
Contents
IntroducƟon .. 3

Overview ... 4

Data Sources from Databases ... 5

Data Sources from APIs ... 5

Next part of the book is on building ETLs or ELTs. Both are the same .. 5

Data Lake ... 5

Data Warehouse .. 6

ReporƟng and Dashboards .. 6

Data Sources ... 7

Node.js Connect to SQL Server ... 8

SoluƟon 1 SQL Server using the Tedious driver: ... 8

Install ... 8

Basic Example .. 8

SoluƟon 2 using msnodesqlv8 driver and the mssql package: ... 9

Install ... 9

Basic Example .. 9

SoluƟon 3 using mssql alone:.. 9

Install ... 10

Basic Example .. 10

Working with Social Media Sources .. 11

Node.js Data ExtracƟon from TwiƩer (X) example code ... 12

SoluƟon 1-Using the twit module ... 12

InstallaƟon ... 12

Basic Examples .. 12

Data ExtracƟon and Loading using an ETL .. 13

Develop ETL Flows using Node.js .. 14

SoluƟon 1- using Nextract: .. 14

InstallaƟon ... 14

Basic Example .. 14

Data Lakehouse ... 17

SoluƟon 6. Apache Iceberg Lakehouse Plaƞorm ... 18

Building a Data Warehouse ... 20

Why Json database.. 21

Building a Data Warehouse with a NoSQL (Json) database .. 22

SoluƟon 1 – building a data warehouse with mongodb ... 22

SoluƟon 6 – GCP BigQuery .. 22

InstallaƟon ... 23

Basic Example .. 23

ReporƟng and Dashboards .. 25

ReporƟng ... 26

SoluƟon 1 – Nuxt DataTable .. 26

InstallaƟon ... 26

npm install nuxt datatables.net-vue3 datatables.net-bs5 26

Basic Example .. 26

Conclusion ... 27

References ... 29

Index .. 30

Appendix ... 31

IntroducƟon

Welcome to NodeOps: A Data Odyssey.

All of these coding examples are done on a Windows computer.

Overview

Data Sources from Databases
SQL Server

Azure SQL Services

Oracle DB

Postgre-SQL

MySQL and MariaDB

Snowflake

Cassandra

Apache Hive

MongoDb

AWS RedshiŌ

Querying Redis

Databricks APIs and other tools

Azure Data Lake

Apache Spark

Data Sources from APIs
TwiƩer

Facebook

LinkedIN

Next part of the book is on building ETLs or ELTs. Both are the same
Nextract
Datapumps
ETL
Empujar
Extraload
Proc-that

Data Lake
Building a Data Lake

Data Warehouse
Building a Datawarehouse

Building a Data Lakehouse

ReporƟng and Dashboards

Node.js Connect to SQL Server

The SQL Server and Azure SQL Services are two very popular RDBMS’ (RelaƟonal Database Management
System). Your data can be stored in these systems as a source or even as a desƟnaƟon or source for your
data to be used for reporƟng purposes or other analyƟcal purposes, including even to feed AI models.

Depending on the version you are using, you can use standard relaƟonal tables or graph tables as well.
Certain version like HDInsight, which incorporates Hadoop and clustered base supercomputer versions
for big data applicaƟons are also available.

I am presenƟng two drivers that can be used with these various these various versions of the SQL Server

plaƞorm as well as Sybase based systems. The first example is a port of the TDS driver TDS (Tabular Data
Stream) protocol. The second example uses the msnodesqlv8 driver and the mssql npm package for APIs.
The third example uses the mssql alone to connect and interact with the databases.

SoluƟon 1 SQL Server using the Tedious driver:

There are many ways to connect to SQL Server from Node.js, depending on the
library or framework you use. The first example is with the Tedious driver.
Information on the driver can be found in the npm registry at
https://www.npmjs.com/package/tedious

Install

You can install using npm:.

npm install tedious –save-dev

Basic Example
Using the tedious driver and the sequelize ORM12:

The following example uses the Tedious driver and Sequelize, a modern ORM. Of
course, you can use Tedious without the ORM module

var Connection = require('tedious'.).Connection;
var config = {
 server: 'your_server.database.windows.net',
 authentication: {
 type: 'default',
 options: {
 userName: 'your_username', //update me
 password: 'your_password' //update me

