‘.,.hn\l,‘.l\h\k> -\»ﬂ'
1 = e

)

e

ks
LN
i

Principios de disefio de APIs REST
(desmitificando REST)

Enrique Amodeo

This book is for sale at http://leanpub.com/introduccion_apis_rest

This version was published on 2013-03-06

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and

many iterations to get reader feedback, pivot until you have the right book and build traction once
you do.

©2012 - 2013 Enrique Amodeo

http://leanpub.com/introduccion_apis_rest
http://leanpub.com
http://leanpub.com/manifesto

Tweet This Book!

Please help Enrique Amodeo by spreading the word about this book on Twitter!

The suggested tweet for this book is:

Acabo de comprar “Principios de Disefio de APIs REST” El libro de #REST en espafol #esrest
The suggested hashtag for this book is #esrest.

Find out what other people are saying about the book by clicking on this link to search for this
hashtag on Twitter:

https://twitter.com/search/#esrest

http://twitter.com
https://twitter.com/search/#esrest
https://twitter.com/search/#esrest

Indice general

Sobre la cubierta
Agradecimientos
Erase una vez...

1 APIs orientadas a datos: CRUD

1.1 Introduccidn e
1.2 Leyendo.
1.3 Actualizando
1.4 Borrando e
1.5 Creando. e e

1.6 Seguramente CRUD no sea lo mejor paratu APL...

Sobre la cubierta

La foto de la cubierta es de un famoso trampantojo en la ciudad de Quebec, mas concretamente en
el Quartier Petit Champlain.

El autor eligi6 esta foto como cubierta porque ilustra claramente un conjunto de agentes interope-
rando entre si.

Agradecimientos

Este libro empezd como un pequefio y corto capitulo en otro libro. Los que me conocen ya se temian
que ese pequeno capitulo no iba a ser tan pequefio. Debido a ello, y a problemas de calendario decidi
publicar el libro por separado y a mi ritmo. Gracias a ese equipo de personas por poner en marcha
esto y por sus sugerencias, en especial a @ydarias, @estebanm, y @carlosble.

Gracias a todos aquellos que me han ayudado a mover el libro por el mundo del “social media”.

Me gustaria agradecer a @paskul y a @juergas por sus esfuerzos como revisores de este libro (os
debo una cafa... bueno dos). Sé que siempre puedo recurrir a ellos cuando me apetece calentarle la
cabeza a alguien con mi ultima idea.

Y como no podria ser de otra forma, un agradecimiento especial a mi mujer, @mcberros, por no
permitir nunca que dejara este proyecto y por su apoyo incondicional.

ii

Erase una vez...

Tras muchos afios intentando crear servicios web basados en tecnologias RPC, tales como CORBA
o SOAP, la industria del desarrollo de software se encontraba en un punto muerto. Cierto, se habia
conseguido el gran logro de que un servicio implementado en .NET consiguiera comunicarse con
uno escrito en Java, o incluso con otro hecho a base de COBOL, sin embargo todo esto sabia a
poco. Es normal que supiera a poco, se habia invertido cantidades ingentes de dinero en distintas
tecnologias, frameworks y herramientas, y las recompensas eran escasas. Lo peor es que ademas las
compafiias se encontraban encalladas en varios problemas.

Por un lado la mantenibilidad de la base de codigo resultante era bastante baja. Se necesitaban
complejos IDEs para generar las inescrutables toneladas de codigo necesarias para interoperar.
Los desarrolladores tenian pesadillas con la posibilidad de que se descubriera algin bug en la
herramienta de turno, o de que algin parche en éstas destruyera la interoperabilidad. Y si se
necesitaba alguna version o capacidad mas avanzada de SOAP, probablemente el IDE no lo soportara
o tuviera que ser actualizado.

Por otro lado, para depurar cualquier problema de interoperabilidad, habia que bajar al nivel de
HTTP: ;estarian las cabeceras apropiadas? ;La serializacion del documento SOAP es conforme a
“Basic Profile”*? ;No se suponia que SOAP nos desacoplaba totalmente del protocolo de transporte?

Finalmente también habia descontento. Se habia sofiado con un mundo de servicios web interope-
rables de manera transparente, organizados en directorios UDDI, con transacciones distribuidas a
través de internet, etc. Al final esto no se consiguid, s6lo interoperaban servicios entre distintos
departamentos de una misma empresa, o de forma mas rara algin servicio llamaba a otro servicio
de otra empresa, todo con mucho cuidado y en condiciones bastante fragiles.

