

Principios de diseño de APIs REST
(desmitificando REST)

Enrique Amodeo

This book is for sale at http://leanpub.com/introduccion_apis_rest

This version was published on 2013-03-06

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and
many iterations to get reader feedback, pivot until you have the right book and build traction once
you do.

©2012 - 2013 Enrique Amodeo

http://leanpub.com/introduccion_apis_rest
http://leanpub.com
http://leanpub.com/manifesto

Tweet This Book!
Please help Enrique Amodeo by spreading the word about this book on Twitter!

The suggested tweet for this book is:

Acabo de comprar ”Principios de Diseño de APIs REST” El libro de #REST en español #esrest

The suggested hashtag for this book is #esrest.

Find out what other people are saying about the book by clicking on this link to search for this
hashtag on Twitter:

https://twitter.com/search/#esrest

http://twitter.com
https://twitter.com/search/#esrest
https://twitter.com/search/#esrest

Índice general

Sobre la cubierta i

Agradecimientos ii

Érase una vez… iii

1 APIs orientadas a datos: CRUD 1

1.1 Introducción . 1

1.2 Leyendo . 2

1.3 Actualizando . 9

1.4 Borrando . 11

1.5 Creando . 12

1.6 Seguramente CRUD no sea lo mejor para tu API… 15

Sobre la cubierta
La foto de la cubierta es de un famoso trampantojo en la ciudad de Quebec, más concretamente en
el Quartier Petit Champlain.

El autor eligió esta foto como cubierta porque ilustra claramente un conjunto de agentes interope-
rando entre sí.

i

Agradecimientos
Este libro empezó como un pequeño y corto capítulo en otro libro. Los que me conocen ya se temían
que ese pequeño capítulo no iba a ser tan pequeño. Debido a ello, y a problemas de calendario decidí
publicar el libro por separado y a mi ritmo. Gracias a ese equipo de personas por poner en marcha
esto y por sus sugerencias, en especial a@ydarias,@estebanm, y@carlosble.

Gracias a todos aquellos que me han ayudado a mover el libro por el mundo del “social media”.

Me gustaría agradecer a@pasku1 y a@juergas por sus esfuerzos como revisores de este libro (os
debo una caña… bueno dos). Sé que siempre puedo recurrir a ellos cuando me apetece calentarle la
cabeza a alguien con mi última idea.

Y como no podría ser de otra forma, un agradecimiento especial a mi mujer, @mcberros, por no
permitir nunca que dejara este proyecto y por su apoyo incondicional.

ii

Érase una vez…
Tras muchos años intentando crear servicios web basados en tecnologías RPC, tales como CORBA
o SOAP, la industria del desarrollo de software se encontraba en un punto muerto. Cierto, se había
conseguido el gran logro de que un servicio implementado en .NET consiguiera comunicarse con
uno escrito en Java, o incluso con otro hecho a base de COBOL, sin embargo todo esto sabía a
poco. Es normal que supiera a poco, se había invertido cantidades ingentes de dinero en distintas
tecnologías, frameworks y herramientas, y las recompensas eran escasas. Lo peor es que además las
compañías se encontraban encalladas en varios problemas.

Por un lado la mantenibilidad de la base de código resultante era bastante baja. Se necesitaban
complejos IDEs para generar las inescrutables toneladas de código necesarias para interoperar.
Los desarrolladores tenían pesadillas con la posibilidad de que se descubriera algún bug en la
herramienta de turno, o de que algún parche en éstas destruyera la interoperabilidad. Y si se
necesitaba alguna versión o capacidadmás avanzada de SOAP, probablemente el IDE no lo soportara
o tuviera que ser actualizado.

Por otro lado, para depurar cualquier problema de interoperabilidad, había que bajar al nivel de
HTTP: ¿estarían las cabeceras apropiadas? ¿La serialización del documento SOAP es conforme a
“Basic Profile”¹? ¿No se suponía que SOAP nos desacoplaba totalmente del protocolo de transporte?

Finalmente también había descontento. Se había soñado con un mundo de servicios web interope-
rables de manera transparente, organizados en directorios UDDI, con transacciones distribuidas a
través de internet, etc. Al final esto no se consiguió, sólo interoperaban servicios entre distintos
departamentos de una misma empresa, o de forma más rara algún servicio llamaba a otro servicio
de otra empresa, todo con mucho cuidado y en condiciones bastante frágiles.