 }
 },
 options: {
 // If you are on Microsoft Azure, you need encryption:
 encrypt: true,
 database: 'your_database'
 }
};
var connection = new Connection(config);
connection.on('connect', function(err) {
 // If no error, then good to proceed.
 console.log("Connected");
});

SoluƟon 2 using msnodesqlv8 driver and the mssql package:
InformaƟon can be on these packages are available on their respecƟve npm registry web page by
following these urls:

hƩps://www.npmjs.com/package/msnodesqlv8

hƩps://www.npmjs.com/package/mssql

To use the mssql client, you can use either the msnodesql8 driver or the Tedious driver as in the previous
example. For accessing an Azure SQL database, you need to specify the encrypt=true opƟons (see
above). You can get the server’s name from the Azure SQL blade page on Azure.

Install
You can install both the driver and driver using npm as usual:

npm install msnodesqlv8 –save-dev

npm install mssql –save-dev

Basic Example
const sql = require("mssql/msnodesqlv8");
const conn = new sql.ConnectionPool({
 database: "db_name",
 server: "server_name",
 driver: "msnodesqlv8",
 options: {
 trustedConnection: true
 }
});
conn.connect().then(() => {
 //... sproc call, error catching, etc
});

SoluƟon 3 using mssql alone:

Install
npm install mssql –save-dev

Basic Example
var mssql = require("mssql");
var dbConfig = {
 server:"server_name",
 database:"my_database",
 user:"username",
 password:"secret_password",
};
var connection = new mssql.Connection(dbConfig, function (err) {
 var request = new mssql.Request(connection);
 request.query('select * from Users', function (err, recordset) {
 if (err) //... error checks
 console.log('Database connection error');
 console.dir("User Data: "+ recordset);
 });
});

Working with Social Media Sources

Node.js Data ExtracƟon from TwiƩer (X) example code

To work with a various popular social network, you have a series of npm modules at
you disposal or you can use the REST APIs directly if you prefer.

SoluƟon 1-Using the twit module

The twit module for example is a Twitter API client for Node.js that supports REST
and streaming APIs. This module allows you to create and manage connections,
execute requests, and handle responses using Node.js.

InstallaƟon
npm i twit --save
// Load the twit module
const Twit = require('twit');

Basic Examples
// Create a Twit object with your API credentials
const T = new Twit({
 consumer_key: 'your consumer key', // replace with your consumer key
 consumer_secret: 'your consumer secret', // replace with your consumer
secret
 access_token: 'your access token', // replace with your access token
 access_token_secret: 'your access token secret', // replace with your
access token secret
});

// Make a GET request to the Twitter API
T.get('search/tweets', { q: 'nodejs', count: 10 }, function(err, data,
response) {
 if (err) {
 // Handle the error
 console.error('Error getting tweets', err);
 } else {
 // Handle the data
 console.log('Got tweets');
 console.log(data);
 }
});

Develop ETL Flows using Node.js

There are several npm modules that are suited for ETL (or ELT) operations. I will
provide working examples of some of the more popular.

 Nextract
 Datapumps
 ETL
 Empujar
 Extraload
 Proc-that

SoluƟon 1- using Nextract:

Nextract is a platform for extracting, transforming, and loading data from various
sources using Node.js streams. It is an alternative to Java-based ETL tools that are
more rigid and complex. Nextract allows you to write scripts that perform common
ETL operations using standard npm packages and plugins.

The following is a simple example on how to load data from a JSON file, transform it
and rewrite it back to a JSON file. This example can be easily expanded to work with
other data sources and transformation depending on your requirements. Also, using
the same logic, you can write the transformed data to a data warehouse.

InstallaƟon

npm i nextract path --save

Basic Example

**

 * Example: JSON input and sort...

 */

const path = require('path'),

 Nextract = require(path.resolve(__dirname, '../nextract'));

//Define our input and output files

const sampleEmployeesInputFilePath = path.resolve(process.cwd(),
'data/employees.json'),

 sampleEmployeesOutputFilePath = path.resolve(process.cwd(),
'data/employees_output.json');

//Tranforms always start with instance of the Nextract base class and a
tranform name

const transform = new Nextract('jsonAndSort');

//We load the core plugin and then other additional plugins our transform
requires

transform.loadPlugins('Core', ['Input', 'Output', 'Sort', 'Logger'])

 .then(() => {

 return new Promise((resolve) => {

 //STEP 1: Read data in from a JSON file (we specify the object path we
care about)

 transform.Plugins.Core.Input.readJsonFile(sampleEmployeesInputFilePath,
'data.employees.*')