Cuando la situacion se hizo insostenible, y algunos gigantes de la informéatica como Amazon, Google
o Twitter necesitaron interoperabilidad a escala global y barata, alguien descubri6 el camino al futuro
mirando hacia el pasado, y descubrié REST...

*hitp://www.ws-i.org/profiles/BasicProfile- 1.0-2004-04- 16 html

iii

http://www.ws-i.org/profiles/BasicProfile-1.0-2004-04-16.html
http://www.ws-i.org/profiles/BasicProfile-1.0-2004-04-16.html

1 APIs orientadas a datos: CRUD

1.1 Introduccidn

El caso de uso mas sencillo al disenar servicios REST con HTTP se produce cuando dichos servicios
publican operaciones CRUD sobre nuestra capa de acceso a datos. El acronimo CRUD responde
a “Create Read Update Delete” y se usa para referirse a operaciones e mantenimiento de datos,
normalmente sobre tablas de un gestor relacional de base de datos. En este estilo de disefio existen
dos tipos de recursos: entidades y colecciones.

Las colecciones actuan como listas o contenedores de entidades, y en el caso puramente CRUD se
suelen corresponder con tablas de base de datos. Normalmente su URI se deriva del nombre de la
entidad que contienen. Por ejemplo, http: //www.server.com/rest/libro seria una buena URI para
la coleccion de todos los libros dentro de un sistema. Para cada coleccion se suele usar el siguiente
mapeo de métodos HTTP a operaciones:

Método HTTP Operacion

GET Leer todas las entidades dentro de la coleccion
PUT Actualizacién mutiple y/o masiva

DELETE Borrar la coleccion y todas sus entidades
POST Crear una nueva entidad dentro de la coleccion

Las entidades son ocurrencias o instancias concretas, que viven dentro de una coleccion. La
URI de una entidad se suele modelar concatenado a la URI de la colecciéon correspondiente un
identificador de entidad. Este identificador sblo necesita ser unico dentro de dicha coleccion. Ej.
http://www.server.com/rest/libro/ASV2-4fw-3 seria el libro cuyo identificador es ASV2-4fw-3.
Normalmente se suele usar la siguiente convencién a la hora de mapear métodos HTTP a operaciones
cuando se trabaja con entidades.

Método HTTP Operacion

GET Leer los datos de una entidad en concreto

PUT Actualizar una entidad existente o crearla si no existe
DELETE Borrar una entidad en concreto

POST Anadir informacion a una entidad ya existente

A continuacion, en las siguientes secciones, veremos mas en detalle algunas opciones de disefio para
cada operaciéon CRUD.

APIs orientadas a datos: CRUD 2

1.2 Leyendo

La operacion que parece mas sencilla de modelar es la de lectura, aunque como veremos, el demonio
esta en los detalles.

Todas las operaciones de lectura y consulta deben hacerse con el método GET, ya que segun la
especificacion HTTP, indica la operacién de recuperar informacion del servidor.

Lectura de entidades

El caso mas sencillo es el de leer la informacion de una entidad, que se realiza haciendo un GET contra
la URI de la entidad. Esto no tiene mucho méas misterio, salvo en el caso de que el volumen de datos
de la entidad sea muy alto. En estos casos es comuin que queramos recuperar los datos de la entidad
pero so6lo para consultar una parte de la informacién y no toda, con lo que estamos descargando
mucha informacion que no nos es util.

Una posible solucién es dejar sélo en esa entidad los datos de uso mas comun, y el resto dividirlo
en varios recursos hijos. De esta manera cuando el cliente lea la entidad, sélo recibira los datos de
uso mas comun y un conjunto de enlaces a los recursos hijos, que contienen los diferentes detalles
asociados a ésta. Cada recurso hijo puede ser a su vez o una entidad o una coleccion.

En general se suele seguir la convencién de concatenar el nombre del detalle a la URI de la entidad pa-
dre para conseguir la URI de la entidad hija. Por ejemplo, dada una entidad /rest/1ibro/23424-dsdff,
si se le realiza un GET, recibiriamos un documento, con el titulo, los autores, un resumen, valoracioén
global, una lista de enlaces a los distintos capitulos, otra para los comentarios y valoraciones, etc.

Una opcién de disefio es hacer que todos los libros tengan una coleccion de capitulos como
recurso hijo. Para acceder al capitulo 3, podriamos modelar los capitulos como una coleccién y
tener la siguiente URL: /rest/libro/23424-dsdff/capitulo/3. Con este disefio tenemos a nuestra
disposicion una coleccién en /rest/libro/23424-dsdff/capitulo, con la cual podemos operar de
forma estandar, para insertar, actualizar, borrar o consultar capitulos. Este disefio es bastante flexible
y potente.