Cuando la situación se hizo insostenible, y algunos gigantes de la informática como Amazon, Google
o Twitter necesitaron interoperabilidad a escala global y barata, alguien descubrió el camino al futuro
mirando hacia el pasado, y descubrió REST…

¹http://www.ws-i.org/profiles/BasicProfile-1.0-2004-04-16.html

iii

http://www.ws-i.org/profiles/BasicProfile-1.0-2004-04-16.html
http://www.ws-i.org/profiles/BasicProfile-1.0-2004-04-16.html

1 APIs orientadas a datos: CRUD
1.1 Introducción

El caso de uso más sencillo al diseñar servicios REST con HTTP se produce cuando dichos servicios
publican operaciones CRUD sobre nuestra capa de acceso a datos. El acrónimo CRUD responde
a “Create Read Update Delete” y se usa para referirse a operaciones e mantenimiento de datos,
normalmente sobre tablas de un gestor relacional de base de datos. En este estilo de diseño existen
dos tipos de recursos: entidades y colecciones.

Las colecciones actuan como listas o contenedores de entidades, y en el caso puramente CRUD se
suelen corresponder con tablas de base de datos. Normalmente su URI se deriva del nombre de la
entidad que contienen. Por ejemplo, http://www.server.com/rest/libro sería una buena URI para
la colección de todos los libros dentro de un sistema. Para cada colección se suele usar el siguiente
mapeo de métodos HTTP a operaciones:

Método HTTP Operación

GET Leer todas las entidades dentro de la colección
PUT Actualización mútiple y/o masiva

DELETE Borrar la colección y todas sus entidades
POST Crear una nueva entidad dentro de la colección

Las entidades son ocurrencias o instancias concretas, que viven dentro de una colección. La
URI de una entidad se suele modelar concatenado a la URI de la colección correspondiente un
identificador de entidad. Este identificador sólo necesita ser único dentro de dicha colección. Ej.
http://www.server.com/rest/libro/ASV2-4fw-3 sería el libro cuyo identificador es ASV2-4fw-3.
Normalmente se suele usar la siguiente convención a la hora demapearmétodos HTTP a operaciones
cuando se trabaja con entidades.

Método HTTP Operación

GET Leer los datos de una entidad en concreto
PUT Actualizar una entidad existente o crearla si no existe

DELETE Borrar una entidad en concreto
POST Añadir información a una entidad ya existente

A continuación, en las siguientes secciones, veremos más en detalle algunas opciones de diseño para
cada operación CRUD.

1

APIs orientadas a datos: CRUD 2

1.2 Leyendo

La operación que parece más sencilla de modelar es la de lectura, aunque como veremos, el demonio
está en los detalles.

Todas las operaciones de lectura y consulta deben hacerse con el método GET, ya que según la
especificación HTTP, indica la operación de recuperar información del servidor.

Lectura de entidades

El caso más sencillo es el de leer la información de una entidad, que se realiza haciendo un GET contra
la URI de la entidad. Esto no tiene mucho más misterio, salvo en el caso de que el volumen de datos
de la entidad sea muy alto. En estos casos es común que queramos recuperar los datos de la entidad
pero sólo para consultar una parte de la información y no toda, con lo que estamos descargando
mucha información que no nos es útil.

Una posible solución es dejar sólo en esa entidad los datos de uso más común, y el resto dividirlo
en varios recursos hijos. De esta manera cuando el cliente lea la entidad, sólo recibirá los datos de
uso más común y un conjunto de enlaces a los recursos hijos, que contienen los diferentes detalles
asociados a ésta. Cada recurso hijo puede ser a su vez o una entidad o una colección.

En general se suele seguir la convención de concatenar el nombre del detalle a la URI de la entidad pa-
dre para conseguir la URI de la entidad hija. Por ejemplo, dada una entidad /rest/libro/23424-dsdff,
si se le realiza un GET, recibiríamos un documento, con el título, los autores, un resumen, valoración
global, una lista de enlaces a los distintos capítulos, otra para los comentarios y valoraciones, etc.

Una opción de diseño es hacer que todos los libros tengan una colección de capítulos como
recurso hijo. Para acceder al capítulo 3, podríamos modelar los capítulos como una colección y
tener la siguiente URL: /rest/libro/23424-dsdff/capitulo/3. Con este diseño tenemos a nuestra
disposición una colección en /rest/libro/23424-dsdff/capitulo, con la cual podemos operar de
forma estándar, para insertar, actualizar, borrar o consultar capítulos. Este diseño es bastante flexible
y potente.

