Laufzeit

Die Abhiangigkeit vom Interface IDataaccess zur Compilezeit wird zur
Laufzeit durch die Injektion einer Implementation des Interfaces befrie-
digt. Nachfolgende sind die Compilezeit- und Laufzeitabhingigkeiten zu-
sammen visualisiert.

Laufzeitabhéngigkeit
[Presevtationtaqer | W Sataaccesdaqer
ShoeX) Zoant_coovds_n_tile() Read_text()
bsrlaq_resal tsO Zoant_coovds0) Load_stopeoovdsO)
g claqe’ aaccesdaney
Count_coovds_wn_file() Read_text()
Coant_coovds() Load_stopeooras()

—

Abbildung 12: Mit DIP unterscheiden sich die Abhdngigkeiten zu Compilezeit und Laufzeit

Das sieht jetzt schon nicht mehr so einfach aus wie das urspriingliche
Schichtenmodell, wiirde ich sagen. Logik ist auch im Schichtenmodell bei
vortrefflicher Ausrichtung der Beziehungen immer noch funktional ab-
héngig. Um trotz dieser Abhangigkeiten Testbarkeit zu erlangen, miissen
zusétzliche Elemente eingefithrt werden: Abstraktionen (hier: Interfaces).
Und aus einer Menge unidirektionaler Abhéngigkeiten werden zwei Men-
gen, von denen eine auch noch gegenlaufige Abhingigkeiten enthélt.

1 - Eine Kritik bisheriger Architekturmodelle 20

Das scheint der Preis der Wandelbarkeit zu sein. Verstandlichkeit entsteht
durch Trennung von Verantwortlichkeiten und klare Beziehungen. Test-
barkeit entsteht durch DIP und IoC. Ist halt so. Da miissen wir durch.

Um das Leben nun wenigstens aber ein wenig einfacher zu machen, gibt es
Mock-Frameworks wie Moq'! (in Abbildung 10 benutzt) und Dependency-
Injection-Frameworks wie Simple Injector'? oder Unity*’.

Jetzt ist es nur noch eine Sache konsequenter Anwendung von Prinzipien
und Werkzeugen, um sauberen Code zu schreiben. Alles scheint gesagt
zur grundlegenden Strukturierung von Logik.

Das ist zumindest der Stand des Bewusstseins, den ich bei Clean Code
Development Trainings'*. Wenn ein Architekturmuster bekannt ist, dann
ist es MVC oder das Schichtenmodell. Zuséitzlich wird dann noch die
Fahne der SOLID-Prinzipien'® hochgehalten, zu denen das DIP gehort wie
auch das SRP (Single Responsibility Principle), das sich mit Verantwortlich-
keitstrennung befasst.

Nur leider sehe ich ebenfalls bei den Teams, die Code SOLIDe in Schichten
strukturieren keine entspannten und freudvollen Gesichter. Der Code ist
immer noch schwer zu wandeln. Sonst wiirde man mit mir ja auch nicht
iiber Clean Code Development sprechen wollen.

Wie kann das aber sein? Trotz sauberer Schichtung immer noch nicht
sauber? Merkwiirdig, oder?

Schichten in Schale werfen

This content is not available in the sample book. The book can be purcha-
sed on Leanpub at http://leanpub.com/ioda-architektur-im-vergleich-dnp.

https://github.com/Mog/mogq4
“https://simpleinjector.org/index.html
Phttps://github.com/unitycontainer/unity
“https://ralfw.de/trainings/training-products/
Phttps://en.wikipedia.org/wiki/SOLID_(object-oriented_design)

https://github.com/Moq/moq4
https://simpleinjector.org/index.html
https://github.com/unitycontainer/unity
https://ralfw.de/trainings/training-products/
https://ralfw.de/trainings/training-products/
https://en.wikipedia.org/wiki/SOLID_(object-oriented_design)
http://leanpub.com/ioda-architektur-im-vergleich-dnp
https://github.com/Moq/moq4
https://simpleinjector.org/index.html
https://github.com/unitycontainer/unity
https://ralfw.de/trainings/training-products/
https://en.wikipedia.org/wiki/SOLID_(object-oriented_design)

1 - Eine Kritik bisheriger Architekturmodelle 21

Reflexion

Friher war nicht alles besser. Codezustdnde wie in Abbildung 1 will
niemand (wieder) haben.