Otro disefio, mas simple, seria no tener esa coleccion intermedia y hacer que cada capitulo
fuera un recurso que colgara directamente del libro, con lo que la URI del capitulo 3 seria:
/rest/libro/23424-dsdff/capitulo3. Este disefio es mas simple y directo y no nos ofrece la
flexibilidad del anterior.

e)

‘ (Cual es la mejor opcion? Depende del caso de uso que tengamos para nuestra
APL

Si no tenemos claro que operaciéon vamos a soportar para las entidades hijas, o
si sabemos que necesitamos afiadir, borrar y consultar por diversos criterios, es
mejor usar una coleccion intermedia.

APIs orientadas a datos: CRUD 3

Si no necesitamos todo esto, es mejor hacer enlaces directos, ya que es un disefio
mas sencillo.

Volviendo al problema de tener una entidad con un gran volumen de datos, existe otra solucion en
la que no es necesario descomponerla en varios recursos. Se trata simplemente de hacer un GET a la
URI de la entidad pero anadiendo una query string. Por ejemplo, si queremos ir al capitulo numero
3, podemos hacer GET sobre /rest/libro/23424-dsdff?capitulo=3. De esta forma hacemos una
lectura parcial de la entidad, donde el servidor devuelve la entidad libro, pero con sélo el campo
relativo al capitulo 3. A esta técnica la llamo slicing. El usar slicing nos lleva a olvidarnos de esta
separacion tan fuerte entre entidad y coleccion, ya que un recurso sobre el que podemos hacer slicing
es, en cierta medida, una entidad y una coleccion al mismo tiempo.

Como se aprecia REST es bastante flexible y nos ofrece diferentes alternativas de disefio, el usar
una u otra depende sdlo de lo que pensemos que sera mas interoperable en cada caso. Un criterio
sencillo para decidir si hacer slicing o descomponer la entidad en recursos de detalle, es cuantos
niveles de anidamiento vamos a tener. En el caso del libro, ;se accedera a cada capitulo como
un todo o por el contrario el cliente va a necesitar acceder a las secciones de cada capitulo
de forma individual? En el primer caso el slicing parece un buen disefio, en el segundo no lo
parece tanto. Si hacemos slicing, para acceder a la seccion 4 del capitulo 3, tendriamos que hacer:
/rest/libro/23424-dsdff?capitulo=3&seccion=4. Este esquema de URI es menos semantico, y
ademas nos crea el problema de que puede confundir al cliente y pensar que puede hacer cosas como
esta: /rest/1libro/23424-dsdff?seccion=4 ;Qué devolvemos? ;Una lista con todas las secciones 4
de todos los capitulos? ;Un 404 no encontrado? Sin embargo en el disefio orientado a subrecursos es
claro, un GET sobre /rest/libro/23424-dsdff/capitulo/3/seccion/4 nos devuelve la seccion 4 del
capitulo 3, y sobre /rest/libro/23424-dsdff/seccion/4 nos deberia devolver 404 no encontrado,
ya que un libro no tiene secciones por dentro, sino capitulos. Otra desventaja del slicing es que
la URI no es limpia, y el posicionamiento en buscadores de nuestro recurso puede ser afectado
negativamente por esto (si, un recurso REST puede tener SEO, ya lo veremos mas adelante).

A veces no tenemos claro cual va a ser el uso de nuestra APIREST. En estos casos es mejor optar por
el modelo mas flexible de URIs, de forma que podamos evolucionar el sistema sin tener que romper
el esquema de URIs, cosa que romperia a todos los clientes. En este caso el sistema mas flexible es
descomponer la entidad en recursos de detalle, usando colecciones intermedias si es necesario.

Recordad que se tome la decision que se tome, esta no debe afectar al disefio interno del sistema. Por
ejemplo, si decidimos no descomponer la entidad en recursos hijos, eso no significa que no pueda
internamente descomponer una supuesta tabla de libros, en varias tablas siguiendo un esquema
maestro detalle. Y viceversa, si decido descomper la entidad en varios subrecursos, podria decidir
desnormalizar y tenerlo todo en una tabla, o quizas no usar tablas sino una base de datos documental.
Estas decisiones de implementaciéon interna, guiadas por el rendimiento y la mantenibilidad del
sistema, deben ser invisibles al consumidor del servicio REST.