Otro diseño, más simple, sería no tener esa colección intermedia y hacer que cada capítulo
fuera un recurso que colgara directamente del libro, con lo que la URI del capítulo 3 sería:
/rest/libro/23424-dsdff/capitulo3. Este diseño es más simple y directo y no nos ofrece la
flexibilidad del anterior.

..

¿Cuál es la mejor opción? Depende del caso de uso que tengamos para nuestra
API.

Si no tenemos claro que operación vamos a soportar para las entidades hijas, o
si sabemos que necesitamos añadir, borrar y consultar por diversos criterios, es
mejor usar una colección intermedia.

APIs orientadas a datos: CRUD 3

..

Si no necesitamos todo esto, es mejor hacer enlaces directos, ya que es un diseño
más sencillo.

Volviendo al problema de tener una entidad con un gran volumen de datos, existe otra solución en
la que no es necesario descomponerla en varios recursos. Se trata simplemente de hacer un GET a la
URI de la entidad pero añadiendo una query string. Por ejemplo, si queremos ir al capítulo número
3, podemos hacer GET sobre /rest/libro/23424-dsdff?capitulo=3. De esta forma hacemos una
lectura parcial de la entidad, donde el servidor devuelve la entidad libro, pero con sólo el campo
relativo al capítulo 3. A esta técnica la llamo slicing. El usar slicing nos lleva a olvidarnos de esta
separación tan fuerte entre entidad y colección, ya que un recurso sobre el que podemos hacer slicing
es, en cierta medida, una entidad y una colección al mismo tiempo.

Como se aprecia REST es bastante flexible y nos ofrece diferentes alternativas de diseño, el usar
una u otra depende sólo de lo que pensemos que será más interoperable en cada caso. Un criterio
sencillo para decidir si hacer slicing o descomponer la entidad en recursos de detalle, es cuantos
niveles de anidamiento vamos a tener. En el caso del libro, ¿se accederá a cada capítulo como
un todo o por el contrario el cliente va a necesitar acceder a las secciones de cada capítulo
de forma individual? En el primer caso el slicing parece un buen diseño, en el segundo no lo
parece tanto. Si hacemos slicing, para acceder a la sección 4 del capítulo 3, tendríamos que hacer:
/rest/libro/23424-dsdff?capitulo=3&seccion=4. Este esquema de URI es menos semántico, y
además nos crea el problema de que puede confundir al cliente y pensar que puede hacer cosas como
esta: /rest/libro/23424-dsdff?seccion=4 ¿Qué devolvemos? ¿Una lista con todas las secciones 4
de todos los capítulos? ¿Un 404 no encontrado? Sin embargo en el diseño orientado a subrecursos es
claro, un GET sobre /rest/libro/23424-dsdff/capitulo/3/seccion/4 nos devuelve la sección 4 del
capítulo 3, y sobre /rest/libro/23424-dsdff/seccion/4 nos debería devolver 404 no encontrado,
ya que un libro no tiene secciones por dentro, sino capítulos. Otra desventaja del slicing es que
la URI no es limpia, y el posicionamiento en buscadores de nuestro recurso puede ser afectado
negativamente por esto (sí, un recurso REST puede tener SEO, ya lo veremos más adelante).

A veces no tenemos claro cual va a ser el uso de nuestra API REST. En estos casos es mejor optar por
el modelo más flexible de URIs, de forma que podamos evolucionar el sistema sin tener que romper
el esquema de URIs, cosa que rompería a todos los clientes. En este caso el sistema más flexible es
descomponer la entidad en recursos de detalle, usando colecciones intermedias si es necesario.

Recordad que se tome la decisión que se tome, esta no debe afectar al diseño interno del sistema. Por
ejemplo, si decidimos no descomponer la entidad en recursos hijos, eso no significa que no pueda
internamente descomponer una supuesta tabla de libros, en varias tablas siguiendo un esquema
maestro detalle. Y viceversa, si decido descomper la entidad en varios subrecursos, podría decidir
desnormalizar y tenerlo todo en una tabla, o quizás no usar tablas sino una base de datos documental.
Estas decisiones de implementación interna, guiadas por el rendimiento y la mantenibilidad del
sistema, deben ser invisibles al consumidor del servicio REST.

APIs orientadas a datos: CRUD 4

..