Die erste Variante des Schichtenmodells jedoch, die war gar nicht so
schlecht. Die klare Trennung von Verantwortlichkeiten kombiniert mit
einer konsequenten Ausrichtung der Abhangigkeiten hat die Verstandlich-
keit deutlich gesteigert (Abbildungen 4 und 5).

Fiir gute Wandelbarkeit war das allerdings noch nicht genug. Die braucht
nicht nur Verstindlichkeit, sondern auch Testbarkeit. Die war in der ers-
ten Schichtenvariante noch begrenzt. Lediglich die Logik der untersten
Schicht war gut testbar, weil sie fiir sich stand. Die Logik in den dariiber
liegenden Schichten konnte zwar grundsatzlich schon gezielt angespro-
chen werden, nur musste dann auch immer die Logik darunter liegender
Schichten beim Test mit durchlaufen werden. Das kostet Zeit und das
macht es nicht leicht, einen Bug zu lokalisieren.

Die Testbarkeit ist dann in der zweiten Variante des Schichtenmodells
(Abbildungen 8 und 9) nachgezogen worden. Durch Anwendung von DIP
und IoC kénnen fiir Tests untere Schichten ausgeblendet werden. Wenn
etwas schiefgeht, dann weifl man, dass der Fehler in der Logik der zu
testenden Schicht steckt.

Allerdings: Dieser Fortschritt in der Testbarkeit hat seinen Preis. Der
wird deutlich in der Clean Architecture Variante (Abbildungen 15 und
19). DIP und IoC addieren Komplexitit, die die Verstindlichkeit nun —
zumindest nach meinem Empfinden — massiv reduziert. Man ist iiber das
Ziel hinausgeschossen. ,Mehr vom Selben® (hier: DIP und IoC) hat den
Fortschritt, den die zweite Variante des Schichtenmodells gebracht hat,
nicht vergroflert. Im Gegenteil!

Aber wie kommt das? Ich glaube, es liegt daran, dass man zu sehr auf die
Compilezeitabhéngigkeiten gestarrt hat.

Von der Schichtung zur Konzentrik iiberzugehen hat etwas mit dem Com-
pilezeitabhangigkeiten zu tun. Im Schichtenmodell war das Volatile (oder
Instabile), Robert C. Martins ,mechanisms®, nicht konsequent in einer
Position, wo Verdnderungen wenig Probleme machen.

1 - Eine Kritik bisheriger Architekturmodelle 22

Relativ problemlos sind Veranderungen namlich dort, wovon nur wenige
oder keine Codeeinheiten abhéngig sind. Im Schichtenmodell ist das nur
fiir die Prasentationslogik der Fall. Die Datenzugriffslogik hingegen, die
ebenfalls ein ,mechanism® ist, muss wegen der Abhéngigkeit anderer von
ihr, Stabilitat zusichern.

Das wurde mit der Clean Architecture bewusst verandert. Dort sind nicht
nur die Abhéngigkeiten sauber ausgerichtet, sondern auch die Verantwort-
lichkeiten nach Stabilitét positioniert: am stabilsten sind ganz allgemeine,
grundlegende Regeln im Kern, am instabilsten die Kommunikation mit
der Umwelt in der dufleren Schale.

Diese Sichtweise gefillt mir — allerdings hat die Implementation eben ei-
nen hohen Preis. Abbildungen 17 und 20 machen es exemplarisch deutlich:
die Versténdlichkeit der Zusammenhénge im Code sinkt.

Aber selbst wenn ich einmal iiber den auch von Robert C. Martin beklag-
ten Mehraufwand hinwegsehe, frage ich mich, was wirklich gewonnen
ist. Denn Abbildung 21 zeigt ein Bild, das sich im Grunde nicht vom
Schichtenmodell unterscheidet. Zur Laufzeit ist eine Businesslogik immer
noch vom Datenzugriff abhéngig.

Was soll das? Da mag zur Compilezeit die Abhangigkeit umgekehrt sein
- Adapter auflen hangt von Domaéne innen ab -, doch zur Laufzeit gehen
die Aufrufe dorthin durch die Doméne in die Tiefe.