W N -

O O B W N =

APIs orientadas a datos: CRUD 4

4 0

ﬂ Ningtn cambio motivado por razones técnicas, que no altere la funcionalidad
ofrecida por nuestra API, debe provocar un cambio en nuestra API REST

Un ejemplo de esto seria un cambio en la base de datos debido a que vamos a
normalir o denormalizar el esquema de base de datos.

Consultas sobre colecciones

La operacién mas comun sobre una coleccion es la consulta. Si queremos obtener todos los miembros
de una coleccidon, simplemente hay que realizar un GET sobre la URI de la coleccién. En el ejemplo
de los libros seria: http://www.server.com/rest/libro. Yo he puesto libro en singular, pero
realmente es una coleccion. ;Qué nos devolveria esta llamada? Realmente hay dos opciones: una
lista con enlaces a todos los libros o una lista de libros, con todos sus datos.

La peticion podria ser algo asi:

GET /rest/libro HTTP/1.1
Host: www.server.com
Accept: application/json

Una respuesta, donde se devuelvan sdlo enlaces:

HTTP/1.1 200 Ok
Content-Type: application/json;charset=utf-8

["http://www.server.com/rest/libro/45",

"http://www.server.com/rest/libro/465",
"http://www.server.com/rest/libro/4342"]

Si la respuesta incluye también los datos de las entidades hijas, tendriamos:

© 00 N O O b W N =

[T ST T N T N S G S G G G O = G
B W N 2O O 00 N O O b WO N~ O

APIs orientadas a datos: CRUD

HTTP/1.1 200 Ok
Content-Type: application/json;charset=utf-8

[{
"id": "http://www.server.com/rest/libro/45",
"author": "Rober Jones",
"title": "Living in Spain",
"genre": "biographic",
"price": { "currency": "$", "amount": 33.2}
},
{
"id": "http://www.server.com/rest/libro/465",
"author": "Enrique Gomez",
"title": "Desventuras de un informatico en Paris"”,
"genre": "scifi",
"price": { "currency": "€", "amount": 10}
}
{
"id": "http://www.server.com/rest/libro/4342",
"author": "Jane Doe",
"title": "Anonymous",
"genre": "scifi",
"price": { "currency": "$", "amount": 4}
b
Observen como vienen todos los datos del libro, pero ademas viene un campo extra id, con la URI
de cada libro.
-

Q

. Qué es mejor? ;Traernos enlaces a los miembros de la coleccion, o descargarnos
también todos los datos?

En el primer caso la respuesta ocupa menos espacio y ahorramos ancho de banda.
En el segundo se usa mayor ancho de banda, pero evitamos tener que volver a
llamar a las URIs cada vez que queramos traernos los datos de cada entidad,
es decir ahorramos en llamadas de red y por lo tanto en latencia. Segin las
caracteristicas de nuestra red tendremos que tomar la decisién. En una red movil,
donde hay una gran latencia, probablemente sea mejor el enfoque de descargar
todos los datos.

Otro tema a considerar es el uso de la cache. Si nuestras entidades cambian poco,
seguramente las peticiones para recuperar el detalle de cada una de ellas nos lo
sirva una cache. Desde este punto de vista, en algunos casos, la idea de descargar

~

W N =

© 00 N O O b W N =

=Y
N O O b W N =~ O

APIs orientadas a datos: CRUD

-

solo los enlaces puede ser mejor.

En cualquier caso, la latencia domina la mayoria de redes modernas. por lo tanto
lo mejor seria usar por defecto el segundo disefio, y cambiar al primero sélo si se
demuestra que es mejor (y realmente lo necesitamos).

/

Lo normal en todo caso, no es traerse todos los miembros de una coleccion, sino sdlo los que cumplan
unos criterios de busqueda. La forma mas sencilla es definir los criterios de busqueda en la query
string.