Ningún cambio motivado por razones técnicas, que no altere la funcionalidad
ofrecida por nuestra API, debe provocar un cambio en nuestra API REST

Un ejemplo de esto sería un cambio en la base de datos debido a que vamos a
normalir o denormalizar el esquema de base de datos.

Consultas sobre colecciones

La operación más común sobre una colección es la consulta. Si queremos obtener todos los miembros
de una colección, simplemente hay que realizar un GET sobre la URI de la colección. En el ejemplo
de los libros sería: http://www.server.com/rest/libro. Yo he puesto libro en singular, pero
realmente es una colección. ¿Qué nos devolvería esta llamada? Realmente hay dos opciones: una
lista con enlaces a todos los libros o una lista de libros, con todos sus datos.

La petición podría ser algo así:

1 GET /rest/libro HTTP/1.1

2 Host: www.server.com

3 Accept: application/json

4

Una respuesta, donde se devuelvan sólo enlaces:

1 HTTP/1.1 200 Ok

2 Content-Type: application/json;charset=utf-8

3

4 ["http://www.server.com/rest/libro/45",

5 "http://www.server.com/rest/libro/465",

6 "http://www.server.com/rest/libro/4342"]

Si la respuesta incluye también los datos de las entidades hijas, tendríamos:

APIs orientadas a datos: CRUD 5

1 HTTP/1.1 200 Ok

2 Content-Type: application/json;charset=utf-8

3

4 [{

5 "id": "http://www.server.com/rest/libro/45",

6 "author": "Rober Jones",

7 "title": "Living in Spain",

8 "genre": "biographic",

9 "price": { "currency": "$", "amount": 33.2}

10 },

11 {

12 "id": "http://www.server.com/rest/libro/465",

13 "author": "Enrique Gómez",

14 "title": "Desventuras de un informático en Paris",

15 "genre": "scifi",

16 "price": { "currency": "€", "amount": 10}

17 },

18 {

19 "id": "http://www.server.com/rest/libro/4342",

20 "author": "Jane Doe",

21 "title": "Anonymous",

22 "genre": "scifi",

23 "price": { "currency": "$", "amount": 4}

24 }]

Observen como vienen todos los datos del libro, pero además viene un campo extra id, con la URI
de cada libro.

..

¿Qué es mejor? ¿Traernos enlaces a los miembros de la colección, o descargarnos
también todos los datos?

En el primer caso la respuesta ocupa menos espacio y ahorramos ancho de banda.
En el segundo se usa mayor ancho de banda, pero evitamos tener que volver a
llamar a las URIs cada vez que queramos traernos los datos de cada entidad,
es decir ahorramos en llamadas de red y por lo tanto en latencia. Según las
características de nuestra red tendremos que tomar la decisión. En una red móvil,
donde hay una gran latencia, probablemente sea mejor el enfoque de descargar
todos los datos.

Otro tema a considerar es el uso de la cache. Si nuestras entidades cambian poco,
seguramente las peticiones para recuperar el detalle de cada una de ellas nos lo
sirva una cache. Desde este punto de vista, en algunos casos, la idea de descargar

APIs orientadas a datos: CRUD 6

..

sólo los enlaces puede ser mejor.

En cualquier caso, la latencia domina la mayoría de redes modernas. por lo tanto
lo mejor sería usar por defecto el segundo diseño, y cambiar al primero sólo si se
demuestra que es mejor (y realmente lo necesitamos).

Lo normal en todo caso, no es traerse todos los miembros de una colección, sino sólo los que cumplan
unos criterios de búsqueda. La forma más sencilla es definir los criterios de búsqueda en la query
string.

Petición para buscar libros de ciencia ficción con un precio máximo de 20 euros:

1 GET /rest/libro?precio_max=20eur&genero=scifi HTTP/1.1

2 Host: www.server.com

3 Accept: application/json

4

Y la respuesta:

1 HTTP/1.1 200 Ok

2 Content-Type: application/json;charset=utf-8

3

4 [{

5 "id": "http://www.server.com/rest/libro/4342",

6 "author": "Jane Doe",

7 "title": "Anonymous",

8 "genre": "scifi",

9 "price": { "currency": "€", "amount": 5}

10 },

11 {

12 "id": "http://www.server.com/rest/libro/465",

13 "author": "Enrique Gómez",

14 "title": "Desventuras de un informático en Paris",

15 "genre": "scifi",

16 "price": { "currency": "€", "amount": 10}

17 }]