Es ist letztlich nichts gewonnen. Die Abstraktion, von der die Businesslo-
gik abhangig ist, ist lediglich verschoben worden. Vorher gehorte sie zur
darunterliegenden Schicht (IDataaccessLayer in Abbildung 9), jetzt gehort
sie zur Businesslogik selbst (siehe IStopwords in Abbildung 19).

Dass nichts gewonnen ist, ist deutlich zu bemerken beim Testen. Das
Architekturbild suggeriert, dass eine innere Schale keine Abhangigkeit hat
zu einer duleren — doch beim Testen stellt sich das Gegenteil heraus. In
Abbildung 17 ist der Use Case Interactor — also Code der Use-Case-Schale
- zur Laufzeit abhéngig vom Presenter in der dariiberliegenden Schale.
Dass der Use Case Output Port zur Use-Case-Schale gehort, kaschiert das
nur. Im Test muss trotzdem eine Attrappe gebaut werden.

Sind Sie noch da oder haben Sie schon halb abgeschaltet? Das wiirde
mich nicht wundern. Bei dem ganzen hin und her der Abhangigkeiten
von Compilezeit und Laufzeit, kann einem schon der Kopf schwirren. Ich

1 - Eine Kritik bisheriger Architekturmodelle 23

jedenfalls verliere bei der Darstellung der vollstdndigen Abhangigkeiten
der implementierten Clean Architecture den Uberblick (Abbildung 22).

So sieht fiir mich ein Testalbtraum aus. Ganz zu schweigen davon, dass
damit das Réatselraten darum, fiir welche Klassen ein Interface definiert
werden sollte, weiter angeheizt wird. Im Zweifelsfall lautet dann die
Antwort ,Fiir alle! und damit explodiert die Zahl der Dateien in einem
Projekt (wenn man je Klasse und je Interface eine Datei denkt).

Laufzeitabhangigkeit

Presenter

Businesslogic

B‘>0Fw‘!‘

Abbildung 22: Das vollstindige Abhdngigkeitsbild der implementierten Clean Architecture

Das einzig Positive, das ich der Clean Architecture abgesehen vom hiib-
schen Bild abgewinnen kann, ist die Tendenz zur Aufspaltung von Abs-
traktionen. Sie scheint die Anwendung des Interface Seggregation Princip-
le (ISP)** nahezulegen. Schmalere Interfaces helfen einfach bei der Ent-
kopplung.

Wo vorher nur eine Prasentationslogikschicht und eine Datenzugriffs-
schicht mit respektiven Abstraktionen waren, sind beide nun zerfallen
in mehrere Teile: Controller und Presenter sind getrennt und es gibt
IPresenter; ebenfalls getrennt sind IText und IStopwords, wo vorher nur
IDataAccessLayer war.

Am Ende ist dieser positive Effekt fiir mich jedoch nicht ausschlaggebend.
Viel wichtiger finde ich das Sinken der Verstandlichkeit durch eine ge-
stiegene Artefaktzahl und den weiterhin hohen Testaufwand. Denn jede
Laufzeitabhéngigkeit ruft zur Testzeit nach einer Attrappe.

*Shttps://en.wikipedia.org/wiki/Interface_segregation_principle

https://en.wikipedia.org/wiki/Interface_segregation_principle
https://en.wikipedia.org/wiki/Interface_segregation_principle
https://en.wikipedia.org/wiki/Interface_segregation_principle

2 - Das IODA
Architekturmodell

This content is not available in the sample book. The book can be purcha-
sed on Leanpub at http://leanpub.com/ioda-architektur-im-vergleich-dnp.

Funktionale Abhangigkeiten als
Wurzelproblem

This content is not available in the sample book. The book can be purcha-
sed on Leanpub at http://leanpub.com/ioda-architektur-im-vergleich-dnp.

Auflésung funktionaler Abhdngigkeiten

This content is not available in the sample book. The book can be purcha-
sed on Leanpub at http://leanpub.com/ioda-architektur-im-vergleich-dnp.

Operationen verbinden

This content is not available in the sample book. The book can be purcha-
sed on Leanpub at http://leanpub.com/ioda-architektur-im-vergleich-dnp.