Peticion para buscar libros de ciencia ficciéon con un precio méaximo de 20 euros:

GET /rest/libro?precio_max=20eur&genero=scifi HTTP/1.1

Host: www.server.com

Accept: application/json

Y la respuesta:

HTTP/1.1 200 Ok
Content-Type: application/json;charset=utf-8

[

{
"id": "http://www.server.com/rest/libro/4342",
"author": "Jane Doe",
"title": "Anonymous",
"genre": "scifi",
"price": { "currency": "€", "amount": 5}
3
{
"id": "http://www.server.com/rest/libro/465",
"author": "Enrique Gobmez",
"title": "Desventuras de un informatico en Paris",
"genre": "scifi",
"price": { "currency": "€", "amount": 10}
}

Notese el detalle de que los resultados viene ordenados por precio. Normalmente el servidor deberia
ordenar los resultados de alguna manera en funcion de la consulta. Si quisiéramos que el cliente de-
finiera en un orden diferente al que proporcionamos por defecto, deberiamos dar soporte a consultas
como esta: /rest/libro?precio_max=20&genero=scifilordenarPor=genero&ascendiente=false

W N -

© 00 N O O b W N =

-
o

B W N -

APIs orientadas a datos: CRUD 7

.Y si queremos buscar una entidad por identificador...? Simplemente hay que hacer un GET sobre
la URI de la entidad, por lo que consultas por “clave primaria” no tienen sentido dentro de una
coleccion REST. Peticion para un libro en particular:

GET /rest/libro/465 HTTP/1.1
Host: www.server.com
Accept: application/json

Y la respuesta:

HTTP/1.1 200 Ok
Content-Type: application/json;charset=utf-8

{
"id": "http://www.server.com/rest/libro/465",
"author": "Enrique Goémez",
"title": "Desventuras de un informatico en Paris"”,
"genre": "scifi",
"price": { "currency": "€", "amount": 10}

}

Consultas paginadas

Es muy comun que una consulta devuelva demasiados datos. Para evitarlo podemos usar paginacion.
La forma maés directa es afiadir parametros de paginacion a la query string. Por ejemplo, si
estuviéramos paginando una consulta sobre libros que en su descripcion o titulo contuvieran el texto
“el novicio”, podriamos tener la siguiente peticion para acceder a la segunda pagina de resultados:

GET /rest/libro?q=el%20novicio&minprice=12&fromid=561£f3&max=10 HTTP/1 .1
Host: www.server.com

Accept: application/json

Noétese el parametro max, que indica al servidor cuantos resultados queremos como maximo. La
paginacion en si la hacemos usando los parametrosminprice y fromid, que indican cual es el ultimo
resultado que se ha recibido. En el ejemplo los resultados estan ordenados ascendentemente por
precio. De esta forma el servidor debe realizar la consulta de forma que excluya dicho resultado y
devuelva los siguientes 10 libros a partir del Gltimo mostrado. Estamos jugando con la ordenacién
de los datos para conseguir la paginacion.

APIs orientadas a datos: CRUD 8

')

Existen muchas formas de implementar paginacion, no sélo la que presento como

A ejemplo. Sin embargo la aproximaciéon que aqui se presenta puede necesitar cam-
bios en funcién de como hagamos las consultas e implementemos la paginacion
exactamente.

Esto es un problema de interoperabilidad, ya que estamos acoplando la implemen-
tacién del servidor con el cliente. Este debe conocer detalles como que parametros
usar, o como informarlos. En el momento que decidiéramos cambiar alguno de
estos detalles por motivos técnicos, estariamos rompiendo nuestra API.

Para solucionar este problema, existe otra variante para implementar la pagina-
cién y consiste en modelar directamente las paginas de resultados como recursos
REST y autodescubrirlas mediante enlaces. En el capitulo dedicado a hypermedia
se hablara sobre este enfoque.

Tal como se han disefiado las consultas anteriormente, el servidor tiene que estar preparado para
interpretar correctamente los parametros de la query string. La ventaja es que es muy simple. La
desventaja es que el cliente tiene que entender que parametros hay disponibles y su significado, con
lo que es menos interoperable.

Consultas predefinidas o Vistas

Existe otra forma de disefiar consultas, que consiste en modelarlas directamente como recursos REST.
De esta forma podemos tener consultas que son recursos hijos de la coleccion principal. Se puede
entender este enfoque como crear consultas predefinidas, filtros o vistas sobre la coleccion principal.

Como ejemplo de este enfoque podriamos hacer GET sobre /rest/libro/novedades y /rest/libro/scifi
para consultar las novedades y los libros de ciencia ficcién respectivamente. Sobre estas colecciones
hijas podemos anadir parametros en la query string para restringirlas mas o para hacer paginacion.
Alternativamente podemos tener colecciones hijas anidadas hasta el nivel que necesitemos.

Esta forma de modelar consultas nos da una API mucho més limpia, y nos permite mayor
interoperabilidad. Nos permite simplificar drasticamente el nimero de parametros y significado de
éstos. Como mayor inconveniente esta que es un enfoque menos flexible, ya que se necesita pensar
por adelantado que consultas va a tener el sistema. Por lo tanto suele ser un disefio muy apropiado
en aplicaciones de negocio donde normalmente sabemos las consultas que vamos a tener, pero no
es muy apropiado en aplicaciones donde el usuario define sus propias consultas en tiempo de uso de
la aplicacion.