Nótese el detalle de que los resultados viene ordenados por precio. Normalmente el servidor debería
ordenar los resultados de alguna manera en función de la consulta. Si quisiéramos que el cliente de-
finiera en un orden diferente al que proporcionamos por defecto, deberíamos dar soporte a consultas
como esta: /rest/libro?precio_max=20&genero=scifi&ordenarPor=genero&ascendiente=false

APIs orientadas a datos: CRUD 7

¿Y si queremos buscar una entidad por identificador…? Simplemente hay que hacer un GET sobre
la URI de la entidad, por lo que consultas por “clave primaria” no tienen sentido dentro de una
colección REST. Petición para un libro en particular:

1 GET /rest/libro/465 HTTP/1.1

2 Host: www.server.com

3 Accept: application/json

4

Y la respuesta:

1 HTTP/1.1 200 Ok

2 Content-Type: application/json;charset=utf-8

3

4 {

5 "id": "http://www.server.com/rest/libro/465",

6 "author": "Enrique Gómez",

7 "title": "Desventuras de un informático en Paris",

8 "genre": "scifi",

9 "price": { "currency": "€", "amount": 10}

10 }

Consultas paginadas

Esmuy común que una consulta devuelva demasiados datos. Para evitarlo podemos usar paginación.
La forma más directa es añadir parámetros de paginación a la query string. Por ejemplo, si
estuviéramos paginando una consulta sobre libros que en su descripción o título contuvieran el texto
“el novicio”, podríamos tener la siguiente petición para acceder a la segunda página de resultados:

1 GET /rest/libro?q=el%20novicio&minprice=12&fromid=561f3&max=10 HTTP/1.1

2 Host: www.server.com

3 Accept: application/json

4

Nótese el parámetro max, que indica al servidor cuantos resultados queremos como máximo. La
paginación en si la hacemos usando los parámetros minprice y fromid, que indican cuál es el último
resultado que se ha recibido. En el ejemplo los resultados están ordenados ascendentemente por
precio. De esta forma el servidor debe realizar la consulta de forma que excluya dicho resultado y
devuelva los siguientes 10 libros a partir del último mostrado. Estamos jugando con la ordenación
de los datos para conseguir la paginación.

APIs orientadas a datos: CRUD 8

..

Existen muchas formas de implementar paginación, no sólo la que presento como
ejemplo. Sin embargo la aproximación que aqui se presenta puede necesitar cam-
bios en función de como hagamos las consultas e implementemos la paginación
exactamente.

Esto es un problema de interoperabilidad, ya que estamos acoplando la implemen-
tación del servidor con el cliente. Éste debe conocer detalles como que parámetros
usar, o como informarlos. En el momento que decidiéramos cambiar alguno de
estos detalles por motivos técnicos, estariamos rompiendo nuestra API.

Para solucionar este problema, existe otra variante para implementar la pagina-
ción y consiste en modelar directamente las páginas de resultados como recursos
REST y autodescubrirlas mediante enlaces. En el capítulo dedicado a hypermedia
se hablará sobre este enfoque.

Tal como se han diseñado las consultas anteriormente, el servidor tiene que estar preparado para
interpretar correctamente los parámetros de la query string. La ventaja es que es muy simple. La
desventaja es que el cliente tiene que entender que parámetros hay disponibles y su significado, con
lo que es menos interoperable.

Consultas predefinidas o Vistas

Existe otra forma de diseñar consultas, que consiste enmodelarlas directamente como recursos REST.
De esta forma podemos tener consultas que son recursos hijos de la colección principal. Se puede
entender este enfoque como crear consultas predefinidas, filtros o vistas sobre la colección principal.

Como ejemplo de este enfoque podríamos hacer GET sobre /rest/libro/novedades y /rest/libro/scifi
para consultar las novedades y los libros de ciencia ficción respectivamente. Sobre estas colecciones
hijas podemos añadir parámetros en la query string para restringirlas más o para hacer paginación.
Alternativamente podemos tener colecciones hijas anidadas hasta el nivel que necesitemos.

Esta forma de modelar consultas nos da una API mucho más limpia, y nos permite mayor
interoperabilidad. Nos permite simplificar drásticamente el número de parámetros y significado de
éstos. Como mayor inconveniente está que es un enfoque menos flexible, ya que se necesita pensar
por adelantado que consultas va a tener el sistema. Por lo tanto suele ser un diseño muy apropiado
en aplicaciones de negocio donde normalmente sabemos las consultas que vamos a tener, pero no
es muy apropiado en aplicaciones donde el usuario define sus propias consultas en tiempo de uso de
la aplicación.