 //STEP 2: Pass data in to be sorted (1 element is pushed back and it
is the expected input

 //for a new stream read call to sortOut)

 .pipe(transform.Plugins.Core.Sort.sortIn(['last_name'], ['asc']))

 .on('data', (sortInDbInfo) => {

 if (sortInDbInfo !== undefined) {

 resolve(sortInDbInfo);

 }

 });

 });

 })

 .then((sortInDbInfo) => {

 transform.Plugins.Core.Sort.sortOut(sortInDbInfo)

 //STEP 3: We want to write the sorted data back out to a new JSON file
so first we use

 //toJsonString to stringify the stream.

 .pipe(transform.Plugins.Core.Output.toJsonString(true))

 //STEP 4: Write out the new file

.pipe(transform.Plugins.Core.Output.toFile(sampleEmployeesOutputFilePath))

 .on('finish', () => {

 //Just logging some information back to the console

 transform.Plugins.Core.Logger.info('Transform finished!');

 transform.Plugins.Core.Logger.info(sampleEmployeesOutputFilePath,
'has been written');

 })

 .on('end', () => {

 transform.Plugins.Core.Logger.info('Transform ended!');

 process.exit();

 });

 })

 .catch((err) => {

 transform.Plugins.Core.Logger.error('Transform failed: ', err);

 });

The other end of the data engineering process is the data lake, data warehouse or data
marts, which is used a source for data analytics, reporting and data analysis.

Data lakes are centralized repositories that allow you to store all your structured and
unstructured data at any scale. They enable you to ingest, store, process, and analyze
large volumes of data from various sources. Here are some popular data lake solutions:

SoluƟon 6. Apache Iceberg Lakehouse Plaƞorm

Building a data lakehouse with Apache Iceberg in TypeScript involves several steps. Here’s a
high-level overview to get you started:

1. Set Up Your Environment

 Install Node.js and TypeScript: Ensure you have Node.js and TypeScript installed
on your machine.

 Initialize Your Project: Create a new TypeScript project using npm init and
configure TypeScript with tsconfig.json.

2. Install Required Packages

 Apache Iceberg: While Iceberg itself is not a TypeScript library, you can interact
with it using REST APIs or through a compatible query engine.

 Other Dependencies: Install necessary packages like axios for making HTTP
requests, and any other libraries you might need for your project.

npm install axios

3. Set Up Apache Iceberg

 Data Storage: Use a storage solution like MinIO (S3 compatible) for your data lake.
 Catalog: Set up a catalog service like Apache Hive or AWS Glue to manage your

Iceberg tables.

4. Create Data Lakehouse Components

 Data Ingestion: Write TypeScript code to ingest data into your Iceberg tables. This
can be done by interacting with your storage and catalog services.

import axios from 'axios';

const ingestData = async (data: any) => {
 const response = await axios.post('http://your-catalog-
service/ingest', data);
 return response.data;
};

// Example usage

const data = { /* your data */ };
ingestData(data).then(response => console.log(response));

5. Querying Data

 Query Engine: Use a query engine like Apache Spark or Dremio to query your
Iceberg tables. You can interact with these engines using their REST APIs.

const queryData = async (query: string) => {
 const response = await axios.post('http://your-query-engine/query', {
query });
 return response.data;
};

// Example usage
const query = 'SELECT * FROM your_table';
queryData(query).then(response => console.log(response));

6. Data Management

 Schema Evolution: Manage schema changes and partitioning using Iceberg’s
capabilities.

 Versioning: Utilize Iceberg’s data versioning features to handle data updates and
rollbacks.

7. Deployment and Monitoring

 Deploy: Deploy your application using a containerization tool like Docker.
 Monitor: Use monitoring tools to keep track of your data lakehouse’s performance

and health.

8.Example Project Structure
my-datalakehouse/
├── src/
│ ├── index.ts
│ ├── ingest.ts
│ └── query.ts
├── package.json
└── tsconfig.json

Building a Data
Warehouse

Why Json database
Using a JSON database for business intelligence (BI) can offer several advantages, especially in handling
diverse and large datasets. Here are some key reasons why JSON databases are beneficial for BI:

1. Flexibility and Schema-less Design

JSON databases, such as MongoDB and Couchbase, are schema-less, meaning they can store data
without a predefined schema. This flexibility allows you to easily adapt to changing data requirements
and structures without needing to modify the database schema. There are many opƟons available,
including AWS DocumentDB, Azure CosmosDB and GCP BigTable to name a few.