La tendencia de disefio es mezclar ambas opciones. Por un lado modelar explicitamente la consultas
mas comunes e importantes. Por otro lado permitir una consulta genérica, normalmente de texto
libre, al estilo de Google o Yahoo. Por ejemplo: /rest/libro?description=el%20novicio

© 00 N O O b W N =

(RN
= O

APIs orientadas a datos: CRUD 9

4 N

ﬂ A menos que estes disefiando una API rest para una base de datos, es mejor usar
consultas predefinidas. Las razones son varias:

« Rendimiento. Podemos implementar nuestro sistema para que optimice
las consultas que estan predefinidas. Se pueden usar técnicas como definir
indices apropiados para ellas, o usar vistas materializadas. En una consulta
genérica no tenemos manera de optimimizar, ya que no sabemos a priori
como va a ser la consulta que se va a procesar y cual es el criterio de
busqueda.

« Interoperabilidad. Una consulta predefinida es mucho mas sencilla de usar
que una genérica. Implica menos parametros que una consulta genérica o
incluso ninguno. Ademas el hecho de definir parametros en una consulta
genérica viola hasta cierto punto la encapsulacién de nuestro sistema. Ex-
pone que campos de informacion estan disponibles para realizar busquedas
y cuales no.

1.3 Actualizando

A la hora de actualizar los datos en el servidor podemos usar dos métodos, PUT y POST. Segiin HTTP,
PUT tiene una semantica de UPSERT, es decir, actualizar el contenido de un recurso, y si éste no existe
crear un nuevo recurso con dicha informacion en la URI especificada. POST por el contrario puede
usarse para cualquier operacién que no sea ni segura ni idempotente, normalmente para afiadir un
trozo de informacién a un recurso o bien crear un nuevo recurso.

Si queremos actualizar una entidad lo mas sencillo es realizar PUT sobre la URI de la entidad, e incluir
en el cuerpo de la peticion HTTP los nuevos datos. Por ejemplo:

PUT /rest/libro/465 HTTP/1.1
Host: www.server.com

Accept: application/json
Content-Type: application/json

{
"author": "Enrique Gbébmez Salas",
"title": "Desventuras de un informatico en Paris"”,
"genre": "scifi",
"price": { "currency": "€", "amount": 50}

© 00 N O O & W N =

RN
= O

APIs orientadas a datos: CRUD 10

Y la respuesta es muy escueta:

HTTP/1.1 204 No Content

Esto tiene como consecuencia que el nuevo estado del recurso en el servidor es exactamente el mismo
que el que mandamos en el cuerpo de la peticién. La respuesta puede ser 204 o 200, en funcién de si
el servidor decide enviarnos como respuesta el nuevo estado del recurso. Generalmente sélo se usa
204 ya que se supone que los datos en el servidor han quedado exactamente igual en el servidor que
en el cliente. Con la respuesta 204 se pueden incluir otras cabeceras HTTP con metainformacion,
tales como ETag o Expires. Sin embargo en algunos casos, en los que el recurso tenga propiedades
de sélo lectura que deban ser recalculadas por el servidor, puede ser interesante devolver un 200 con
el nuevo estado del recurso completo, incluyendo las propiedades de solo lectura.

Es decir, la semantica de PUT es una actualizacion donde reemplazamos por completo los datos del
servidor con los que enviamos en la peticion.

También podemos usar PUT para actualizar una coleccion ya existente. Veamos un ejemplo:

PUT /rest/libro HTTP/1 .1

Host: www.server.com

Accept: application/json
Content-Type: application/json

{
"author": "Enrique Gobmez Salas",
"title": "Desventuras de un informatico en Paris"”,
"genre": "scifi",
"price": { "currency": "£€", "amount": 50}
}

Y la respuesta:

HTTP/1.1 204 No Content

En este caso PUT ha sobreescrito los contenidos de la coleccién por completo, borrando los contenidos
anteriores, e insertando los nuevos.

© 00 I O O & W N =

[N
= o

APIs orientadas a datos: CRUD 11

ﬁ Cuidado, este tipo de uso de PUT puede ser peligroso ya que se puede sobreescribir
toda la coleccion, con el consiguiente riesgo de perder informacion.