La tendencia de diseño es mezclar ambas opciones. Por un lado modelar explícitamente la consultas
más comunes e importantes. Por otro lado permitir una consulta genérica, normalmente de texto
libre, al estilo de Google o Yahoo. Por ejemplo: /rest/libro?description=el%20novicio

APIs orientadas a datos: CRUD 9

..

A menos que estes diseñando una API rest para una base de datos, es mejor usar
consultas predefinidas. Las razones son varias:

• Rendimiento. Podemos implementar nuestro sistema para que optimice
las consultas que están predefinidas. Se pueden usar técnicas como definir
índices apropiados para ellas, o usar vistas materializadas. En una consulta
genérica no tenemos manera de optimimizar, ya que no sabemos a priori
como va a ser la consulta que se va a procesar y cuál es el criterio de
búsqueda.

• Interoperabilidad. Una consulta predefinida es mucho más sencilla de usar
que una genérica. Implica menos parámetros que una consulta genérica o
incluso ninguno. Además el hecho de definir parámetros en una consulta
genérica viola hasta cierto punto la encapsulación de nuestro sistema. Ex-
pone que campos de información están disponibles para realizar búsquedas
y cuales no.

1.3 Actualizando

A la hora de actualizar los datos en el servidor podemos usar dos métodos, PUT y POST. Según HTTP,
PUT tiene una semántica de UPSERT, es decir, actualizar el contenido de un recurso, y si éste no existe
crear un nuevo recurso con dicha información en la URI especificada. POST por el contrario puede
usarse para cualquier operación que no sea ni segura ni idempotente, normalmente para añadir un
trozo de información a un recurso o bien crear un nuevo recurso.

Si queremos actualizar una entidad lo más sencillo es realizar PUT sobre la URI de la entidad, e incluir
en el cuerpo de la petición HTTP los nuevos datos. Por ejemplo:

1 PUT /rest/libro/465 HTTP/1.1

2 Host: www.server.com

3 Accept: application/json

4 Content-Type: application/json

5

6 {

7 "author": "Enrique Gómez Salas",

8 "title": "Desventuras de un informático en Paris",

9 "genre": "scifi",

10 "price": { "currency": "€", "amount": 50}

11 }

APIs orientadas a datos: CRUD 10

Y la respuesta es muy escueta:

1 HTTP/1.1 204 No Content

2

Esto tiene como consecuencia que el nuevo estado del recurso en el servidor es exactamente el mismo
que el que mandamos en el cuerpo de la petición. La respuesta puede ser 204 o 200, en función de si
el servidor decide enviarnos como respuesta el nuevo estado del recurso. Generalmente sólo se usa
204 ya que se supone que los datos en el servidor han quedado exactamente igual en el servidor que
en el cliente. Con la respuesta 204 se pueden incluir otras cabeceras HTTP con metainformación,
tales como ETag o Expires. Sin embargo en algunos casos, en los que el recurso tenga propiedades
de sólo lectura que deban ser recalculadas por el servidor, puede ser interesante devolver un 200 con
el nuevo estado del recurso completo, incluyendo las propiedades de solo lectura.

Es decir, la semántica de PUT es una actualización donde reemplazamos por completo los datos del
servidor con los que enviamos en la petición.

También podemos usar PUT para actualizar una colección ya existente. Veamos un ejemplo:

1 PUT /rest/libro HTTP/1.1

2 Host: www.server.com

3 Accept: application/json

4 Content-Type: application/json

5

6 {

7 "author": "Enrique Gómez Salas",

8 "title": "Desventuras de un informático en Paris",

9 "genre": "scifi",

10 "price": { "currency": "€", "amount": 50}

11 }

Y la respuesta:

1 HTTP/1.1 204 No Content

2

En este caso PUT ha sobreescrito los contenidos de la colección por completo, borrando los contenidos
anteriores, e insertando los nuevos.

APIs orientadas a datos: CRUD 11

..

Cuidado, este tipo de uso de PUT puede ser peligroso ya que se puede sobreescribir
toda la colección, con el consiguiente riesgo de perder información.

En los casos en los que queramos actualizar sólo algunos miembros de la colección y no otros
podríamos usar una query string para delimitar que miembros van a ser actualizados.