2. Handling Unstructured and Semi-structured Data

Business intelligence oŌen involves analyzing unstructured or semi-structured data, such as logs, social
media feeds, and sensor data. JSON databases are well-suited for storing and querying this type of data
due to their ability to handle nested and complex data structures.

3. Scalability

JSON databases are designed to scale horizontally, making them capable of handling large volumes of
data and high query loads. This scalability is crucial for BI applicaƟons that need to process and analyze
big data efficiently.

4. IntegraƟon with Modern BI Tools

Many modern BI tools and plaƞorms, such as Tableau and Power BI, support JSON data sources. This
integraƟon allows for seamless data visualizaƟon and analysis, enabling businesses to gain insights from
their JSON-stored data quickly.

5. Real-Ɵme Data Processing

JSON databases oŌen support real-Ɵme data processing and querying, which is essenƟal for BI
applicaƟons that require up-to-date informaƟon. This capability allows businesses to make Ɵmely
decisions based on the latest data.

6. Ease of Use and Developer-Friendly

JSON is a lightweight and human-readable data format, making it easier for developers to work with.
This ease of use can speed up the development and deployment of BI applicaƟons, reducing Ɵme-to-
insight.

 Building a Data Warehouse with a NoSQL (Json) database

SoluƟon 1 – building a data warehouse with mongodb
Building a data warehouse with MongoDB involves leveraging its flexible schema, scalability, and
powerful querying capabiliƟes to store and analyze large volumes of data. Here’s a step-by-step guide to
help you get started:

Step-by-Step Guide

Set Up MongoDB

First, you need to set up a MongoDB instance. You can use MongoDB Atlas, a fully managed cloud
database service, or set up MongoDB on your own server.

 MongoDB Atlas: Sign up for MongoDB Atlas and create a new cluster.

 Self-Hosted MongoDB: Download and install MongoDB from the official website.

Design Your Data Model

Design your data model based on the requirements of your data warehouse. MongoDB’s flexible schema
allows you to store data in JSON-like documents, which can be nested and complex.

 CollecƟons: Group related documents into collecƟons.

 Documents: Store data in BSON format, which is a binary representaƟon of JSON.

SoluƟon 6 – GCP BigQuery

Building a data warehouse with Google Cloud Plaƞorm (GCP) BigQuery using TypeScript involves several
steps. Here’s a high-level overview to guide you through the process:

1. Set Up Your Environment

 Install Node.js and TypeScript: Ensure you have Node.js and TypeScript installed on your
machine.

 IniƟalize Your Project: Create a new TypeScript project using npm init and configure TypeScript
with tsconfig.json.

2. Install Required Packages

 Google Cloud SDK: Install the Google Cloud SDK to interact with GCP services.

 BigQuery Client Library: Install the BigQuery client library for Node.js.

InstallaƟon
npm install @google-cloud/bigquery dotenv

Basic Example
3. Set Up GCP BigQuery

 Create a GCP Project: Use the GCP Console to create a new project.

 Enable BigQuery API: Enable the BigQuery API for your project.

 Service Account: Create a service account and download the JSON key file. Store this key
securely.

4. Connect to BigQuery

 Environment Variables: Store your GCP credenƟals in a .env file for security.

GOOGLE_APPLICATION_CREDENTIALS=path/to/your/service-account-file.json

 ConnecƟon Code: Use the BigQuery client library to connect to your BigQuery instance.

import { BigQuery } from '@google-cloud/bigquery';

import dotenv from 'dotenv';

dotenv.config();

const bigquery = new BigQuery();

async function connectToBigQuery() {

 const [datasets] = await bigquery.getDatasets();

 console.log('Datasets:');

 datasets.forEach(dataset => console.log(dataset.id));

}

connectToBigQuery().catch(err => {

 console.error('Error connecting to BigQuery', err);

});

5. Data IngesƟon

 ETL Processes: Implement Extract, Transform, Load (ETL) processes to load data into BigQuery.
You can use custom scripts or tools like Google Cloud Dataflow.

 Batch and Streaming Data: Use Google Cloud Storage for batch data loading and Pub/Sub for
streaming data ingesƟon.

6. Data Storage and Management

 Schema Design: Design your table schema to efficiently store and query data.

 ParƟƟoning and Clustering: Use parƟƟoned and clustered tables to opƟmize query performance
and manage large datasets.