En los casos en los que queramos actualizar sélo algunos miembros de la coleccién y no otros
podriamos usar una query string para delimitar que miembros van a ser actualizados.

PUT /rest/libro?genero=scifi HTTP/1.1
Host: www.server.com

Accept: application/json
Content-Type: application/json

{
"author": "Enrique Goémez Salas",
"title": "Desventuras de un informatico en Paris"”,
"genre": "scifi",
"price": { "currency": "£€", "amount": 50}
}

La query string define un subconjunto de recursos sobre la coleccion, a los cuales se les aplicara la
operacion PUT. De esta forma conseguimos una manera sencilla de hacer una actualizacion masiva.
Pero esto haria que todos los libros de ciencia ficcion tuvieran los mismos datos ! Realmente esto no
es muy util en este contexto. Pero si lo es cuando estemos haciendo actualizaciones parciales, como
veremos en otra seccion.

En algunos casos la actualizacion no se puede llevar a cabo debido a que el estado del recurso lo
impide, tal vez debido a alguna regla de negocio (por ejemplo, no se pueden devolver articulos
pasados 3 meses desde la compra). En estos casos lo correcto es responder con un 409.

HTTP/1.1 409 Conflict

1.4 Borrando

Para borrar una entidad o una coleccién, simplemente debemos hacer DELETE contra la URI del
recurso.

APIs orientadas a datos: CRUD 12

DELETE /rest/libro/465 HTTP/1 .1
Host: www.server.com

Y la respuesta:

HTTP/1.1 204 No Content

Normalmente basta con un 204, pero en algunos casos puede ser util un 200 para devolver algun
tipo de informacion adicional.

Hay que tener en cuenta que borrar una entidad, debe involucrar un borrado en cascada en todas las
entidades hijas. De la misma forma, si borramos una coleccion se deben borrar todas las entidades
que pertenezcan a ella.

Otro uso interesante es usar una query string para hacer un borrado selectivo. Por ejemplo:

DELETE /rest/libro?genero=scifi HTTP/1.1

Host: www.server.com

Borraria todos los libros de ciencia ficciéon. Mediante este método podemos borrar sélo los miembros
de la coleccion que cumplen la query string.

0 Cuidado, este tipo de uso de DELETE puede ser peligroso ya que podriamos borrar
todos o casi todos los elementos de una colecciéon. Habria que implementarlo si
realmente lo queremos.

1.5 Creando

Una forma de crear nuevos recursos es mediante PUT. Simplemente hacemos PUT a una URI que no
existe, con los datos iniciales del recurso y el servidor creara dicho recurso en la URI especificada.
Por ejemplo, para crear un nuevo libro:

© 00 N O O b W N =

RN
= O

O© 0 I O O & W N =

(SN
[l]

APIs orientadas a datos: CRUD 13

PUT /rest/libro/465 HTTP/1.1
Host: www.server.com

Accept: application/json
Content-Type: application/json

{
"author": "Enrique Gbémez Salas",
"title": "Desventuras de un informatico en Paris"”,
"genre": "scifi",
"price": { "currency": "€", "amount": 50}
}

Notese que la peticion es indistinguible de una actualizacién. El hecho de que se produzca una
actualizacion o se cree un nuevo recurso depende unicamente de si dicho recurso, identificado por
la URL, existe ya o no en el servidor. La respuesta:

HTTP/1.1 201 Created
Location: http://www.server.com/rest/libro/465
Content-Type: application/json;charset=utf-8

{
"id": "http://www.server.com/rest/libro/465",
"author": "Enrique Goémez Salas",
"title": "Desventuras de un informatico en Paris",
"genre": "scifi",
"price": { "currency": "€", "amount": 50}

}

Notese que el codigo de respuesta no es ni 200 ni 204, sino 201, indicando que el recurso se cre6
con éxito. Opcionalmente, como en el caso del ejemplo, se suele devolver el contenido completo
del recurso recien creado. Es importante fijarse en la cabecera Location que indica, en este caso de
forma redundante, la URL donde se ha creado el nuevo recurso.

Otro método para crear nuevos recursos usando POST. En este caso hacemos POST no sobre la URI
del nuevo recurso, sino sobre la URI del recurso padre.