1 PUT /rest/libro?genero=scifi HTTP/1.1

2 Host: www.server.com

3 Accept: application/json

4 Content-Type: application/json

5

6 {

7 "author": "Enrique Gómez Salas",

8 "title": "Desventuras de un informático en Paris",

9 "genre": "scifi",

10 "price": { "currency": "€", "amount": 50}

11 }

La query string define un subconjunto de recursos sobre la colección, a los cuales se les aplicará la
operación PUT. De esta forma conseguimos una manera sencilla de hacer una actualización masiva. ¡
Pero esto haría que todos los libros de ciencia ficción tuvieran los mismos datos ! Realmente esto no
es muy útil en este contexto. Pero sí lo es cuando estemos haciendo actualizaciones parciales, como
veremos en otra sección.

En algunos casos la actualización no se puede llevar a cabo debido a que el estado del recurso lo
impide, tal vez debido a alguna regla de negocio (por ejemplo, no se pueden devolver artículos
pasados 3 meses desde la compra). En estos casos lo correcto es responder con un 409.

1 HTTP/1.1 409 Conflict

2

1.4 Borrando

Para borrar una entidad o una colección, simplemente debemos hacer DELETE contra la URI del
recurso.

APIs orientadas a datos: CRUD 12

1 DELETE /rest/libro/465 HTTP/1.1

2 Host: www.server.com

3

Y la respuesta:

1 HTTP/1.1 204 No Content

2

Normalmente basta con un 204, pero en algunos casos puede ser útil un 200 para devolver algún
tipo de información adicional.

Hay que tener en cuenta que borrar una entidad, debe involucrar un borrado en cascada en todas las
entidades hijas. De la misma forma, si borramos una colección se deben borrar todas las entidades
que pertenezcan a ella.

Otro uso interesante es usar una query string para hacer un borrado selectivo. Por ejemplo:

1 DELETE /rest/libro?genero=scifi HTTP/1.1

2 Host: www.server.com

3

Borraría todos los libros de ciencia ficción. Mediante este método podemos borrar sólo los miembros
de la colección que cumplen la query string.

..

Cuidado, este tipo de uso de DELETE puede ser peligroso ya que podríamos borrar
todos o casi todos los elementos de una colección. Habría que implementarlo si
realmente lo queremos.

1.5 Creando

Una forma de crear nuevos recursos es mediante PUT. Simplemente hacemos PUT a una URI que no
existe, con los datos iniciales del recurso y el servidor creará dicho recurso en la URI especificada.
Por ejemplo, para crear un nuevo libro:

APIs orientadas a datos: CRUD 13

1 PUT /rest/libro/465 HTTP/1.1

2 Host: www.server.com

3 Accept: application/json

4 Content-Type: application/json

5

6 {

7 "author": "Enrique Gómez Salas",

8 "title": "Desventuras de un informático en Paris",

9 "genre": "scifi",

10 "price": { "currency": "€", "amount": 50}

11 }

Nótese que la petición es indistinguible de una actualización. El hecho de que se produzca una
actualización o se cree un nuevo recurso depende únicamente de si dicho recurso, identificado por
la URL, existe ya o no en el servidor. La respuesta:

1 HTTP/1.1 201 Created

2 Location: http://www.server.com/rest/libro/465

3 Content-Type: application/json;charset=utf-8

4

5 {

6 "id": "http://www.server.com/rest/libro/465",

7 "author": "Enrique Gómez Salas",

8 "title": "Desventuras de un informático en Paris",

9 "genre": "scifi",

10 "price": { "currency": "€", "amount": 50}

11 }

Nótese que el código de respuesta no es ni 200 ni 204, sino 201, indicando que el recurso se creó
con éxito. Opcionalmente, como en el caso del ejemplo, se suele devolver el contenido completo
del recurso recien creado. Es importante fijarse en la cabecera Location que indica, en este caso de
forma redundante, la URL donde se ha creado el nuevo recurso.

Otro método para crear nuevos recursos usando POST. En este caso hacemos POST no sobre la URI
del nuevo recurso, sino sobre la URI del recurso padre.