7. Data Querying

 BigQuery SQL: Use SQL to query your BigQuery tables.

async function queryData() {

 const query = 'SELECT * FROM `your-project.your-dataset.your-table` LIMIT
10';

 const [rows] = await bigquery.query(query);

 console.log('Rows:');

 rows.forEach(row => console.log(row));

}

queryData().catch(err => {

 console.error('Error querying data', err);

});

8. Scalability and Performance

 OpƟmizing Queries: Use best pracƟces for opƟmizing your queries, such as avoiding SELECT *
and using appropriate filtering.

 Cost Management: Monitor and manage your BigQuery costs by seƫng up budget alerts and
using cost-effecƟve storage opƟons.

9. Security

 Access Control: Implement IAM roles and policies to manage access to your BigQuery datasets.

 EncrypƟon: Use encrypƟon for data at rest and in transit to ensure data security.

10. Monitoring and Maintenance

 Monitoring Tools: Use Google Cloud Monitoring and Logging to monitor your BigQuery
instance’s performance and health.

 Backup and Recovery: Set up automated backups and have a recovery plan in place.

Example Project Structure

my-data-warehouse/

├── src/

│ ├── index.ts

│ ├── ingest.ts

│ └── query.ts

├── package.json

├── tsconfig.json

└── .env

ReporƟng

ReporƟng is focused on providing detailed informaƟon while dashboards are great at providing
consolidated views of data. Also, dashboards usually offer drilldown capabiliƟes to allow analyst to dig
deeper.

I will focus on ReporƟng in this first part of the chapter, Dashboards will be covered aŌerwards. My
objecƟve is to provide free soluƟons. There are many commercial opƟons like AcƟveReportsJS available,
and I will leave those up to you if your project is focused on commercially available tools. There are many
libraries and frameworks available for building reports, both open sourced and commercial. Although it
is impossible to cover all opƟons in this space, I want to demonstrate building a report and a reporƟng
applicaƟon with JavaScript.

Some of the popular libraries and frameworks are for building data tables with or without paginaƟon. Of
course, these can be combined with charts and other components. As previously menƟoned, I’ll focus on
visualizaƟon in the next secƟon:

SoluƟon 1 – Nuxt DataTable
hƩps://nuxt3-primevue-starter.netlify.app/prime/datatable

InstallaƟon
npm install nuxt datatables.net-vue3 datatables.net-bs5

Basic Example
Here’s an example using vue3-easy-data-table:

<template>

 <div>

 <EasyDataTable :headers="headers" :items="items" />

 </div>

</template>

<script setup lang="ts">

 import { Header, Item } from "vue3-easy-data-table";

 const headers: Header[] = [

 { text: "PLAYER", value: "player" },

 { text: "TEAM", value: "team" },

 { text: "NUMBER", value: "number" },

 { text: "POSITION", value: "position" },

 { text: "HEIGHT", value: "indicator.height" },

 { text: "WEIGHT (lbs)", value: "indicator.weight", sortable: true },

 { text: "LAST ATTENDED", value: "lastAttended", width: 200 },

 { text: "COUNTRY", value: "country" },

];

 const items: Item[] = [

 {

 player: "Stephen Curry",

 team: "GSW",

 number: 30,

 position: "G",

 indicator: { height: "6-2", weight: 185 },

 lastAttended: "Davidson",

 country: "USA",

 },

 // Add more grocery data here

];

</script>

Conclusion

In this book I set out with the objecƟve of creaƟng Data Engineering and Business Intelligence stack
using Node.js and JavaScript and TypeScript. I think I have delivered on that promise. I have covered
some of the most popular data sources, showing you through simple example how to connect and
extract or perform CRUD operaƟons using the above-menƟoned technology. I also provided examples of
some of the different libraries and frameworks for ETL development. I also explored cloud soluƟons on
the three main cloud providers and showed how to build and interact with popular data lakes, data
lakehouses like Apache Iceberg and to finish off, I showcased various reporƟng and dashboarding open-
sourced technology.

This stack is by no means a definite reference, but it least shows you what is possible with the Node.js
plaƞorm.

Of course, this book is a work in progress as the technological landscape is constantly evolving and I
hope my book will evolve through different ediƟons.

As I said in the beginning, this is a blueprint and tool for you, so please provide feedback to help me
make it beƩer for you.

Thanks

Kevin

References

Index

Appendix