© 00 N O O b W N =

RN
= O

© 00 N O O b W N =

RN
= O

APIs orientadas a datos: CRUD 14

POST /rest/libro HTTP/1.1
Host: www.server.com

Accept: application/json
Content-Type: application/json

{
"author": "Enrique Gbémez Salas",
"title": "Desventuras de un informatico en Paris"”,
"genre": "scifi",
"price": { "currency": "€", "amount": 50}
}

Y la respuesta:

HTTP/1.1 201 Created
Location: http://www.server.com/rest/libro/3d7ef
Content-Type: application/json;charset=utf-8

{
"id": "http://www.server.com/rest/libro/3d7ef",
"author": "Enrique Gbémez Salas",
"title": "Desventuras de un informatico en Paris"”,
"genre": "scifi",
"price": { "currency": "£€", "amount": 50}

}

En este caso la cabecera Location no es superflua, ya que es el servidor quien decide la URL del
nuevo recurso, no el cliente como en el caso de PUT. Ademés cuando creamos un nuevo recurso con
POST, éste siempre queda subordinado al recurso padre. Esto no tendria porque ser asi con PUT.

a)

POST tiene como ventaja que la logica de creacion URIs no esta en el cliente,

% sino bajo el control del servidor. Esto hace a nuestros servicios REST maés
interoperables, ya que el servidor y el cliente no se tienen que poner de acuerdo
ni en que URIs son validas y cuales no, ni en el algoritmo de generacion de URIs.
Como gran desventaja, POST no es idempotente.

La gran ventaja de usar PUT es que si es idempotente. Esto hace que PUT sea muy
util para poder recuperarnos de problemas de conectividad. Si el cliente tiene
dudas sobre si su peticiéon de creacion se realizd o no, sdlo tiene que repetirla.
Sin embargo esto no es posible con POST, ya que duplicariamos el recurso en el

APIs orientadas a datos: CRUD 15

caso de que el servidor si atendi6 a nuestra peticion y nosotros no lo supiéramos.

1.6 Seguramente CRUD no sea lo mejor para tu API...

Hasta el momento hemos estado disefiando la API REST de una forma muy similar a como se
disenaria una BBDD. Algunos estarian tentados de ver las colecciones como “tablas” y las entidades
como “filas”, y pasar por alto el verdadero significado de lo que es un recurso REST. Este disefio
ciertamente puede ser util en casos sencillos, pero si queremos exprimir al maximo las capacidades
de interoperabilidad del enfoque REST debemos ir mas alla de esta forma de pensar. Mas adelante
veremos otras técnicas de disefio que maximizan la interoperabilidad.

Por otra parte, como se ha visto antes, no es bueno acoplar nuestro diseio de API REST a la
implementacion del sistema. En este sentido hay que tener cuidado con los frameworks. Por ejemplo,
no es deseable el disefio de tu sistema REST se acople a tu disefio de tablas. En general el disefio de
la API REST debe estar totalmente desacoplado de la implementacion, y dejar que esta ultima pueda
cambiar sin necesidad de alterar tu capa de servicios REST.

Sin embargo, en algunos escenarios sencillos, el enfoque CRUD es perfectamente valido. Por ejemplo,
si simplemente queremos dotar de un API REST a una base de datos, o a nuestra capa de acceso a
datos, el enfoque CRUD es perfectamente adecuado. En cualquier caso, incluso en estos escenarios,
la APTI REST no deberia exponer detalles de implementacion, tales como el esquema de base de datos
subyacente o las claves primarias. De este modo, si por ejemplo, decidimos desnormalizar nuestro
esquema, nuestra API REST no deberia tener que ser cambiada forzosamente (otra cosa es cambiar
la implementacion de esta).

Pero en el caso general, cuando definimos una API REST, lo que queremos exponer no es nuestra
capa de acceso a datos, sino nuestra capa de logica de aplicacion. Esto implica investigar que casos de
uso tenemos, como cambia el estado de nuestro sistema en funcion de las operaciones de negocio, y
que informacion es realmente publica y cual no. Para disefiar nuestra API de forma 6ptima debemos
ir mas alla del paradigma CRUD, y empezar a pensar en casos de uso. Mas adelante, en otro capitulo
de este mismo libro, se explicara un enfoque mejor para este tipo de APIs: el enfoque de hypermedia
o HATEOAS.

Pero antes necesitamos conocer un poco mas las posibilidades que nos brinda HTTP y REST. En el
siguiente capitulo veremos algunas técnicas mas avanzadas que pueden ser usadas tanto en APIs
orientadas a datos como en APIs basadas en hypermedia.

	Contents
	Sobre la cubierta
	Agradecimientos
	Érase una vez…
	APIs orientadas a datos: CRUD
	Introducción
	Leyendo
	Actualizando
	Borrando
	Creando
	Seguramente CRUD no sea lo mejor para tu API…