APIs orientadas a datos: CRUD 14

1 POST /rest/libro HTTP/1.1

2 Host: www.server.com

3 Accept: application/json

4 Content-Type: application/json

5

6 {

7 "author": "Enrique Gómez Salas",

8 "title": "Desventuras de un informático en Paris",

9 "genre": "scifi",

10 "price": { "currency": "€", "amount": 50}

11 }

Y la respuesta:

1 HTTP/1.1 201 Created

2 Location: http://www.server.com/rest/libro/3d7ef

3 Content-Type: application/json;charset=utf-8

4

5 {

6 "id": "http://www.server.com/rest/libro/3d7ef",

7 "author": "Enrique Gómez Salas",

8 "title": "Desventuras de un informático en Paris",

9 "genre": "scifi",

10 "price": { "currency": "€", "amount": 50}

11 }

En este caso la cabecera Location no es superflua, ya que es el servidor quien decide la URL del
nuevo recurso, no el cliente como en el caso de PUT. Además cuando creamos un nuevo recurso con
POST, éste siempre queda subordinado al recurso padre. Esto no tendría porque ser así con PUT.

..

POST tiene como ventaja que la lógica de creación URIs no está en el cliente,
sino bajo el control del servidor. Esto hace a nuestros servicios REST más
interoperables, ya que el servidor y el cliente no se tienen que poner de acuerdo
ni en que URIs son válidas y cuáles no, ni en el algoritmo de generación de URIs.
Como gran desventaja, POST no es idempotente.

La gran ventaja de usar PUT es que sí es idempotente. Esto hace que PUT sea muy
útil para poder recuperarnos de problemas de conectividad. Si el cliente tiene
dudas sobre si su petición de creación se realizó o no, sólo tiene que repetirla.
Sin embargo esto no es posible con POST, ya que duplicaríamos el recurso en el

APIs orientadas a datos: CRUD 15

..

caso de que el servidor sí atendió a nuestra petición y nosotros no lo supiéramos.

1.6 Seguramente CRUD no sea lo mejor para tu API…

Hasta el momento hemos estado diseñando la API REST de una forma muy similar a como se
diseñaría una BBDD. Algunos estarían tentados de ver las colecciones como “tablas” y las entidades
como “filas”, y pasar por alto el verdadero significado de lo que es un recurso REST. Este diseño
ciertamente puede ser útil en casos sencillos, pero si queremos exprimir al máximo las capacidades
de interoperabilidad del enfoque REST debemos ir más allá de esta forma de pensar. Más adelante
veremos otras técnicas de diseño que maximizan la interoperabilidad.

Por otra parte, como se ha visto antes, no es bueno acoplar nuestro diseño de API REST a la
implementación del sistema. En este sentido hay que tener cuidado con los frameworks. Por ejemplo,
no es deseable el diseño de tu sistema REST se acople a tu diseño de tablas. En general el diseño de
la API REST debe estar totalmente desacoplado de la implementación, y dejar que esta última pueda
cambiar sin necesidad de alterar tu capa de servicios REST.

Sin embargo, en algunos escenarios sencillos, el enfoque CRUD es perfectamente válido. Por ejemplo,
si simplemente queremos dotar de un API REST a una base de datos, o a nuestra capa de acceso a
datos, el enfoque CRUD es perfectamente adecuado. En cualquier caso, incluso en estos escenarios,
la API REST no debería exponer detalles de implementación, tales como el esquema de base de datos
subyacente o las claves primarias. De este modo, si por ejemplo, decidimos desnormalizar nuestro
esquema, nuestra API REST no debería tener que ser cambiada forzosamente (otra cosa es cambiar
la implementación de esta).

Pero en el caso general, cuando definimos una API REST, lo que queremos exponer no es nuestra
capa de acceso a datos, sino nuestra capa de lógica de aplicación. Esto implica investigar que casos de
uso tenemos, cómo cambia el estado de nuestro sistema en función de las operaciones de negocio, y
que información es realmente pública y cual no. Para diseñar nuestra API de forma óptima debemos
ir más allá del paradigma CRUD, y empezar a pensar en casos de uso. Más adelante, en otro capítulo
de este mismo libro, se explicará un enfoque mejor para este tipo de APIs: el enfoque de hypermedia
o HATEOAS.

Pero antes necesitamos conocer un poco más las posibilidades que nos brinda HTTP y REST. En el
siguiente capítulo veremos algunas técnicas más avanzadas que pueden ser usadas tanto en APIs
orientadas a datos como en APIs basadas en hypermedia.

	Contents
	Sobre la cubierta
	Agradecimientos
	Érase una vez…
	APIs orientadas a datos: CRUD
	Introducción
	Leyendo
	Actualizando
	Borrando
	Creando
	Seguramente CRUD no sea lo mejor para tu API…