Verbindung zur AuBenwelt

This content is not available in the sample book. The book can be purcha-
sed on Leanpub at http://leanpub.com/ioda-architektur-im-vergleich-dnp.

http://leanpub.com/ioda-architektur-im-vergleich-dnp
http://leanpub.com/ioda-architektur-im-vergleich-dnp
http://leanpub.com/ioda-architektur-im-vergleich-dnp
http://leanpub.com/ioda-architektur-im-vergleich-dnp
http://leanpub.com/ioda-architektur-im-vergleich-dnp

2 - Das IODA Architekturmodell 25

Ein neues Architekturmuster

This content is not available in the sample book. The book can be purcha-
sed on Leanpub at http://leanpub.com/ioda-architektur-im-vergleich-dnp.

Echt abstrakt

This content is not available in the sample book. The book can be purcha-
sed on Leanpub at http://leanpub.com/ioda-architektur-im-vergleich-dnp.

http://leanpub.com/ioda-architektur-im-vergleich-dnp
http://leanpub.com/ioda-architektur-im-vergleich-dnp

3 - IODA am Beispiel

This content is not available in the sample book. The book can be purcha-
sed on Leanpub at http://leanpub.com/ioda-architektur-im-vergleich-dnp.

Struktur fraktal

This content is not available in the sample book. The book can be purcha-
sed on Leanpub at http://leanpub.com/ioda-architektur-im-vergleich-dnp.

Zusammenfassung

This content is not available in the sample book. The book can be purcha-
sed on Leanpub at http://leanpub.com/ioda-architektur-im-vergleich-dnp.

http://leanpub.com/ioda-architektur-im-vergleich-dnp
http://leanpub.com/ioda-architektur-im-vergleich-dnp
http://leanpub.com/ioda-architektur-im-vergleich-dnp

Update 2020

This content is not available in the sample book. The book can be purcha-
sed on Leanpub at http://leanpub.com/ioda-architektur-im-vergleich-dnp.

Logik frisch definiert

This content is not available in the sample book. The book can be purcha-
sed on Leanpub at http://leanpub.com/ioda-architektur-im-vergleich-dnp.

Integrationen konsequent benannt

This content is not available in the sample book. The book can be purcha-
sed on Leanpub at http://leanpub.com/ioda-architektur-im-vergleich-dnp.

Interactor

This content is not available in the sample book. The book can be purcha-
sed on Leanpub at http://leanpub.com/ioda-architektur-im-vergleich-dnp.

Processor

This content is not available in the sample book. The book can be purcha-
sed on Leanpub at http://leanpub.com/ioda-architektur-im-vergleich-dnp.

Interactor-Varianten

This content is not available in the sample book. The book can be purcha-
sed on Leanpub at http://leanpub.com/ioda-architektur-im-vergleich-dnp.

http://leanpub.com/ioda-architektur-im-vergleich-dnp
http://leanpub.com/ioda-architektur-im-vergleich-dnp
http://leanpub.com/ioda-architektur-im-vergleich-dnp
http://leanpub.com/ioda-architektur-im-vergleich-dnp
http://leanpub.com/ioda-architektur-im-vergleich-dnp
http://leanpub.com/ioda-architektur-im-vergleich-dnp

Update 2020 28

Reflexion

This content is not available in the sample book. The book can be purcha-
sed on Leanpub at http://leanpub.com/ioda-architektur-im-vergleich-dnp.

http://leanpub.com/ioda-architektur-im-vergleich-dnp

	Inhaltsverzeichnis
	Vorwort
	1 - Eine Kritik bisheriger Architekturmodelle
	Am Anfang war der Monolith
	Den Monolithen in Schichten spalten
	Schichten entkoppeln
	Schichten in Schale werfen
	Reflexion

	2 - Das IODA Architekturmodell
	Funktionale Abhängigkeiten als Wurzelproblem
	Auflösung funktionaler Abhängigkeiten
	Operationen verbinden
	Verbindung zur Außenwelt
	Ein neues Architekturmuster
	Echt abstrakt

	3 - IODA am Beispiel
	Struktur fraktal
	Zusammenfassung

	Update 2020
	Logik frisch definiert
	Integrationen konsequent benannt
	Interactor
	Processor
	Interactor-Varianten

	Reflexion

